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Simple Summary: Oncolytic viruses (OVs) are a promising immunotherapy that specifically target
and kill cancer cells and stimulate anti-tumor immunity. While different OVs are endowed with
distinct features, which enhance their specificity towards tumor cells; attributes of the cancer cell also
critically contribute to this specificity. Such features comprise defects in innate immunity, including
antiviral responses, and the metabolic reprogramming of the malignant cell. The tumorigenic features
which support OV replication can be intrinsic to the transformation process (e.g., a direct consequence
of the activity of a given oncogene), or acquired in the course of tumor immunoediting—the selection
process applied by antitumor immunity. Oncogene-induced epigenetic silencing plays an important
role in negative regulation of immunostimulatory antiviral responses in the cancer cells. Reversal of
such silencing may also provide a strong immunostimulant in the form of viral mimicry by activation
of endogenous retroelements. Here we review features of the cancer cell that support viral replication,
tumor immunoediting and the connection between oncogenic signaling, DNA methylation and viral
oncolysis. As such, this review concentrates on the malignant cell, while detailed description of
different OVs can be found in the accompanied reviews of this issue.

Abstract: Cell autonomous immunity genes mediate the multiple stages of anti-viral defenses,
including recognition of invading pathogens, inhibition of viral replication, reprogramming of
cellular metabolism, programmed-cell-death, paracrine induction of antiviral state, and activation
of immunostimulatory inflammation. In tumor development and/or immunotherapy settings,
selective pressure applied by the immune system results in tumor immunoediting, a reduction in
the immunostimulatory potential of the cancer cell. This editing process comprises the reduced
expression and/or function of cell autonomous immunity genes, allowing for immune-evasion of the
tumor while concomitantly attenuating anti-viral defenses. Combined with the oncogene-enhanced
anabolic nature of cancer-cell metabolism, this attenuation of antiviral defenses contributes to viral
replication and to the selectivity of oncolytic viruses (OVs) towards malignant cells. Here, we review
the manners by which oncogene-mediated transformation and tumor immunoediting combine to
alter the intracellular milieu of tumor cells, for the benefit of OV replication. We also explore the
functional connection between oncogenic signaling and epigenetic silencing, and the way by which
restriction of such silencing results in immune activation. Together, the picture that emerges is one
in which OVs and epigenetic modifiers are part of a growing therapeutic toolbox that employs
activation of anti-tumor immunity for cancer therapy.

Keywords: oncolytic viruses; immunoediting; oncogenic signaling; RAS; DNA methyltransferase
inhibitor (DNMTi); viral mimicry; epigenetic silencing

1. Introduction

The present review focuses on the differential and enhanced susceptibility of cancer
cells to oncolytic viruses (OVs). We propose that such hyper-susceptibility of the malignant
cells stems from unique features of the cancer-cell milieu, including defective antiviral
responses and metabolic reprograming. The sources of such tumor-cell specific alterations

Cancers 2021, 13, 939. https://doi.org/10.3390/cancers13050939 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-2352-1808
https://orcid.org/0000-0001-8341-2833
https://doi.org/10.3390/cancers13050939
https://doi.org/10.3390/cancers13050939
https://doi.org/10.3390/cancers13050939
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13050939
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/13/5/939?type=check_update&version=2


Cancers 2021, 13, 939 2 of 19

comprise a combination of factors, which are intrinsic to the tumor cell—e.g., oncogene-
stimulated signaling, and/or extrinsic ones; e.g., selective pressure applied by the tumor
immune microenvironment. We begin by focusing on the cancer-cell per se, analyzing
how oncogene-induced modifications serve to optimize the intracellular environment
towards OV replication. To this end, we employ RAS-activated pathways as a pivot,
exemplifying how this intrinsic oncogenic pathway modulates antiviral responses. We
then proceed to focus on the immunoediting of tumors, as this provides a critical extrinsic
(selective) source of alterations to cancer-cell autonomous immune functions. Given the
overlap in the immune-activation-potential of a cancer cell and its ability to raise antiviral
responses, the selective pressure applied by anti-tumor immunity results in both decreased
immunogenicity and in defective antiviral responses. We finalize our review by focusing on
oncogene-stimulated DNA methylation in the context of immune evasion, as an example
of how the two processes (oncogenic signaling and immunoediting) converge to influence
OVs-cancer-cell interactions. Our focus on DNA methylation stems from its prominence as
a molecular mechanism for silencing of cell-autonomous immune responses. In this context,
we also discuss the reversal of this form of epigenetic silencing, which may elicit tumor
immunogenicity through the expression of endogenous retroelements, thus generating a
“viral mimicry” state, emulating the immune-stimulatory potential of OVs.

2. Defects to Cell Autonomous Immunity and Metabolic Reprogramming Optimize
the Cancer Cell Milieu towards Viral Infection
2.1. Cell Autonomous Immunity: The Antiviral Response

The cell autonomous immune response provides the first line of defense against cellu-
lar pathogens, including viruses [1]. To deal with a wide variety of pathogens, activation
of cell autonomous immunity occurs in an antigen-independent fashion. Instead, it relies
on the ability of the cell to recognize molecular patterns which are abundant in pathogens
(pathogen-associated-molecular patterns, PAMPs), yet relatively absent in healthy cells.
These molecular patterns are recognized by pattern recognition receptors (PRRs), which
survey distinct cellular compartments for the presence of PAMPs. In addition, aberrant
intracellular localization of nucleic acids (e.g., intra-endosomal localization of RNA or
DNA, or cytoplasmic localization of DNA) also serves to discern between nucleic acids
of cellular vs. pathogen origin, and when detected, stimulates cell autonomous immune
responses (reviewed in [2–4]). A prototypic PAMP is double stranded RNA (dsRNA),
an obligatory molecular pattern of viral infection, which may be recognized by toll-like
receptor 3 (TLR3) upon exposure to the endosomal lumen, or by RNA helicases—the
retinoic acid-inducible gene I (RIG-I) and the melanoma differentiation-associated gene
5 (MDA5) upon exposure in the cytoplasm [1,5]. DNA too can serve as a PAMP, depend-
ing on its composition or intracellular localization. In these contexts, TLR9 recognizes
DNA molecules rich in unmethylated CpG sequences, as commonly occurs in genomes
of viruses and bacteria [6]; while cytoplasm-localized DNA is recognized by cyclic GMP-
AMP Synthase (cGAS) [7]. In a typical case, exemplified here by the cellular response to
RNA virus infections, PAMP-induced PRR signals are transduced through mitochondrial
antiviral-signaling protein (MAVS), Tank-binding kinase 1 (TBK1) and IKKs; resulting in
the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and
interferon (IFN)-regulatory factors (IRFs) 3 and 7. These in turn translocate to the nucleus
and mediate the transcriptional activation of type I or type III IFNs (e.g., IFN-β). Following
synthesis and secretion, IFNs activate Janus kinase (JAK)- signal transducer and activator
of transcription (STAT) signaling, resulting in STAT-mediated massive amplification of the
cell autonomous immune response via the induction of IFN-stimulated-genes (ISGs) [1,5,8].

2.2. Oncogene-Induced Perturbations to Antiviral Responses: A Reduction in Impediments to
Viral Replication

Oncogene-induced perturbations to antiviral responses are prominent molecular
mechanisms by which the cancer-cell milieu becomes optimized towards OV replication.
To exemplify this concept, we focus on such effects related to oncogenic RAS. Oncogenic
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mutations in RAS, a GTP-activated molecular switch, ensue exposure to genotoxic agents,
and are estimated to occur in 16–30% of all human cancers, with highest incidence in
pancreatic (90%) and colon (50%) cancers; and considerable portions of melanoma and
lung adenocarcinoma [9–11]. Activated RAS (either because of oncogenic mutations or
following stimulation of upstream growth receptors) stimulates downstream signaling
pathways mediated by phosphatidylinositol 3 (OH)-kinase (PI3K), RAL guanine nucleotide
dissociation stimulator (RALGDS) family members, and members of the RAF family, which
activate the RAF/MEK/ERK pathway [12]. Thus, RAS functions as a multi-pronged
signaling node, which upon activation, endows tumor cells with multiple malignancy-
associated features. Multiple lines of evidence place RAS, and its associated signaling
pathways, as negative regulators cell autonomous immunity.

2.2.1. RAS-Mediated Regulation of Immune Transcription Factors

In accord with oncogene-mediated regulation of gene expression programs, a critical
mechanism by which they modify immune/antiviral functions of tumor cells is through
regulation of the expression of immunity-related transcription factors. In HRAS trans-
formed murine fibroblasts, and RAS-transformed human cancer cells, MEK-ERK signaling
was shown to negatively regulate IRF-1-dependent transcription of IRF1 and STAT2 [13,14],
thus hampering IFN responses, and supporting the replication of oncolytic vesicular stom-
atitis virus (VSV). In addition to immune-related functions (e.g., as antiviral gene, master
regulator of acute inflammation, and main effector of IFNγ signaling), IRF1 was also char-
acterized as a tumor-suppressor [15–19]. Thus, IRF1 inhibition by RAS-MEK is predicted to
concomitantly promote tumorigenicity, alter the interactions between tumor- and immune
cells and enhance the susceptibility of cancer cells to OVs. Of note, the antagonism of
IRF1 function by mitogenic pathways is not restricted to cancer settings. For example,
in airway epithelial cells, influenza A virus (IAV) and rhinovirus activate the epidermal
growth factor receptor (EGFR, [20])—an upstream activator of the RAS/RAF/MEK/ERK
pathway [21]. Activated EGFR diminishes both IRF1 expression and induction of IFN-λ
production, thus increasing viral infection. Oncogenic KRAS was shown to inhibit the
expression of STAT1, STAT2 and IRF9 (members of the ISGF3 transcription-promoting com-
plex); thus, hampering the basal and IFN-induced expression of ISGs in colorectal cancer
cell lines [22]. This effect was proposed to be mediated (at least in part) through the PI3K
pathway. Moreover, a recent study employing a murine model of colorectal cancer combin-
ing oncogenic KRAS expression with conditional null alleles of adenomatous polyposis
coli (APC) and TRP53, identified repression of IRF2 as a key mechanism for KRAS-induced
immune-suppression in colorectal cancer [23]. It should be noted that the roles of IRF2 in
cancer are controversial. Thus, while IRF2 expression is downregulated in many different
tumor types [24] suggesting potential tumor suppressor roles, other studies proposed
pro-tumorigenic functions for IRF2, including via antagonism of IRF1 functions [15,25].
Similarly, while IRF2 was proposed to antagonize IRF1 antiviral responses [26], more recent
studies suggest complementary roles for IRF1 and IRF2 in IFN-induced gene expression.

2.2.2. Inhibition of PKR Licenses Cells for Viral Infection

A major antiviral signaling node, which is targeted by RAS-induced signaling, is the
dsRNA-activated protein kinase, PKR, which following the binding of dsRNA inhibits
protein synthesis via phosphorylation of the eukaryotic initiation factor 2 α (eIF2α) [27,28].
In accord with the enhanced protein synthesis requirements of cancer cells, PKR has been
identified as a tumor suppressor in different malignancy settings [28–30]; inducing apopto-
sis upon its activation [31,32]. The notion of PKR as a main antiviral gene is underscored
by the numerous inhibitory mechanisms against PKR which are encoded/induced by
different viruses [33–37], and by the enhancement of viral replication and viral-induced
lethality in PKR-null cells and mice, respectively [38]. Based on this dual role of tumor
suppressor and antiviral effector, oncogene-mediated targeting of PKR in general, and
its inhibition by the RAS/RAF/MEK/ERK pathway in particular, can be exploited by
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OVs. For example, wild-type IAV counters PKR via its NS1 protein [39], and via activation
of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) MK2 and
MK3 [40]. In accord with PKR being an ISG [38], mutant IAV lacking NS1 replicate only in
interferon-deficient systems [41] and perturbation of expression of MK2 or MK3 reduces
IAV titers, and enhances PKR activation and eIF2α phosphorylation by the dsRNA mimic
polyI:C [40]. In accord with RAF/MEK/ERK-mediated licensing of cells towards IAV
infection, IAV shows a strong tropism towards cells expressing active RAF both in vitro
and in vivo [42]. Similarly, expression of oncogenic NRAS in melanoma cells, suffices to
make them selectively susceptible to oncolysis by IAV lacking NS1 [43]. The centrality of
PKR inhibition by the RAS/RAF/MEK/ERK signaling axis in determining susceptibility of
cancer cells to OVs is further exemplified by: (i) the requirements of herpes simplex virus
1 (HSV1) ∆γ(1)34.5 mutants for MEK-mediated PKR inhibition [44], (ii) the oncotropism
of VAI mutant adenovirus towards cells in which RAS inactivates PKR [45], and (iii) the
selectivity of the mammalian reovirus towards RAS-transformed cells, which was initially
identified as dependent on PKR inactivation [46,47]. This latter tropism has been further
dissected and was shown to involve additional mechanisms, including: activation of
RAL-GTP exchange factor (RAL-GEF) and the p38 kinase, downstream of RAS [48]; the
RAS-mediated enhancement of multiple reovirus infection features including uncoating,
particle infectivity, and apoptosis-dependent virion release [49]; and the RAS-mediated
inhibition of RIG-I expression/function [50]. In line with the latter inhibitory mechanism,
RAF/MEK/ERK activation also hampers RIG-I- and IFN-mediated restriction of VSV
replication [51].

2.2.3. Inhibition of Antiviral Responses by RAS-Regulated Factors

Oncogenic RAS may also regulate OV replication through effects on additional onco-
genes. For example, the enhanced replication of oncolytic Newcastle disease virus (NDV)
depends on RAC1 in highly-malignant RAS-transformed keratinocytes [52]; and RAC1 is
a downstream effector of oncogenic RAS [53,54]. In addition, the CDC25 phosphatase, a
RAF-regulated oncogene [55], negatively regulates TBK1 through dephosphorylation, in-
hibiting RIG-I-mediated induction of IFN [56]. Moreover, while oncogenic KRAS increases
PKC-βII expression in a murine colon-cancer model [57], this enzyme phosphorylates
and inhibits RIG-I, and enhances VSV replication in different cellular settings [58]. The
notion of a functional interaction between MDA-5 and oncogenic-RAS is exemplified by
the suppression of pro-apoptotic effects of MDA-5 overexpression by either oncogenic
RAS or RAF [59]. An additional mode of action is observed for the MYC oncogene, which
functions as a crucial effector of oncogenic KRAS, [60,61] and represses, together with
the transcriptional repressor MIZ, the type I IFN pathway [61]. Interestingly, inactivation
of the tumor suppressor phosphatase and tensin homologue (PTEN), which among its
well-documented malignancy-promoting activities [62] accelerates tumorigenesis induced
by KRAS [63], results in increased phosphorylation of Ser97 in IRF3, in the negative regu-
lation of IRF-mediated IFN induction upon viral challenge, and in increased viral (VSV)
replication [64].

Together, the above-mentioned examples (Section 2.2) demonstrate the ability of
oncogenic signaling to interfere with all steps of the antiviral response continuum, including
PRR-mediated PAMP recognition, IFN induction, JAK/STAT signaling and ISG expression.

2.3. Oncogene-Mediated Stimulation of Anabolism: Supplying the Metabolic Needs of
Replicating Viruses

Both viral replication and tumor-cell growth are anabolic processes, i.e., dependent
on the biosynthesis of macromolecules (nucleic acids, proteins, lipids and oligosaccha-
rides). As such, both oncogenic transformation and viral infection optimize the cell’s
metabolic regulation towards their anabolic needs. The efficiency and extent by which
oncogene-induced processes carry out such reprograming is predicted to support enhanced
replication of OVs. For example, oncogenic KRAS stimulates anabolic metabolism to main-
tain pancreatic tumors through activation of MAPK and MYC pathways and the ensuing
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increased expression of genes which regulate sterol biosynthesis, pyrimidine metabolism
and glycosylation [65]. Such metabolically reprogramed cells are characterized by in-
creased glycolytic flux (Warburg effect, [66]) and by glutamine serving as a major carbon
source for the tri-carboxylic acid (TCA) cycle [67]. Multiple lines of evidence support the
notion that viruses benefit from analogous metabolic reprograming, as different viruses
manipulate cell metabolism towards aerobic glycolysis (reviewed in [68,69]) and repro-
gram glutamine catabolism to optimize virus replication [70]. Similarly, fatty acid synthase
(FASN), which regulates the production of long-chain fatty acids [71], is overexpressed
in different tumors [71,72], and induced upon oncogenic-RAS-mediated cell transforma-
tion [73,74]. Analogous to its role in tumorigenesis, FASN-mediated lipogenesis is required
for infection with diverse viruses [75–79]. The similitude of the metabolic requirements of
KRAS-transformed tumors and viruses is further exemplified by the effects of inhibitors of
dihydroorotate dehydrogenase (DHODH), which perturb de novo pyrimidine biosynthe-
sis, selectively inhibit the growth of KRAS mutant cell lines [80] and exhibit broad-range
antiviral activity against RNA viruses [81].

The multiple effects of oncogenic RAS, which promote viral replication and reduce
tumor-cell immunogenicity are schematically depicted in Figure 1.
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Figure 1. Oncogenic RAS supports viral infection through multiple molecular mechanisms. Scheme
depicts mechanisms described throughout review. Green arrows or blunt red arrows denote stim-
ulation or inhibition, respectively. Dashed arrows indicate cases where one source of information
supports the connection between oncogenic RAS and its effector, and another source supports the
link between the effector and the oncolysis-regulating mechanism. The figure was created with
BioRender.com (accessed on 12 February 2021).

3. Immunoediting Selects for Cancer Cells with Defects in
Immune-Stimulatory Abilities

Immunosurveillance and tumor immunoediting are complementary and consecutive
processes involving the interaction of a competent immune system with developing tumors.
The former refers to the continuous recognition and targeting of malignant cells as a result
immune activity. Contrastingly, immunoediting results in the selection of tumor cells
with reduced immunogenicity as consequence of selective pressures applied by innate
and adaptive immunity. Tumor immunoediting is commonly divided into three phases
(the “three E’s”): (i) elimination, where cancer cells are destroyed by immunosurveillance
mechanisms; (ii) equilibrium, where cells surviving the initial immune onslaught undergo
consecutive rounds of functional, epigenetic and genetic changes. These result in adapta-
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tion, i.e., improved fitness of the malignant cells within the tumor microenvironment (TME)
co-populated by immune cells; (iii) escape, where outgrowth of resistant clones induces and
supports an immunosuppressive microenvironment (reviewed in [82,83], schematically
depicted in Figure 2).
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Figure 2. Tumor immunoediting and treatment of escape mutants with oncolytic viruses. (A) Tumor
cells prior to editing are depicted (in pink) at the left side. Anti-tumor immunity kills a portion of
susceptible tumor cells while selecting for escape mutants (middle), allowing their subsequent clonal
expansion (right). Two types of escape mutants are depicted: green—IFN-defective cells, blue—cells
devoid of tumor-associated antigens. (B) OV treatments (e.g., by naturally oncolytic viruses, see
Section 5 for definition) of the immunoedited tumors (described in A). Direct cell killing by OVs
(left), immune-mediated killing of infected cells (right). A number of such naturally oncolytic viruses
are now under clinical trials for treatment of diverse cancer types. The figure was created with
BioRender.com (accessed on 12 February 2021).

3.1. Molecular Mechanisms of Immunoediting: Optimization of the Cancer Cell towards
Viral Oncolysis

The molecular mechanisms underpinning immunoediting are multifold and include:
(i) Increased ability of cancer cells to survive immune-cell-induced death. This occurs
through multiple mechanisms including: inactivating mutations, epigenetic silencing or
sequestration of components of cell death pathways induced by immune cells [84–90],
overexpression of decoy receptors (reviewed in [91]), or interference with the cancer-cell
apoptotic machineries [92]. While, in theory, such interference may make it more difficult
for OVs to kill cancer cells by apoptosis, it may also allow for an extension of the period
during which the virus replicates, increasing thus the viral titer within the tumor. Of note,
OVs have been shown to kill cancer cells via multiple pathways (in addition to apoptosis),
including necrosis, necroptosis, pyroptosis, and autophagic cell death (reviewed in [93]),
suggesting their ability to circumvent the enhanced resistance to apoptosis of cancer cells.
(ii) Reduced immunogenicity of cancer cells. A main mode of loss of immunogenicity are
acquired defects to the expression and/or function of the cell’s antigen processing and pre-
sentation machineries [94]. This occurs via a broad range of processes including inactivating
mutations or epigenetic silencing of MHC-I per se or of co-factors required for its expres-
sion [95–97]; inhibition of signaling pathways that promote MHC-I expression [98–100]; or
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activation of pathways that inhibit MHC-I expression [101–103]). Additionally, cancer cells
also decrease expression of pro-inflammatory cytokines, such as in the epigenetic silencing
of IFN-γ or IFN-κ in cervical cancer and Human Papillomavirus Type 16 (HPV-16)-positive
cells, respectively [104,105]; or the reduced expression of pro-inflammatory cytokines in
non-small cell lung cancers (NSCLC) [106]. The overlap in the genetic/signaling programs
which mediate MHC-I expression, inflammation and antiviral responses, suggests that the
downregulation of the former programs in the context of immunoediting should diminish
cancer-cell resistance to OV infection. For immune evasion, the reduction in immune
stimuli is complemented through increased expression of negative regulators of immune
cell function (e.g., programmed cell death-ligand 1 (PD-L1) [107–110]. In accord with its
function as an effector of negative feedback of inflammatory responses, PD-L1 expression is
stimulated by IFN-γ, JAK/STAT signaling, and IRF1 [111]; and by TNFα and NF-κB [112].
Given that these pathways mediate cell autonomous immunity, this would suggest that
PD-L1 upregulation can be associated with increased resistance to OV infection. However,
PD-L1 expression is also upregulated by variety of tumorigenesis-related factors, including:
EGFR in NSCLC [113]; the oncogenic BRAF V600E mutant in colorectal cancer [114]; or the
loss of PTEN and activation of the PI3K pathway in glioma [115]. As mentioned above,
activation of mitogenic pathways (e.g., EGFR, BRAF, or PI3K) entail modifications of the
cancer cell milieu, making it more prone to OV infection.

Tumor-induced defects to IFN signaling form a class of mechanisms for altering the
interactions of immune cells and malignant cells, with unique implications for oncolytic
virotherapy. The uniqueness of such defects stems from the breadth of the IFN response
that concomitantly regulates hundreds of immune-mediators [1], many of which directly
inhibit different stages of viral infection. In light of the multiple steps involved in the
induction, signal transduction and cellular response to IFNs, cancer-induced defects to IFN
signaling occur through a plethora of molecular mechanisms including: (i) perturbations
to the expression of the IFN receptor; e.g., the ubiquitination and downregulation of the
type I IFN receptor (IFNAR1) following inflammatory signaling, nutrient deprivation or
hypoxia (all conditions prevalent in the TME) [116,117]. Such down regulation, which
was observed in melanoma and colorectal cancer [118,119], is associated with increased
metastatic propensity and with the generation of an immune-privileged TME; (ii) perturba-
tions to JAK/STAT1 signaling including epigenetic silencing and inactivating mutations in
JAK1 [120–122]. In this context, whole-exome and RNA sequencing, and reverse-phase pro-
tein array data from different the Cancer Genome Atlas (TCGA) datasets (skin cutaneous
melanoma, breast invasive carcinoma, lung adenocarcinoma, and colorectal adenocarci-
noma) revealed alterations in JAK1 or JAK2 in 5–12 % of the samples, with dependence
on cancer type [123]; (iii) crosstalk of JAK/STAT1 signaling with pro-tumorigenic signal-
ing pathways; such as the inhibition of IFN-induced expression of inflammatory genes
following STAT3 activation [124].

An interesting aspect of the interactions between immune and malignant cells pertains
to the identity (source) of cancer-cell derived immune stimuli. In this context, viruses cause
~15 percent of cancer cases [125], and may thus supply PAMPs for immune-stimulation
in virus-transformed cancer cells. However, the majority of tumors do not necessarily
encounter pathogens in the course of their developments. A major additional source
of stimuli are mutations, which are recognized as tumor-associated antigens and play a
prominent immunostimulatory role [126]. Additionally, damage (or danger) associated
molecular patterns (DAMPs), which activate PRRs, may also contribute immune-activating
stimuli. Thus, DNA fragments generated as a result of genomic instability [127] or upon
therapeutic induction of double-stranded DNA breaks [128], activate cGAS/IFN-mediated
responses [129], serving thus as a source of immunostimulatory cytokines. Similarly,
cytoplasmic exposure of mtDNA [130], resulting from inhibition of the tumor suppressor
ataxia telangiectasia mutated (ATM) protein, entails PRR-mediated activation of type I IFN
responses [131]. These scenarios support the notion that PRR-mediated activation of type
I-IFN responses occurs throughout tumorigenesis, and may force the cancer cell to hamper
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such responses in order to escape the anti-proliferative and the immune-stimulatory effects
of IFN signaling. As mentioned above, such hampered responses optimize the cancer cell
milieu towards OV replication.

3.2. Acquired Resistance to Immunotherapy, An Additional Source of Modifications to Tumors
Which Can Be Exploited by OVs

Acquired resistance to immunotherapy can be viewed as an acute case of tumor im-
munoediting. In the context of immunotherapy, the release from the constraints imposed
by the immune checkpoints, enforces high selective pressure applied on cancer cells by
TME-localized immune cells. Thus, clustered regularly interspaced short palindromic
repeat (CRISPR)/CRISPR associated protein 9 (Cas9)—mediated knockout screens iden-
tified genes related to IFN-γ, in addition to TNF-α and antigen presentation pathways
as required for the T-cell mediated killing and its enhancement by anti-PD1 antibod-
ies [132–134]. Similarly, truncation in the β2-microglobulin gene resulting in defects in
MHC-I-mediated antigen presentation and loss-of-function mutations to JAK1 or JAK2,
implying defects to the transduction of antiviral IFN signals; mediate resistance to PD-1
blockade in melanoma [135]. Given that immunostimulatory roles for PRRs have been
identified in immunotherapy settings [136–140], they may also be targeted in acquired
resistance to this form of therapy, with profound implications to the susceptibility of such
edited tumors to OVs. Together, these studies show how escape from immune pressure,
in the context of immunoediting in the course of tumor progression, or in the context of
immunotherapy; can directly contribute to reduced resistance to infection of cancer cells
with OVs.

4. Oncogene-Induced Silencing of Immune Genes by DNA Methylation

Methylation of cytosines within CpG dinucleotides is a highly abundant epigenetic
modification of mammalian genomes [141]. Methylation patterns, which regulate gene
expression, are dynamically regulated via the opposing activities of enzymes that introduce
or remove this modification, known as ‘writers’ and ‘erasers’, respectively. This regulatory
apparatus is complemented by chromatin ‘readers’, i.e., protein modules that recognize
histone and DNA modifications [142]. In accord with the deregulation of methylation in
cancer development, DNA methyl transferases (DNMTs, 1, 3A and 3B) are overexpressed
in many tumors [143–146]. A connection between tumorigenic features of cancer cells,
epigenetic silencing and defects in antiviral responses is already observed upon sponta-
neous immortalization of fibroblasts which results in epigenetic silencing of ISGs [147].
Numerous studies reported on promoter methylation and down regulation of different
IRFs (e.g., different combinations of IRF4, IRF5, IRF6, IRF7) in cancers, including fibrosar-
coma [148], melanoma [149], lung cancer [150], and gastric cancer [151]. Similarly, the
promoter of IFN-γ was shown to be methylated in cervical cancer [104]. Moreover, our
analysis of the TCGA skin cutaneous melanoma (SKCM) database revealed significantly
higher methylation of promoters of genes presenting highly-correlated expression with
STAT1 (a gene group that is enriched for cell autonomous immunity genes), as compared
to randomly selected genes [152]. In accord with its tumor-promoting functions, RAS
was termed as “silent assassin”, due to its gene silencing abilities in cancer cells [153]. In
this context, DNMT1 expression is transcriptionally regulated by RAS-induced signaling
pathways [143,154,155]. RAS-mediated transformation also modulates the function of
DNA-methylation readers such as MBD2 [156]. Furthermore, the expression of enzymes
that revert DNA methylation (ten-eleven translocation (TET) methylcytosine dioxygenases)
is also regulated by oncogenic signaling in general, and RAS signaling in particular; and
ERK-mediated suppression of TET1 is required for K-RAS-induced cellular transformation
and hypermethylation of DNA [157]. In accord with a functional interaction between RAS
and DNMTs in mediating pro-tumorigenic features, a genome-wide RNA interference
(RNAi) screen in K-RAS-transformed NIH-3T3 cells identified DNMT1 and members of the
RAS/MEK pathway (ERK2 and MAP3K9) as required for the silencing of the pro-apoptotic
FAS gene [158]. The role of such functional interaction in mediating the suppression of
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immune responses is observed in the downregulation of the RAS-effector MYC and the up-
regulation of ISGs in lung cancer, following DNMT inhibition [159]. Interestingly, promoter
methylation of IRF7 and enhancement of viral infection was observed in nasal epithelial
cells exposed to cigarette smoke [160], suggesting that exposure to carcinogens may already
set the stage for the silencing of immune genes observed in malignant cells.

5. Naturally Oncolytic Viruses Exploit the Altered Cancer-Cell Milieu

The combined metabolic and defense-defective features of the cancer cell milieu (see
schematic depiction in Figure 1) can be exploited in the context of oncolytic virother-
apy. This is particularly relevant for viruses that are naturally devoid of human disease-
causing potential but retain the potential to replicate in, and kill, malignant cells. Such
viruses are referred to here as “naturally oncolytic” viruses, to differentiate them from
“armed/engineered oncolytic viruses”. Examples of “naturally oncolytic” viruses in-
clude attenuated clones of human pathogens (e.g., vaccine clones of measles and mumps
viruses, [161]), viruses of veterinary origin (e.g., Newcastle disease virus (NDV), VSV,
rat parvovirus (H-1PV), [162–165]) or the mammalian reovirus, a virus naturally devoid
of disease-causing potential [47]. Indeed, we explored the complete absence of IFN sig-
naling in LNCaP prostate cancer cells [120,121], which also present oncogenic KRAS
mutation [166], to select an oncolytic mutant of the epizootic hemorrhagic disease virus
(EHDV), an orbivirus (arbovirus of the Reoviridae family) that naturally targets ruminants,
and that we named EHDV-Tel Aviv University (EHDV-TAU) [120]. Our studies demon-
strate productive infection of EHDV-TAU in cells with defective IFN/antiviral responses,
e.g. the absence of JAK1 expression/function in LNCaP prostate cancer cells [120,167], or
the low basal expression levels of PRRs and defective induction of IFN (following viral
infection) by B16F10 murine melanoma cells [152]. Moreover, in the latter case, treatment
with inhibitors of epigenetic silencing restored PRR expression and viral induction of IFN
responses in the B16F10 cells; exemplifying the role of epigenetic silencing of IFN/ISGs in
the cancer cell, as a mechanism for OV selectivity. Additionally, our studies revealed that
while productive infection was inhibited upon treatment with IFN, EHDV-TAU retained
its cell killing potential of LNCaP cells engineered to express JAK1 (LNCaP-JAK1), when
infection was carried out in presence of interleukin-6 (IL-6), an inflammatory cytokine and
strong activator of cell autonomous immunity [167]. Thus, with dependence on the cellular
setting, OVs may also exploit antiviral responses for induction of cancer cell death.

6. Endogenous Retroviruses, Viral Mimicry That Elicits Anti-Tumor Immunity

Tumor cells often show enhanced DNA methylation at CpG-rich sites, located in en-
dogenous retroelements (reviewed in [168,169]). These elements, which make up more than
40% of the human genome, consist of repetitive sequences that belong to three major classes:
endogenous retroviruses (ERVs), short interspersed nuclear elements (SINEs) and long
interspersed nuclear elements (LINEs). Endogenous retroelements have originated from an-
cient infections by exogenous retroviruses, which integrated their genomes into the genome
of germ cells of the host. This allowed for the vertical transmission of these elements to
the offspring of the infected host. During evolution, the majority of such elements have
accumulated excessive DNA mutations that inactivated their genes. However, a minority
(thousands) retained some of their protein coding potential. Importantly, peptides that are
derived from human endogenous retroviruses (hERVs) can be recognized by immune cells.
This is exemplified by the infiltration of T cells with receptors specific for hERVs-derived
epitopes, into hERVs-expressing clear cell renal cell carcinoma tumors [170]. Furthermore,
endogenous retroelements may express additional immunostimulators since transcription
of these elements may generate dsRNA molecules (by bidirectional transcription, as well
as by sense–antisense pairing); and if reverse transcription follows, complementary DNA
(cDNA) and double-stranded DNA (dsDNA) may be created too. These products, which
mimic viral infection, may then be sensed by endosomal TLR3, 7, 8 or 9, and/or by cy-
toplasmic PRRs, including RIG- I, MDA5, cGAS [168,169]. Sensing this ‘viral mimicry’,
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activates antiviral signaling cascades, including an IFN response (see [171] and additional
examples below). ERVs are repressed by variety of mechanisms, including epigenetic
silencing through DNA methylation and histone modifications (reviewed in [172–175]).

Given the potential immunogenicity of endogenous retroelements and their epigenetic
suppression, reactivation of these elements by epigenetic modifiers in cancer cells may re-
sults in the abovementioned viral mimicry, leading to an anti-cancerous state. For example,
treatment of colorectal or ovarian cancer cells with DNMT inhibitors (DNMTis) results in
induction of transcription from otherwise suppressed ERVs, the subsequent formation of
dsRNA from specific ERV elements, recognition of these dsRNA molecules by MDA5/TLR3
sensors, activation of the mitochondrial antiviral-signaling protein (MAVS)-IRF7 axis
and induction of IFN. Together, these result in enhanced anti-proliferative/apoptotic re-
sponses [176,177].

The complex interactions among oncogenic signaling, epigenetics and viral mimicry
can be further demonstrated by the effects of the cyclin-dependent kinases 4 and 6 (CDK4/6)
on cancer immunity [178]. CDK4/6, which interact with D-type cyclins, are central drivers
of the cell cycle at the G1-S transition, transduce variety of mitogenic signals and their ac-
tivity is associated with oncogenesis of several types of cancer (recently reviewed in [179]).
Upon the induction of mitogenic signal, cyclin D-CDK4/6 complex promotes retinoblas-
toma (Rb) phosphorylation, leading to the release of transcription factor E2F from the
Rb-E2F complex, and entry into S phase and DNA replication. One of the many targets of
E2F is the Dnmt1 gene [178,180]. Accordingly, CDK4/6 inhibition reduces DNMT1 activity,
which leads to activation of ERVs expression, formation of ERVs dsRNA and IFN responses
to this viral mimicry. Overall, this increases tumor antigen presentation and, together with
additional effects of the CDK4/6 inhibitors, leading to cytotoxic T-lymphocytes (CTL)-
mediated clearance of the tumor cells in mouse models [178]. Thus, mitogenic signals
suppress ERVs expression via DNA methylation, mediated by the CDK4/6-Cyclin D-Rb-
DNMT1 axis, and inhibition of this axis results in ERVs activation followed by enhanced
anti-tumor immunity.

7. Concluding Remarks

IFNs and ISGs mediate antiviral and tumor-suppressor functions, via cell-autonomous
and non-cell autonomous mechanisms. Tumor cells silence IFNs and ISGs along tumori-
genesis, and in pronounced fashion in the context of immunoediting. OVs exploit the
IFN/ISG-silenced cellular context for replication, and exert part of their therapeutic benefit
through stimulation of anti-tumor immunity. Similar to what is observed in OV-infected
cells, reversal of DNA methylation-mediated epigenetic silencing of hERVs stimulates
anti-tumor immunity through viral mimicry. While the possibility OV/DNMTi combina-
tions may be attractive due to their immunostimulatory potential, the activation of cell
autonomous immunity by DNMTi is predicted to be inhibitory towards viral replication.
Indeed, our studies showed inhibition of productive infection of EHDV-TAU and oncolytic
VSV following DNMTi treatment of murine melanoma cells. However, while the cell-killing
potential of oncolytic VSV was diminished in presence of DNMTi, EHDV-TAU retained
its cell-killing potential under these conditions ([152], see schematic depiction in Figure 3).
This difference in outcome of combined OV/DNMTi treatment, supports the notion of
tailoring therapy combinations to the distinct proprieties of different OVs.
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