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Abstract Despite many therapeutic regimens introduced
recently, chronic lymphocytic leukemia (CLL) is still an
incurable disorder. Thus, there is an urgent need to discover
novel, less toxic and more effective drugs for CLL patients.
In this study, we attempted to assess simvastatin, widely
used as a cholesterol-lowering drug, both as a single agent
and in combination with purine analogs—fludarabine and
cladribine—in terms of its effect on apoptosis and DNA
damage of CLL cells. The experiments were done in ex
vivo short-term cell cultures of blood and bone marrow
cells from newly diagnosed untreated patients. We analyzed
expression of active caspase-3 and the BCL-2/BAX ratio as
markers of apoptosis and the expression of phosphorylated
histone H2AX (named γH2AX) and activated ATM kinase
(ataxia telangiectasia mutated kinase), reporters of DNA
damage. Results of our study revealed that simvastatin induced
apoptosis of CLL cells concurrently with lowering of BCL-2/
BAX ratio, and its pro-apoptotic effect is tumor-specific, not
affecting normal lymphocytes.We observed that combinations
of simvastatin+fludarabine and simvastatin+cladribine had a
synergic effect in inducing apoptosis. Interestingly, the rate
of apoptosis caused by simvastatin alone and in combination
was independent of markers of disease progression like
ZAP-70 and CD38 expression or clinical stage according to
Rai classification. We have also seen an increase in γH2AX

expression in parallel with activation of ATM in most of the
analyzed samples. The results suggest that simvastatin can
be used in the treatment of CLL patients as a single agent as
well as in combination with purine analogs, being equally
effective both in high-risk and good-prognosis patients. One
of the mechanisms of simvastatin action is inducing DNA
damage that ultimately leads to apoptosis.
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Introduction

Chronic lymphocytic leukemia (CLL), the most common
type of adult leukemia in Western countries characterized
by the accumulation of malignant CD19+/ CD5+ cells, is a
heterogeneous disease with highly variable clinical course
and prognosis [1, 2]. Some patients have indolent disease
and never need treatment, but in others the clinical course is
aggressive and soon after diagnosis requires intensive
treatment [3, 4]. Symptomatic CLL can be effectively
treated with purine analogs, glucocorticoids, alkylating
agents, or monoclonal antibodies; however, some patients
with relapsed or refractory disease have limited therapeutic
options. Thus, there is an urgent need to discover less toxic
and more effective drugs for CLL patients. In an attempt to
find new modalities, the use of immunomodulatory drugs
or plant-derived substances was reported to improve results
in CLL treatment.

Statins are inhibitors of 3-hydroxy-3-methylglutaryl coen-
zyme A reductase, the enzyme responsible for synthesis of
mevalonate, a precursor of cholesterol. Statins were developed
as cholesterol-lowering drugs and are widely used for the
prevention and treatment of cardiovascular diseases or brain
stroke [5, 6]. They are generally regarded as safe drugs,
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although liver transaminase elevations and myopathy have
been reported [7, 8]. Recently, it has been indicated that
statins have cytostatic properties against several types of
cancer cell lines, and in several in vitro models, statins
sensitize human tumor cells to cytostatic drugs [9]. It has
also been suggested that they may be used as chemo-
preventive agents based on reports indicating a decreased
risk of cancer in patients with cardiovascular disease
treated with statins [9–11]. Statins have been shown to
either cause growth arrest or induce apoptosis in several
tumor-derived cells in vitro, and they display synergism
with chemotherapeutic agents [12–15]. It was also dem-
onstrated that exposure of clonal B lymphocytes from
CLL patients to simvastatin decreases their viability by
induction of apoptosis [16].

In this study, we examined the ex vivo effects of simvastatin
alone and in combination with purine analogs fludarabine and
cladribine in terms of its effect on apoptosis of CLL leukemic
cells and normal lymphocytes derived from peripheral blood
and bone marrow. We have also assessed the DNA damage
response in cells treated with simvastatin. We estimated the
percentage of cells expressing active caspase-3, a marker of
apoptosis, and intracellular expression of BCL-2 and BAX
proteins, regulators of the apoptotic process. The DNAdamage
response was assessed by measuring expression of phosphor-
ylated histone H2AX (named γH2AX) and activation of ATM
kinase (ataxia telangiectasia mutated kinase). Subsequently,
these apoptosis and DNA damage markers were correlated
with ZAP-70 and CD38 expression, lymphocyte counts,
lactate dehydrogenase (LDH) and β2-microglobulin levels,
and clinical stadium according to Rai classification.

Materials and methods

Patients

Fifteen newly diagnosed, untreated CLL patients were
enrolled in the study. Diagnosis of CLL was made on the
basis of clinical examination and morphological and immu-
nological criteria. Peripheral blood and bone marrow samples
were obtained from the patients after informed consent. The
study was approved by the Local Ethical Committee.

Cell isolation and culture

Peripheral blood and bone marrow mononuclear cells were
isolated by density gradient centrifugation using Biocoll
Separating Solution (Biochrom AG, Germany). Then the
cells were resuspended in culture medium consisting of
RPMI 1640 with 2 mM L-glutamine, 100 units/ml penicillin,
100 μg/ml streptomycin, and 10% fetal calf serum at a final
density of 2×106 cells/ml. This culture medium was
supplemented with simvastatin at a concentration of

10 μM, fludarabine at a concentration of 1 μg/ml, cladribine
at a concentration of 1.4 μg/ml, or the mixture of simvastatin
and fludarabine or simvastatin and cladribine, respectively.
Prior to use, simvastatin was activated by dissolving it in
100 μl of ethanol according to an activation procedure
proposed by Sadeghi et al. [17]. Reagents that we used were
obtained from Sigma-Aldrich Chemie GmbH, Germany.

The cells were exposed to the drugs for 0, 2 and 24 h in
culture; the cells treated for 2 h were analyzed for H2AX
phosphorylation and ATM activation, while those treated for
24 h were assessed for frequency of apoptosis. In the first three
experiments, we used two control cultures, one in ethanol at
0.01% concentration and the other without ethanol. Since the
differences in the percentage of apoptotic cells between these
two cultures were no higher than 0.6%, in the next experiments
the respective cell samples were incubated in the absence of
any drug for periods of time equivalent to the drug-treated cells.

Immunocytochemical detection of activated caspase-3
and BCL-2 and BAX proteins

The samples of blood and bone marrow untreated or treated in
cultures with simvastatin, fludarabine, cladribine, or a mixture
of these drugs (∼105 cells) were initially incubated for 15 min
with anti-CD19 peridinin chlorophyll (PerCP)-conjugated
and anti-CD5 allophycocyanin (APC)-conjugated monoclo-
nal antibody (mAb) (DAKO, Denmark) at room tempera-
ture. Subsequently, the cells were subjected to fixation and
permeabilization procedures using an IntraPrep kit (Immu-
notech, France) following the manufacturer's instruction. The
cells were then incubated with the anti-active caspase-3
mAb, phycoerythrin (PE)-conjugated (Pharmingen, USA);
anti-intracellular BAX mAb, flourescein isothiocyanate
(FITC)-conjugated (Santa Cruz Biotechnology, USA); anti-
intracellular BCL-2 mAb, PE-conjugated (Pharmingen,
USA); or an isotype-matched negative control (Dako,
Denmark) in darkness at room temperature for 15 min.

Immunocytochemical detection of γH2AX and ATM
activation

The samples of blood untreated or treated in cultures with
simvastatin, fludarabine, cladribine, or a mixture of these
drugs (∼105 cells) were initially incubated for 15 min with
anti-CD19 PerCP and anti-CD5 APC-conjugated mAb
(DAKO, Denmark) at room temperature. Subsequently, the
cells were subjected to fixation and permeabilization using
an IntraPrep kit (Immunotech, France) following the
manufacturer's instruction. The cells were then incubated
with Ser139-phosphorylated H2AX mAb conjugated with
FITC (BioLegend, USA) or anti-phospho ATM (Ser-1981)
Ab (Millipore, USA) labeled by the ZenonTM Alexa Fluor®
488 Mouse IgG1 Labeling Kit (Molecular Probes, USA).
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Fluorescence measurement

The samples were measured by a FACSCalibur (Becton
Dickinson). For each sample, 10,000 cells were measured.
The CD5+/CD19+ population was initially gated, and
further analysis of leukemic cells was carried out for this
population. To determine the frequency of apoptosis, the
percentage of active caspase-3 cells relative to that in the
control cells was calculated. The mean BCL-2 and BAX
immunofluorescence intensity (IF) was estimated for each
sample. The BCL2/BAX IF ratio for CD19+/CD5+ cells
was then calculated. The analysis of non-leukemic cells was
carried out for CD19+/CD5− and CD19−/CD5+ populations,
which represented normal B and T cells, respectively. The
percentage of cells with expression of active caspase-3 was
estimated for these populations. We have performed such an
analysis in seven out of 15 patients in which the percentage of
non-leukemic cells in both peripheral blood and bone marrow
was higher than 10%.

The mean γH2AX and activated ATM IF intensity was
estimated per sample. The data reporting drug effects on
CLL cells are shown as the drug-induced increase in
mean γH2AX IF or ATMP1981 IF over the respective
values of the control cells, which were run in parallel with
the drug-treated ones.

Flow cytometric analysis of ZAP-70 and CD38 expression

A total of 1×106 peripheral blood cells were stained with
mAbs CD19 PE (BD Pharmingen), CD5 CyChrome
(Caltag Laboratories, USA) or CD3 PE (BD Pharmingen).
Following membrane staining, the cells were fixed and
permeabilized with 70% ethanol for 1 h at −20°C. After
washing, the anti-ZAP-70 antibody (Biomol Research
Laboratories, USA) labeled by the ZenonTM Alexa Fluor®
488 Mouse IgG2a Labeling Kit (Molecular Probes, USA)
was added to the sample tubes. The samples were incubated
for 30 min, washed, and analyzed by flow cytometry.
Patients were considered positive for ZAP-70 when the
expression was found in 20% or more of leukemic cells.

To assess CD38 expression, peripheral blood mononuclear
cells were stained with anti-CD38 FITC (BD Pharmingen),
anti-CD19 PE, anti-CD5CyChromeMoAbs, or IgG1 isotypic
control for 20 min in darkness and analyzed by flow
cytometry. Patients were considered CD38 positive when
the expression was found in at least 20% of leukemic cells.

Evaluation of cooperative index

To evaluate the synergism between simvastatin and fludar-
abine or cladribine, a cooperative index (CI) based on the
Chou–Talalay method was calculated [18–20]. The following
formula was used: CI = (sum of specific apoptosis of single-

agent treatment/specific apoptosis of combined treatment).
The percentage of specific apoptosis was determined using
the following formula: specific apoptosis ¼ drug inducedð
apoptosis � spontaneous apoptosisÞ = 100 � spontaneousð
apoptosisÞ � 100%. When CI<1, CI=1, and CI>1, the
effects were defined as synergistic, additive, and infra-
additive, respectively [21, 22].

Fluorescence in situ hybridization

In the analysis of chromosome alterations characteristic of
CLL, locus-specific probes for 11q22.3 (LSI ATM),
17p13.1 (LSI TP53), 13q.14.3 (D13S319), and the chro-
mosome 12 centromere (CEP12) (Abbott Diagnostics) were
used. Fluorescence in situ hybridization was performed
according to the manufacturer's instructions. Probes were
denatured at 73°C for 5 min and then applied to the
determined areas on the slides. Following overnight hybrid-
ization at 37°C, the slides were washed and air-dried in the
darkness. Then, the slides were stained with DAPI and
stored at −20°C in the darkness. The samples were analyzed
using the BX51 fluorescence microscope (OLYMPUS), and
images were captured with a charge-coupled device camera
using the CytoVision image analyzing system. At least 200
nuclei were analyzed for each probe. The cutoff value was
20% for each probe.

Statistical analysis

The statistical analysis was performed using STATISTICA
8.0 software for Windows. We used a Mann–Whitney U
test and a Spearman's R test for two-independent-group
analyses and two-variable-correlations, respectively. The
Wilcoxon test was used for two-dependent-variables analy-
ses. The p<0.05 standard was considered to be statistically
significant.

Results

Simvastatin induces apoptosis of CLL leukemic cells
derived from peripheral blood and bone marrow

Figure 1 presents the data reporting the induction of apoptosis
in peripheral blood and bone marrow CLL cells treated ex
vivo with simvastatin. The percentage of cells with caspase-3
expression in 24-h cultures with simvastatin was significantly
higher than the level of spontaneous apoptosis seen in the
untreated 24-h parallel control cultures. Such an increase in
the frequency of simvastatin-induced apoptosis was observed
in the case of blood and bone marrow cultures with the
percentage of apoptotic cells being significantly higher in
bone marrow than in peripheral blood (Fig. 1a). We also
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detected a significant decrease in BCL-2/BAX ratio of
CD19+/CD5+ in simvastatin-induced cultures after 24 h
in comparison to the 0-h control culture (Fig. 1b).

Simvastatin synergizes with purine analogs to induce
apoptosis of CLL cells

To assess the rate of apoptosis induced by simvastatin in
combination with purine analogs, we measured the expres-
sion of active caspase-3 in CD19+/CD5+ peripheral blood
cells in cultures with simvastatin+fludarabine and simvas-
tatin+cladribine. Figure 2 illustrates the drug-induced
increase in frequency of apoptotic cells above the level of
spontaneous apoptosis seen in the untreated 24-h parallel
control cultures. As is evident in Fig. 2a, the frequency of
apoptosis in simvastatin+fludarabine-treated cultures was
significantly higher than in simvastatin-treated cultures, and
the same was true when compared with fludarabine-treated

cultures. Such a significant increase in the rate of apoptosis
was also observed in simvastatin+cladribine-treated cul-
tures in comparison to both simvastatin cultures and
cladribine cultures (Fig. 2b). Subsequently, to evaluate the
effect of the combined action of simvastatin and purine
analogs, the CI for each sample was calculated. The CI for
simvastatin+fludarabine was <1 for 12 out of 15 analyzed
patients, indicating the synergic effect in these samples. In
one case, CI = 1, and in two cases, CI was >1, indicating
the additive and the infra-additive effect, respectively. CI for
simvastatin+cladribine was <1 in all except one of analyzed
cases, indicating the synergic effect of these two drugs. The
values of CI for each sample are presented in Fig. 2.

Simvastatin induces apoptosis of leukemic cells
in a tumor-specific manner

To assess the effect of simvastatin as a single agent and in
combination with purine analogs on non-leukemic cells, we
measured the percentage of apoptotic cells with the
expression of active caspase-3 in a population of CD19+/
CD5− and CD19−/CD5+ cells, which represented B and T
cells, respectively. The results are shown in Fig. 3. We
performed such an analysis in seven out of 15 patients in
whom the percentage of non-leukemic cells in both
peripheral blood and bone marrow was higher than 10%.
As is evident in Fig. 3, there was no apoptotic effect in the
population of non-leukemic lymphocytes in culture with
simvastatin, nor was the effect detected in samples of
peripheral blood or bone marrow. Both fludarabine and
cladribine caused apoptosis of normal cells; however, there
was no statistically significant increase in the normal
lymphocyte apoptosis rate in cultures with purine analogs
combined with simvastatin in comparison to cultures with
purine analogs only. Interestingly, the percentage of
apoptotic cells from normal cell populations in cultures
with purine analogs in patients No. 4,6, and 7, in whom
cytogenetic abnormalities (del 17p or del 11q) were
detected, was higher than the rate of purine analog-
induced apoptosis of leukemic cells (to compare, see Figs. 2
and 3 and Table 1).

Rate of simvastatin-induced apoptosis of CLL cells
is independent of ZAP-70 expression, CD38 expression,
and clinical stadium according to Rai classification

To assess whether the rate of apoptosis caused by simvastatin
is connected with the prognosis of CLL, the analyzed
apoptotic parameters were compared in ZAP-70+ versus
ZAP-70− cases as well as in CD38+ versus CD38− groups.
We did not find statistically significant differences in the
percentage of apoptotic caspase-3-positive cells in cultures
with simvastatin between the ZAP-70− and ZAP-70+ groups.
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Fig. 1 Percentage of CD19+/CD5+ cells with active caspase-3
expression in cultures with simvastatin (10 µM) in comparison to
the control culture. The experiments were performed in a group of 15
patients. The statistically significant differences are shown in the
figure: *p=0.0006, **p=0.001, ***p=0.0009 (a). BCL-2/BAX ratio
of CD19+/CD5+ cells in cultures with simvastatin (10 µM) after 24 h
in comparison to the control 0 h culture. A decrease in the ratio in the
simvastatin-induced culture is observed after 24 h. Experiments were
performed in a group of 15 patients. The statistically significant
differences are shown in the figure: *p=0.001, **p=0.0009 (b).
Graphs represent means ± standard deviations
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calculated for each sample (a). Percentage of CD19+/CD5+ cells with
expression of active caspase-3 in ex vivo 24-h cultures with simvastatin
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cladribine and the CI calculated for each sample (b). The data represent
the drug-induced increase in the percentage of apoptotic cells above the

respective values observed in the parallel control cultures. CI = (sum of
specific apoptosis of single-agent treatment/specific apoptosis of
combined treatment). The percentage of specific apoptosis was
determined using the following formula: specific apoptosis ¼ drugð
induced apoptosis � spontaneous apoptosis Þ = 100 � spontaneousð
apoptosisÞ � 100%. When CI<1, CI=1, and CI>1, the effects were
defined as synergistic, additive, and infra-additive, respectively
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Similarly, there were no statistically significant differences in
the rates of apoptosis caused by simvastatin between CD38+
and CD38− patients.

We also assessed the rate of apoptosis caused by
simvastatin as a single agent or in combination with
purine analogs in groups of early (0–1) versus advanced

(2–4) stages of CLL according to the clinical Rai
classification. No significant differences between these
groups were found. The rate of simvastatin-induced
apoptosis did not significantly correlate with such prog-
nostic parameters like lymphocytosis, the lactate LDH
level, or the β-2 microglobulin level.
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Fig. 3 Percentage of apoptotic cells with expression of active caspase-3
in populations of normal B (CD19+/CD5−) and T (CD19−/CD5+) cells
in ex vivo 24-h cultures from the chosen patients. The analysis was
performed in peripheral blood cultures with simvastatin, fludarabine, and
simvastatin+fludarabine and bone marrow cultures with simvastatin. The
concentrations of simvastatin and fludarabine were 10 µM and 1 µg/ml,
respectively (a). Percentage of apoptotic cells with active caspase-3
expression in a population of normal B (CD19+/CD5−) and T (CD19−/
CD5+) cells in ex vivo 24-h cultures from the chosen patients. The
analysis was performed in peripheral blood cultures with simvastatin,

cladribine, and simvastatin+cladribine and bone marrow cultures with
simvastatin. The concentrations of simvastatin and cladribine were
10 µM and 1.4 µg/ml, respectively (b). The data represent the drug-
induced increase in the percentage of apoptotic cells above the
respective values observed in the parallel control cultures. The lack of
bars observed in some cases means that there was no increase in the
percentage of apoptotic cells above the level of these cells in controls.
The scale in the figure is similar to that in Fig. 2 to make the
comparison of changes between leukemic and normal cells easier. The
numbers on the X-axis represent numbers of patients presented in Fig. 2
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Simvastatin induces phosphorylation of H2AX
and activation of ATM in CLL cells

To explore whether treatment with simvastatin induces DNA
damage, we measured the expression of phosphorylated
H2AX and activated ATM, the markers of the DNA damage
response, in CD19+/CD5+ cells. In most instances, an
increase in γH2AX expression concurrent with the increase
in expression of activated ATM was seen after 2 h of
incubation with simvastatin, above the level of expression of
these phosphoproteins in control cultures. The data showing
the increase in γH2AX and activated ATM expression above
the level of their expression in control culture in cells of
individual patients are presented in Fig. 4. It is evident in
Fig. 4, however, that the cells of a few patients were not
affected at all. We also compared the rate of apoptosis
caused by simvastatin in the group of patients where the
increase in γH2AX expression above its “constitutive” level
was observed (“γH2AX positive”) and in the group where
there was no increase in γH2AX expression (“γH2AX

negative”). The rate of apoptosis was higher in “γH2AX
positive” group than in “γH2AX negative one (Fig. 5).

When the data for all patients were compiled for statistical
analysis, they revealed a significant increase in γH2AX IF
caused by simvastatin in comparison with control cultures
(50.0±14.6 and 53.1±14.4, respectively, with p=0.02).
However, no significant differences were apparent between
activated ATM expression in simvastatin-treated cultures and
ATM expression in control cultures (181.2±59.2 and 184.9±
64.4, respectively, p>0.05). The expression of γH2AX and
activated ATM was not significantly dependent on ZAP-70
expression, CD38 expression, and clinical stadium according
to Rai classification. However, the analysis of chromosome
alterations in the “γH2AX-negative” group revealed several
genetic abnormalities that can be connected with no response
to DNA damage caused by simvastatin. The data are
presented in Table 1.

Discussion

Despite the many therapeutic regimens introduced recently,
CLL is still an incurable disorder. Thus, there is an urgent
need to discover novel, less toxic, and more effective drugs
for CLL patients. Among several options, simvastatin was
reported to induce apoptosis of leukemic cells in vitro and
seems to be of interest in CLL patients [16]. It is known
that statins induce apoptosis in a tumor-specific manner as
shown in the case of tumor cells derived from acute
myelogenous leukemia [14, 21, 22], multiple myeloma
[23–25], and various cell lines [26]. It was also reported in
several in vitro models that statins sensitize human tumor
cells to cytostatic drugs [9].

Such properties of simvastatin inspired us to assess its
effects on leukemic cells of CLL patients. Our results are
consistent with the observations of Chapman-Shimshoni et

Table 1 Genetic abnormalities in CLL patients belonging to the
group with no observable increase in γH2AX and activated ATM
expression above the level of control expression in 24-h cultures with
simvastatin (10 µM concentration)

Patient number Genetic abnormalities

4 11q22.3

5 13q14.3

6 17p13.1, trisomy 12

7 11q22.1

8 11q22.3

13 No changes detected

In patient No. 5, a slight increase in activated ATM expression without an
increase in γH2AX expression was observed, which is shown in Fig. 4
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Fig. 4 Ex vivo induction of
γH2AX and phosphorylated ATM
(ATMP1981)) in CD5+/CD19+
cells treated with simvastatin
(10 µM) in 2-h cultures. The
data represent the drug-induced
increase in expression of γH2AX
(γH2AX IF) and activated ATM
(ATMP1981 IF) above the respec-
tive values observed in the paral-
lel control cultures. No increase in
expression of γH2AX after sim-
vastatin treatment was detected in
leukemic cells of patients No. 4,
5, 6, 7, 8, and 13. In patient No.
5, a slight increase in ATMP1981

expression was observed
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al. [16] and indicate that simvastatin induced apoptosis of
leukemic CD19+/CD5+ cells at a higher rate than sponta-
neous apoptosis observed in control culture. This was the
case in both in peripheral blood and bone marrow cell
cultures. The induction of apoptosis was associated with a
decrease in the BCL-2/BAX ratio, which was previously
reported to accompany the simvastatin-induced apoptosis
[27]. Moreover, we have shown that the pro-apoptotic
effect of simvastatin is tumor-specific because such an
effect was not observed in a non-leukemic lymphocyte
population. Furthermore, this study is the first to demon-
strate that simvastatin increased the frequency of apoptosis
in combination with purine analogs. For most analyzed
samples, the combined effect of simvastatin and purine
analogs was seen as synergic when assessed based on the
cooperative index.

Purine analogs are widely used for the treatment of
CLL, and it has been reported that higher remission rates
can be obtained when they are employed as a first therapy
[28, 29]. The widely used purine analogs—fludarabine
and cladribine—have multidirected activities such as
interference with DNA and RNA synthesis, DNA repair
mechanisms, induction of apoptosis, and control of the cell
cycle and signal transduction pathways in leukemic cells
[30, 31]. However, the use of purine analogs is connected
with toxicities such as immunosuppression marked by a
decrease in the CD4+/CD8+ ratio, leading to development of
opportunistic infections, and myelosuppression, as well as to
gastrointestinal toxicities including nausea, vomiting, and
hepatic lesions [32]. Thus, the reduction in purine analog-
associated toxicity by lowering their dose may be of great
importance. The use of purine analogs in combination with
simvastatin allows a reduction of their dose because of the
synergic effect of the combination of these drugs. The benefit
of in vitro combination of simvastatin and radiotherapy (in

particular (213)Bi-alpha-irradiation ) in CLL was reported
previously by Vandenbulcke et al. [33].

The role of prognostic factors in CLL seems to be very
important, especially to distinguish the group of patients who
require intensive treatment from those who will benefit from
milder forms of therapy. There are several prognostic markers
identified for CLL patients, such as laboratory parameters
reflecting the tumor burden or disease activity (lymphocyte
count, LDH elevation, bone marrow infiltration pattern and
lymphocyte doubling time, β2-microglobulin) or markers
related to the biology of the disease (genomic aberrations or
gene abnormalities and the mutation status of the variable
segment of immunoglobulin heavy chain genes (IgVH)) or
surrogate markers for these factors such as ZAP-70 and CD38
[3, 34]. The presence or absence of somatic mutations in the
IgVH and its surrogate markers has been described as the
most powerful prognostic factors for CLL [4, 35, 36].

In this study, we assessed whether the rate of apoptosis
caused by simvastatin differs between patients with better
and worse prognosis. However, we detected that the rate of
simvastatin-induced apoptosis of CLL cells was indepen-
dent of ZAP-70 expression, CD38 expression, and clinical
stadium according to Rai classification. Moreover, the
percentage of apoptotic cells did not significantly correlate
with such prognostic parameters as lymphocytosis, LDH,
and β2-microglobulin level. Thus, one can suppose that
simvastatin can be equally effective in both the high-risk
and the better-prognosis patients.

In the next part of the study, we examined the expression of
phosphorylated H2AX and activated ATM in CD19+/CD5+
cells. The phosphorylated histone H2AX (named γH2AX) is
the marker of DNA double-strand breaks, whereas ATM
kinase is considered to be a major physiological mediator of
H2AX phosphorylation. ATM activation is achieved by its
autophosphorylation at Ser1981 [37, 38]. In our study, we
observed an increase in γH2AX expression together with an
increase in activated ATM in the same samples. Interestingly,
such an increase was observed in most but not all cases. The
analysis of γH2AX and phosphorylated ATM expression in
the group of worse versus better prognosis revealed no
significant connection with ZAP-70 and CD38 expression or
with disease stage according to Rai classification. Further-
more, the genetic abnormalities were analyzed in the group
of patients who did not respond to simvastatin by inducing
DNA damage. Interestingly, in most cases the del 11q and
the del 17p corresponded to abnormalities in ATM and p53,
respectively. These data may prove that abnormalities in
genes encoding proteins involved in the DNA damage
response are the basis for the lack of H2AX phosphorylation;
however, further analysis in the larger group of patients is
required. We also observed that in the group of patients in
which H2AX was phosphorylated there was a significantly
higher rate of apoptosis caused by simvastatin than in the
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Fig. 5 The rates of apoptosis caused by simvastatin (10 µM) in 24-h ex
vivo culture in the group of CLL patients (n=9) in which the increase in
γH2AX expression was above its “constitutive” level as a result of
response to DNA damage (“γH2AX IF positive patients”) and the
group (n=6) in which there was no increase in γH2AX expression
above its “constitutive” level (“γH2AX IF negative patients”). The
statistically significant difference is shown in the figure: *p=0.02
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group without detection of H2AX phosphorylation. Thus,
phosphorylation of H2AX makes the cells more prone to
apoptosis and might be used as a predictor of apoptosis
sensitivity.

This report is the first to reveal that simvastatin induces
DNA damage as reflected by H2AX phosphorylation.
However, simvastatin was reported to mediate oxidative
DNA damage through generation of reactive oxidative
species (ROS), which is known to trigger phosphorylation
of H2AX. Otsuki et al. [23] showed that ROS participate in
simvastatin-induced apoptosis of multiple myeloma cell
lines, and anti-oxides prevented growth inhibition in several
of them. Yang et al. [39] reported that simvastatin
diminished K562 cell proliferation and induced apoptosis
while simultaneously increasing the level of ROS and
intracellular calcium concentration. Furthermore, the nitric
oxide (NO) content and inducible NO synthase (iNOS)
mRNA expression were significantly higher in the
simvastatin-treated group than in the corresponding control
group. Thus, their findings indicate that increased ROS,
NO, intracellular calcium concentration, and upregulated
iNOS mRNA expression may be responsible for
simvastatin-induced K562 cell apoptosis [39].

In conclusion, the results obtained in this study indicate
that simvastatin can serve as an effective treatment for CLL
patients as a single agent as well as in combination with
purine analogs. This widely prescribed drug with a lack of
severe side effects may be a good therapeutic option for
CLL patients, especially older individuals for whom there
are some limitations in using aggressive treatment. The
synergism with purine analogs makes simvastatin an
interesting drug for combined therapy in CLL patients.
One of the mechanisms of simvastatin action appears to be
connected with inducing DNA damage that, as a result,
makes the leukemic cells undergo apoptosis.
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