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The roles of grouper clathrin light 
chains in regulating the infection 
of a novel marine DNA virus, 
Singapore grouper iridovirus
Liqun Wang1, Qiang Li2, Songwei Ni3, Youhua Huang1, Jingguang Wei1, Jiaxin Liu1, Yepin Yu1, 
Shaowen Wang1* & Qiwei Qin1,4*

Clathrins, composed of clathrin heavy chains (CHCs) and clathrin light chains (CLCs), are usually hijacked 
by viruses for infection. However, the role of CLCs, especially in regulating fish virus infection, remains 
poorly understood. Here, two isoforms of CLCs were cloned from the red-spotted grouper (Epinephelus 
akaara) (EaCLCa and EaCLCb). Both EaCLC transcripts were expressed in all examined tissues, and the 
expression of EaCLCa was much higher than that of EaCLCb. Over-expressing EaCLCa-W119R mutant 
significantly reduced Singapore grouper iridovirus (SGIV) infectivity. However, no effect of EaCLCb-
W122R on SGIV infection was observed. The detailed steps were further studied, mainly including virus 
attachment, entry and the following transport to early endosomes. EaCLCa-W119R mutant notably 
inhibited internalization of SGIV particles with no effect on SGIV attachment. Furthermore, EaCLCa-
W119R mutant obviously impaired the delivery of SGIV to early endosomes after virus internalization. 
In addition, the EaCLCa-W119R mutant markedly reduced the colocalization of SGIV and actin. 
However, EaCLCb is not required for such events during SGIV infection. Taken together, these results 
demonstrate for the first time that EaCLCa and EaCLCb exerted different impacts on iridovirus infection, 
providing a better understanding of the mechanisms of SGIV infection and opportunities for the design 
of new antiviral strategies.

Clathrin-coated vesicles (CCVs) are major carriers for cargo trafficking at the plasma membrane, the 
trans-Golgi network (TGN), and the endosomal system and often carry proteins, lipids and even pathogens1. 
The best-characterized unit of clathrin consists of three clathrin heavy chains (CHCs) and three clathrin light 
chains (CLCs) which are unstructured until they binding to CHCs. Whereas CHCs provide the structural 
backbone of CCVs, the functional role of CLCs is poorly defined. CLCs are reported to suppress spontaneous 
CHC self-assembly in vitro and thus enable the control of cellular clathrin assembly by adaptor and regulatory 
proteins2–4. However, evidence regarding the necessity of CLCs for the endocytosis of different cargos remains 
contradictory. Knockdown of either or both CLCs by siRNA in mammalian cells has no measurable effect on 
the clathrin-mediated endocytosis of transferrin, epidermal growth factor, low density lipoprotein receptor or 
cation-independent mannose-6 phosphate receptor (CI-MPR)5,6. However, the uptake of G-protein-coupled 
receptors does depend on CLCs7. Another important role of CLCs is to regulate clathrin-mediated trafficking 
between the TGN and the endosomal system by acting as recruitment proteins for huntingtin-interacting pro-
tein 1-related (HIP1R), enabling HIP1R to regulate the interactions of clathrin-coated structures with the actin 
cytoskeleton6.

The viral life cycle depends heavily on cellular factors for virus attachment, entry, replication, assembly, and 
progeny virus release. To date, clathrin is the factor most commonly used for pathogen internalization into the 
host cell. Numerous viruses, such as influenza virus, African swine fever virus and bovine ephemeral fever virus, 
hijack clathrin-mediated endocytosis as the primary means of entry8–10. Moreover, some viruses, such as vesicular 
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stomatitis virus, human papillomavirus type 16, and adenovirus, require both actin and clathrin for entry11–13. 
In addition, recent studies have shown that clathrin also affects other events in viral life cycles. A functional 
clathrin-binding motif within the large antigen protein (Ag-L) of hepatitis delta virus (HDV) was identified, 
and the interaction between clathrin and Ag-L significantly affected HDV assembly14,15. The nonstructural pro-
tein mammalian reovirus (MRV) could recruit cellular clathrin to viral factories, further disrupting normal 
clathrin-dependent trafficking16. However, most studies focus on the interactions of clathrin with viruses, and the 
role of CLCs in virus infection remain largely unknown.

There are two isoforms of CLCs in all metazoans, CLCa and CLCb, encoded by different genes. They share 
approximately 60% protein sequence identity and are expressed at characteristically different levels in all tissues. 
Their longest shared fragment is 22 residues near the N terminus, starting with three negatively charged residues 
(EED), termed the consensus (CON) sequence, which serves as a binding site for huntingtin interacting proteins 
(HIPs) and HIP1-related (HIP1R) and regulates clathrin self-assembly4,17,18. In mammals, from the N terminus to 
the C terminus, other features shared by the two CLCs include an EF-hand that is responsible for binding to cal-
cium (Ca2+), the heavy-chain-binding region (HC), neuronally expressed inserts (N), and a calmodulin-binding 
domain (CBD). The unique regions in CLCa and CLCb are Hsc70 and serine phosphorylation sites (P), respec-
tively1. To date, we know little about the different functions of CLCa and CLCb, especially during the viral life cycle.

Iridoviruses, large dsDNA viruses, have attracted increasing attention due to the threat they pose to aqua-
culture and biodiversity19. To date, iridoviruses can infect invertebrates and poikilothermic vertebrates, includ-
ing fish, amphibians, and reptiles19,20. The type species of the genus Ranavirus, frog virus 3 (FV3), uses clathrin 
mediated endocytosis (CME) for entry mammalian cells21. Singapore grouper iridovirus (SGIV), which causes a 
serious and highly lethal systemic disease in grouper aquaculture, is a novel member of the genus Ranavirus and 
the family Iridoviridae22. Our previous study showed that SGIV could enter host cells through CME and then 
undergo transport to the endosomal compartment23. However, the impact of clathrin, especially CLCs, on the life 
cycle of SGIV still remains limited.

In this study, EaCLCa and EaCLCb, derived from grouper Epinephelus akaara, were cloned and characterized. 
Consistent with previous results23, EaCLC mainly affect early events during SGIV infection. Notably, although 
EaCLCa and EaCLCb shared approximately 65% sequence identity, they showed clearly different effects on SGIV 
infection. Data from the dominant-negative EaCLCa mutant demonstrated that EaCLCa significantly affects 
SGIV entry and the subsequent step, transport to the early endosomes, possibly by regulating the interaction of 
virus and actin. In contrast, EaCLCb showed no measurable effect on SGIV infection.

Results
Sequence analysis of EaCLC.  Based on the transcriptome analysis, we obtained the full-length open read-
ing frames of EaCLCa and EaCLCb by PCR amplification. EaCLCa encodes a 202-amino-acid protein and has 
remarkably high sequence conservation in vertebrates according to the alignment of amino acid sequences 99% 
and 75% identity to Epinephelus coioides and Homo sapiens, respectively (Fig. 1A). EaCLCb encodes a 205-ami-
no-acid protein with a greater sequence divergence 92% and 68% identity to Stegastes partitus and H.sapiens, 
respectively (Fig. 1B). Amino acid alignment showed that both EaCLC contain CON, Ca, HC and Cam domains. 
EaCLCa shares 65% identity with EaCLCb. Phylogenetic analysis indicated that EaCLCa and EaCLCb are both 
sorted into the Osteichthyes branch, which is separate from amphibian and mammals (Supplementary Fig. S1).

Expression pattern of EaCLC.  Both EaCLC were found to be distributed in all tissues examined in 
grouper, E. akaara, but at characteristically different levels. EaCLCa was predominantly detected in the heart and 
head kidney, followed by the spleen, liver, fin, brain, skin, kidney, gill, intestine, muscle and stomach (Fig. 2A). 
However, EaCLCb was highly expressed in the spleen, fin and gill but showed low expression in the liver, stom-
ach and intestine (Fig. 2B). Interestingly, the expression of EaCLCa was much higher than that of EaCLCb in 
all tissues. To evaluate the expression changes of EaCLCa and EaCLCb in response to SGIV, the grouper was 
challenged with SGIV and the transcript of EaCLCa and EaCLCb was detected using qRT-PCR. Our results 
showed that the expression level of EaCLCa and EaCLCb firstly upregulated at 6 h, and reached the peak at 
18 h, then decreased since 24 h. In addition, the expression of EaCLCa was also higher than that of EaCLCb in 
infected spleen (Fig. 2C,D). Besides, we further explore the expression profiles of EaCLCa and EaCLCb upon 
virus infection in GS cells. As shown in Fig. 2E,F, the transcription levels of both EaCLCa and EaCLCb were 
clearly upregulated.

Subcellular localization of EaCLC.  The intracellular localization of EaCLC in living cells was investigated. 
Both EaCLCa and EaCLCb displayed punctate structures located in the cytoplasm and on the cell membrane 
(Fig. 3A). After infection with SGIV, EaCLC were observed to surround the virus factory (Fig. 3B), preliminarily 
proving their role in virus replication and assembly.

In addition, we detected the distribution of EaCLCs and SGIV at different times post-infection. Upon infec-
tion, Alex-Fluor 647 labelled SGIV particles rapidly colocalized with EaCLCa and EaCLCb (Supplementary 
Fig. S2A). Moreover, the percentage of SGIV particles that colocalized with EaCLCa was slightly higher than the 
percentage that colocalized with EaCLCb (Supplementary Fig. S2B).

Effect of EaCLC on SGIV infectivity.  It is reported that the residue 130 W in HC domain of CLCa and 
127 W in HC domain of CLCb are essential for their interaction with CHC24. To further analyse the potential role 
of EaCLC in SGIV infection, we generated two mutations of EaCLC to perturb the normal function of CLC. A 
point mutation in the residue 119 of EaCLCa and residue 122 of EaCLCb, from W to R, were performed. In the 

https://doi.org/10.1038/s41598-019-51725-5


3Scientific Reports |         (2019) 9:15647  | https://doi.org/10.1038/s41598-019-51725-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

cells transfected with pEGFP-EaCLCa-W119R or pEGFP-EaCLCb-W122R, the GFP-EaCLC mutant remained 
soluble and was hardly observed as fluorescent spots (Supplementary Fig. S3).

We assessed the effect of EaCLC on SGIV infection by counting the infected cells. GS cells were transfected 
separately with pcDNA-3.1, pcDNA-EaCLCa-W119R and pcDNA-EaCLCb-W122R, incubated with SGIV and 
processed to stain the viral factory. Only EaCLCa mutant overexpression significantly decreased the percentage 
of SGIV-infected cells (Fig. 4A). Besides, overexpression of EaCLCa mutant also decreased the protein levels 
of SGIV MCP (Fig. 4B) and the severity of cytopathic effect (CPE) (Supplementary Fig. S4). The suppression 

Figure 1.  Multiple sequence alignment of EaCLC from different species. (A,B) Amino acid sequence 
alignments of EaCLCa (A) and EaCLCb (B). CON, the 22-residue consensus sequence shared by CLCa and 
CLCb; Ca, calcium-binding site; HC, the heavy-chain-binding region; Cam, calmodulin-binding domain.
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effects of EaCLCa mutant was similar with the results obtained using Pitstop 2, a small-molecule drug that spe-
cifically disrupts the terminal domain of CHC (Fig. 4C). Additionally, when added at the post entry step, Pitstop 
2 could still impair SGIV infection, implying that CHC may play a role in virus replication, assembly and release 
(Fig. 4D). However, whether EaCLCa could influence such events requires further analysis. Taken together, these 
results show that EaCLCa plays an important role in SGIV infection.

EaCLCa is required for SGIV entry.  To test our hypothesis that EaCLC are involved in SGIV entry, we 
measured single SGIV particle entry events in GS cells transfected with dominant-negative EaCLC. GS cells 
were transfected separately with pcDNA-3.1, pcDNA-EaCLCa-W119R and pcDNA-EaCLCb-W122R, incubated 
with Alex-Fluor 647 labelled SGIV for 2 h and processed for confocal imaging. Visually, a noticeable reduc-
tion in virus uptake was observed in cells expressing EaCLCa mutants compared with that in cells expressing 
pcDNA-3.1 (Fig. 5A). Moreover, as shown in Fig. 5B, SGIV entry was significantly inhibited (up to 40% inhibi-
tion) in the presence of the EaCLCa mutant. In addition, EaCLCa mutant overexpression inhibited the viral gene 

Figure 2.  mRNA Levels of EaCLC quantified by qRT-PCR. (A,B) The mRNA levels of EaCLCa (A) and 
EaCLCb (B) in different tissues from healthy grouper. (C,D) The mRNA levels of EaCLCa (C) and EaCLCb (D) 
in the E. akaara infected with SGIV. (E,F) The mRNA levels of EaCLCa (E) and EaCLCb (F) in GS cells after 
infection with SGIV. The data were tested using qRT-PCR and are indicated as the mean ± SEM (n = 4). Statistic 
differences are shown as *p < 0.05.
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transcription (Fig. 5C). However, SGIV internalization was unaffected by the EaCLCb mutant (Fig. 5B). These 
results revealed that EaCLCa was involved in SGIV entry, but EaCLCb had no significant effect.

EaCLCa affects SGIV entry at a post-binding step.  To further probe the role of the EaCLC in SGIV 
entry, a virus attachment assay was performed. The cells expressing EaCLC mutants were incubated with SGIV at 
4 °C for 1 h, followed by the removal of unbound virus, immediate fixation, fluorescent imaging and the quantifi-
cation of cell-bound SGIV by a MATLAB program. As shown in Fig. 6, there was no significant variance between 
EaCLC mutants and mock cells. In addition, the number of SGIV particles attached on the cell surface remained 
unchanged during SGIV entry (Fig. 5D). These data suggested that the EaCLC had no effect on virus attachment.

EaCLCa mutant disrupts SGIV particle trafficking to the early endosome.  After internalization by 
clathrin-mediated endocytosis, cargo molecules, including receptors, ions, lipids, and even viruses, are usually 
transported to early endosomes (EEs) for further sorting.

To explore whether EaCLC affect the transport of SGIV particles to EEs, the colocalization of SGIV particles 
to Rab5 (marker of EEs) was analysed. In EaCLC mutants and pEGFP-Rab5 co-transfected cells, EGFP-Rab5 also 
showed a punctate cytoplasmic distribution. However, at 0.5 hpi, the colocalization between SGIV particles and EEs 
was significantly decreased in cells overexpressing mutant EaCLCa compared with the mock cells (Fig. 7). However, 
EaCLCb had no obvious effect on the transport of SGIV particles to EEs (Fig. 7). In addition, disruption of EaCLCa 
did not appear to alter the morphology and distribution of Rab5-positive endosomes. Taken together, these results 
indicated that the regulation of SGIV infection by EaCLCa also occurred at the post internalization step.

EaCLCa mutant alters the colocalization between SGIV and actin filaments.  Some viruses, such 
as vesicular stomatitis virus (VSV) depend on actin filaments for entry25. VSV enter the cells by CME assisted 
by actin filaments25. Meanwhile, Many reports have demonstrated that CLCs can regulate actin assembly1,6,26,27. 

Figure 3.  Subcellular distribution of EaCLC. (A) Distribution pattern of EaCLC. GS cells were transfected 
separately with pEGFP-EaCLCa and pEGFP-EaCLCb and then stained with Hoechst 33342 and DiD to indicate 
the nucleus (blue) and cell membrane (green). The arrows show the EaCLC located on the cell membrane. Scale 
bars represent 10 μm. (B) EaCLC located near the virus factory. GS cells transfected with pEGFP-CLCs were 
infected with SGIV and fixed at 16 hpi. The nucleus and virus factory were stained by Hoechst 33342 (blue). The 
arrow shows the virus factory. Scale bars represent 5 μm.
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Therefore, we detected correlations between SGIV particles and actin in different treatments to explore the effect 
of EaCLC on the interaction between actin and SGIV. Alexa Fluor 488 phalloidin was used to label actin fila-
ments. In cells transfected with pcDNA-EaCLCa-W119R, the actin distribution showed no obvious change, but 
the colocalization between SGIV particles and actin was significantly reduced compared with the mock cells 
(Fig. 8). However, there was no difference in the cells transfected with the EaCLCb mutant. These results revealed 
that EaCLCa could affect the interaction between SGIV particles and actin filaments.

Discussion
Clathrin is the principal structural component of clathrin-coated carriers and is involved in a wide range of 
cellular processes as well as the life cycle of viruses. The structural unit of clathrin, the triskelion, consists of trim-
erized CHCs and three CLCs. To date, only a single CLC has been identified in yeast and invertebrates. However, 
in vertebrates, two forms of CLC (CLCa and CLCb) appear. Previous reports indicated that two CLC isoforms 
arose by local gene duplication and contributed to the development of increasing complexity during chordate 
evolution28. In mammals, CLCa and CLCb exhibit distinct levels of expression in different tissues, with CLCa and 
CLCb dominant in the lymphoid tissue and the brain, respectively. In groupers, EaCLCa and EaCLCb were both 
distributed in all tissues analysed in our study, but they were predominantly detected in different tissues. These 
different characteristics of CLCs in different species may imply a potential for diverse functions.

GFP-tagged EaCLC appeared as spots in the cytoplasm and cell membrane, displaying the typical pattern 
observed in mammalian cells. In addition, EaCLCa and EaCLCb showed similar localization in the cell. In mam-
malian cells, CLCa and CLCb distribute randomly in cellular triskelia, such that all four types of triskelia (aaa, aab, 
bba, and bbb) are always present29.

Notably, the disruption of EaCLCa and EaCLCb by dominant-negative interference had different effects on SGIV 
entry. Only the EaCLCa mutant significantly impaired SGIV uptake, verifying that EaCLCa was critical for SGIV 
entry. Unexpectedly, although EaCLCb shared high sequence similarity and a similar distribution with EaCLCa, it 
had no significant effect on SGIV entry, suggesting functional differences between the EaCLC in regulating SGIV 
entry. Thus far, this report is the first on the different functions of CLC in iridovirus infection. Conformational 

Figure 4.  SGIV infection is dependent on EaCLCa and EaCHC. (A) Disruption of EaCLCa inhibits SGIV 
infection. GS cells transfected with pcDNA3.1-flag, pcDNA-EaCLCa-W119R, and pcDNA-EaCLCb-W122R 
were incubated with SGIV 24 h after transfection. At 24 hpi, the cells were fixed and stained with Hoechst 
33342 to indicate the nucleus and virus factory. The infectivity was quantified by calculating the percentage 
of virus factory to the cells. The infectivity was arbitrarily set as 100%. The data shown are the means and the 
standard error of the mean (SEM). *p < 0.05. (B) Viral protein level after transfection with EaCLCa-W119R and 
EaCLCb-W122R. GS cells transfected with pcDNA3.1-flag, pcDNA-EaCLCa-W119R, and pcDNA-EaCLCb-
W122R, respectively. After 24 h, cells were harvested for western blot, and β-tubulin was used as the internal 
control. (C-D) Treatment with Pitstop 2 pre-infection (C) or post-infection (D) block SGIV infection. GS 
cells were either pre-treated with different concentrations of Pitstop 2 for 2 h or treated with Pitstop 2 at 2 hpi. 
Subsequently, the cells were incubated with SGIV for another 24 h and then fixed for quantification. The data are 
shown as the means ± SEM. *p < 0.05.
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variation in CLC may result in functional differences. In addition, attachment assays showed that neither of the 
EaCLC affected the binding of SGIV particles to the cell membrane, demonstrating that EaCLCa affects a post 
binding step of SGIV entry, which is consistent with the role of EaCLCa in cellular membrane trafficking.

Figure 5.  EaCLCa is essential for SGIV entry. (A) EaCLCa clearly impairs SGIV uptake. GS cells transfected 
with pcDNA3.1-flag, pcDNA-EaCLCa-W119R and pcDNA-EaCLCb-W122R were incubated with Alex-Fluor 
647 labelled SGIV at 4 °C for 30 min, and then the temperature was changed to 28 °C to stimulate infection. At 2 
hpi, the cells were washed twice with medium and fixed with paraformaldehyde. The samples were stained with 
DiO to show the cell boundaries (green). Scale bars represent 10 μm. (B) Quantification of internalized SGIV 
particles. More than 90 cells were randomly selected and analysed by a MATLAB program. The internalized 
SGIV was quantified as the percentage of treated cells with internalized viruses relative to for the value in mock 
cells. The internalized SGIV of mock cells was arbitrarily set to 100%. The data are shown as the mean ± SEM. 
(C) Qverexpression of EaCLCa mutant decreased SGIV transcription. mRNA levels of MCP were determined 
by qRT-PCR. GS cells transfected with pcDNA3.1-flag, pcDNA-EaCLCa-W119R and pcDNA-EaCLCb-W122R 
were incubated with SGIV at 4 °C for 1 h, and then the temperature was shifted to 28 °C. At 4 hpi, the cells were 
collected for RNA extraction and qRT-PCR analysis. (D) Quantification of SGIV particles still bound on the cell 
membrane. More than 30 cells were randomly selected and analysed by the MATLAB program. The bound SGIV 
was quantified as the percentage of treated cells with viruses attached on the cell membrane relative to that for mock 
cells. The bound SGIV of mock cells was arbitrarily set as 100%. The data are shown as the means ± SEM. *p < 0.05.
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Prompted by the previous finding that SGIV was delivered to early endosomes after internalization, we 
demonstrated here that EaCLCa mutant significantly reduced the localization of SGIV particles to EEs, sug-
gesting that EaCLCa also affects the step after virus entry. In addition, by calculating SGIV-infected cells, we 
found that SGIV infectivity was also significantly inhibited only when EaCLCa was disrupted. However, because 
of technological limitations, it remains unclear whether EaCLCa could affect other steps, such as virus replica-
tion and assembly. In contrast, by adding the small molecular inhibitor Pitstop 2 at different times, we found 
that EaCHC affected both virus entry and the steps after virus internalization. EaCLC may have similar effects 
on events after virus entry. During the late stage of SGIV infection, EaCLC tightly surrounded the viral fac-
tories, suggesting that clathrin may be recruited for virus replication, assembly or release. A few viruses have 
been reported to be directly connected with clathrin during virus assembly. Ag-L of hepatitis delta virus (HDV) 
was demonstrated to be related to CHC, thus affecting HDV particle assembly14,15. μNS of mammalian reovirus 
(MRV) not only recruits clathrin to viral factories but also interferes with normal functions of clathrin in cellular 
membrane trafficking16.

Figure 6.  EaCLCa affects SGIV attachment. (A) Confocal images of SGIV attachment after different 
treatments. GS cells transfected with pcDNA3.1-flag, pcDNA-EaCLCa-W119R and pcDNA-EaCLCb-
W122R were incubated with Alex-Fluor 647 labelled SGIV at 4 °C for 1 h and then immediately fixed with 
paraformaldehyde. The samples were stained with DiO to show the cell boundaries (green). Scale bars 
indicate 10 μm. (B) Quantification of SGIV particle binding on the cell membrane. More than 30 cells were 
randomly selected and analysed by a MATLAB program. Each experiment was repeated three times. The SGIV 
attachment was quantified as the percentage of treated cells with virus particles attached on the cell membrane 
relative to that for mock cells. SGIV attachment to mock cells was arbitrarily set as 100%. The data are shown as 
the means ± SEM. *p < 0.05.
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In addition, the overexpression of mutant EaCLCa significantly impaired the colocalization between SGIV 
particles and actin filaments, suggesting that EaCLCa probably affects virus entry by influencing the inter-
action between SGIV and actin. However, the EaCLCb mutant had no effect. In mammals, CLCs have been 
reported to recruit Hip1 and Hip1R (referred to as Hip1/R) to form the LC-Hip1/R-actin complex, which 
mainly regulates actin assembly on clathrin-coated structures26,27. A dramatic change in actin organization 
could be observed in CLC knockdown cells. However, the disruption of EaCLCa or EaCLCb did not visibly 
change the morphology of actin. The data showed that EaCLCa probably affected the colocalization of SGIV 
with actin by other means.

Based on this study, we propose that EaCLCa and EaCLCb have different roles in SGIV infection. EaCLCa 
obviously regulates distinct steps in the SGIV life cycle, including virus entry and transport to early endo-
somes or actin filaments. Surprisingly, EaCLCb had no influence on these events during SGIV infection. 
Further studies are needed to explore the detailed mechanisms involved in the different roles of EaCLC in 
virus infection.

Figure 7.  EaCLCa affects the colocalization of SGIV particles with Rab5. (A) Detection of the colocalization 
of SGIV and Rab5 after different treatments in 3D images. GS cells co-transfected pEGFP-Rab5 (green) with 
pcDNA3.1-flag, pcDNA-EaCLCa-W119R, and pcDNA-EaCLCb-W122R, respectively, were incubated with 
Alex-Fluor 647 labelled SGIV (red) at 4 °C for 20 min and then immediately transferred to 28 °C to initiate 
infection. The cells were fixed at 0.5 hpi, respectively. Scale bars represent 10 μm. (B) Quantification analysis of 
SGIV colocalized with Rab5 in 2D images. Using the MATLAB program, the colocalization of SGIV and Rab5 
was quantified as the percentage of virus particles colocalized with Rab5 relative to the total virus internalized 
in the cell. The colocalization of SGIV and Rab5 in mock cells was arbitrarily set as 100%. The data are shown as 
the means ± SEM. *p < 0.05.
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Methods
Fish, cells and viruses.  Red-spotted groupers (E. akaara) were purchased from a marine-culture farm in 
Hainan Province. The animal study was carried out in accordance with the recommendations of Guangdong 
Medical Laboratory Animal Centre. The protocol was approved by the South China Sea Institute of Oceanology, 
Chinese Academy of Sciences.

The grouper spleen (GS) cell line used in this study was maintained in our laboratory30. GS cells were culti-
vated in Leibovitz’s L-15 medium containing 10% foetal bovine serum (Gibco) at 28 °C. The SGIV used in this 
study was originally isolated from diseased grouper (Epinephelus tauvina)22. SGIV was propagated in GS cells, 
and virus stocks were maintained at −80 °C.

Identification and sequence analysis of CLCs from E. akaara (EaCLC).  Based on the EST sequences 
from the grouper transcriptome31, the full-length open reading frames of EaCLC were amplified using the 

Figure 8.  EaCLCa alters the colocalization of SGIV particles with actin filaments. (A) Detection of the 
colocalization of SGIV and actin after different treatments in 3D images. GS cells transfected with pcDNA3.1-
flag, pcDNA-EaCLCa-W119R, and pcDNA-EaCLCb-W122R, respectively, were incubated with Alex-Fluor 
647 labelled SGIV (red) at 4 °C for 20 min and then immediately transferred to 28 °C to initiate infection. The 
cells were fixed at 1 hpi and stained for actin using Alexa Fluor 488 phalloidin (green) for 30 min. Scale bars 
represent 10 μm. (B) Quantification analysis of SGIV colocalization with actin in 2D images. The colocalization 
of SGIV and actin was quantified by Pearson’s colocalization coefficient. The colocalization of SGIV and actin in 
mock cells was arbitrarily set as 100%. The data are shown as the means ± SEM. *p < 0.05.
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primers listed in Table 1. The putative amino acid sequence of EaCLC was analysed by BioEdit, the Expasy search 
program (http://au.exasy.org/tools) and BLAST in NCBI (http://www.ncbi.nlm.nih.gov/blast). The domain struc-
ture of the EaCLC was predicted by SMART (http://smart.embl-heidelberg.de/). Multiple sequence alignment 
and phylogenetic analysis of EaCLC were carried out by using Clustalx 1.83 (http://www.ebi.ac.uk/clustalW/) and 
MEGA 4.0 software (http://megasoftware.net/), respectively.

Reagents and plasmid construction.  Hoechst 33342 and Pitstop 2 were purchased from Sigma-Aldrich. 
Pitstop 2 were dissolved in dimethyl sulfoxide (DMSO) according to the manufacturer’s instructions. The 
lipophilic dyes DiO and DiD were purchased from Biotium. The fluorescent dyes Alexa Fluor 647 and Alexa 
Fluor 488 phalloidin were purchased from Invitrogen. anti-β-tubulin was purchased from Abcam (USA). 
peroxidase-conjugated affinipure goat anti-rabbit IgG were purchased from proteintech (USA).

Using the primers listed in Table 1, the full-length CLCs were constructed in vectors including pcD-
NA3.1-flag, pEGFP-N3, and pmDsRed-C1 (Invitrogen). Site-directed mutants, including EaCLCa-W119R and 
EaCLCb-W122R, were all subcloned into the pEGFP-N3, pmDsRed-C1 and pcDNA3.1-flag vectors using specific 
primers (Table 1) and the Fast Mutagenesis Kit V2 (Vazyme). Tryptophan (W)119 of CLCa and W122 of CLCb 
were both replaced with arginine(R). In addition, the pEGFP-Rab5 vector was maintained in our laboratory. The 
constructed plasmids were confirmed by sequencing.

Expression patterns of EaCLC.  Total RNA was extracted from different tissues of healthy groupers, 
including the head kidney, kidney, liver, spleen, intestine, stomach, gill, brain, heart, skin, and muscle, and then 
examined by qRT-PCR.

For viral infection in vitro, GS cells were infected with SGIV at a multiplicity of infection (MOI) = 1 and col-
lected at 0, 4, 12, and 24 hpi for further qRT-PCR analysis.

For viral infection in vivo, groupers were injected with 200 μl SGIV (2 × 104 TCID50/ml), and collected at 
different time points (0, 6, 18, 24 h). At indicated time points, spleen was collected for further qRT-PCR analysis.

Total RNA was extracted from grouper tissues or GS cells using the SV Total RNA Isolation System (Promega) 
according to the manufacturer’s protocol, examined by electrophoresis and then reverse transcribed into cDNA 
by the cDNA synthesis kit Rever Tra Ace (TOYOBO, Japan). qRT-PCR was carried out using a Light Cycler 
480 Real-time PCR system (Roche, Basel, Switzerland) with SYBR Green as the fluorescent dye, according to 
the manufacturer’s protocol (TOYOBO). β-Actin was used as an internal control. All primer pairs are listed in 
Table 1. Each assay was carried out in triplicate using the following cycling conditions: 94 °C for 5 min, followed 

Primers Sequence (5′-3′)

pcDNA-EaCLCa-F GGGGTACCGAATGGATGATTTTGAC

pcDNA-EaCLCa-R CGGAATTCCTAACGGACTAGCG

pcDNA-EaCLCb-F GGGGTACCGAATGGCTGACAA

pcDNA-EaCLCb-R CGGAATTCCTAGCGCACTAGAG

pEGFP- EaCLCa-F GGGTACCATGGATGATTTTGACATGCTGA

pEGFP- EaCLCa-R CGGATCCCTAACGGACTAGCGGGGACT

pEGFP- EaCLCb-F GGAAGATCTATGGCTGACAACGGCGCA

pEGFP- EaCLCb-R CGGGGTACCCTAGCGCACTAGAGGTGTCTGTTTG

pEGFP- EaRab5-F GGGGTACCATGGCAAGTAGAAGTGGAGC

pEGFP- EaRab5-R CGGGATCCTCAGGAAGCCAAGGAGCCCGAT

RT- EaCLCa-F GGAGGGAGGAGCAAAGTG

RT- EaCLCa-R GGTTGAAGTCGCAGAGCC

RT- EaCLCb-F CGAACAGCCGTCTCAAC

RT- EaCLCb-R TGTCTTCTGCTCCTCCCT

RT- actin-F TACGAGCTGCCTGACGGACA

RT- actin-R GGCTGTGATCTCCTTCTGCA

pDsRed1- EaCLCa-F GGGTACCATGGATGATTTTGACATGCTGA

pDsRed1- EaCLCa-R CGGATCCCTAACGGACTAGCGGGGACT

pDsRed1- EaCLCb-F GGAAGATCTATGGCTGACAACGGCGCA

pDsRed1- EaCLCb-R CGGGGTACCCTAGCGCACTAGAGGTGTCTGTTTG

pcDNA-EaCLCa mutant-F GAGTCAGAGCGGAAGGAGAAAGCCAAGGTGGAGCTGGAAG

pcDNA-EaCLCa mutant-R TTTCTCCTTCCGCTCTGACTCCTGCTTGCGAGAATTTTC

pcDNA-EaCLCb mutant-F GAGGCAGAGCGGAGAGAGAAAGCCAAAAAGGAGCTGGAGGAC

pcDNA-EaCLCb mutant-R TTTCTCTCTCCGCTCTGCCTCTGCTGCCTTGGATGCTGAGTC

Table 1.  Sequence of primers used in this study. The underlined text means enzyme digestion sites (pcDNA-
EaCLCa-F, pcDNA-EaCLCa-R, pcDNA-EaCLCb-F, pcDNA-EaCLCb-R, pEGFP-EaCLCa-F, pEGFP-EaCLCa-R, 
pEGFP-EaCLCb-F, pEGFP-EaCLCb-R, pEGFP-Rab5-F, pEGFP-Rab5-R, pDsRed1-EaCLCa-F, pDsRed1- 
EaCLCa-R, pDsRed1-EaCLCb-F, pDsRed1-EaCLCb-R) and mutant sites (pcDNA-EaCLCa mutant-F, pcDNA-
EaCLCa mutant-R, pcDNA-EaCLCb mutant-F, pcDNA-EaCLCb mutant-R) added in the designing primers.
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by 45 cycles of 5 s at 94 °C, 10 s at 60 °C and 15 s at 72 °C. The data were calculated as fold changes based on the 
transcription levels of the targeted genes normalized to β-actin and given in terms of relative mRNA transcription 
level as the means ± standard deviation.

Virus purification and fluorescence labelling.  Purified and fluorescence-labelled SGIV particles were 
produced as described previously22,23. Briefly, SGIV was inoculated onto monolayers of GS cells at an MOI 
of approximately 0.1. When the cytopathic effect was sufficient, SGIV particles were harvested by repeated 
freeze-thaw cycles, cleared of cell debris at 12,000 × g (Beckman Allegra X-15R Centrifuge) for 30 min at 4 °C, and 
the supernatant pelleted by ultracentrifugation at 200,000 g (Beckman 70 Ti rotor) for 1 h at 4 °C. Subsequently, 
the virus pellet was resuspended in TN buffer (50 mM Tris-HCl, 150 mM NaCl, pH 7.5) and further purified 
with a sucrose gradient (30–60%, wt/vol) at 150,000 g (Beckman SW 40 rotor) for 1 h at 4 °C. The viral band was 
washed with TN buffer, repelled by ultracentrifugation at 100,000 × g for 1 h at 4 °C, and then resuspended in TN 
buffer and stored at −80 °C until use.

SGIV particles were labelled with fluorescent dye by incubation with Alexa Fluor 647 in phosphate-buffered 
saline (PBS) (pH 7.4) at room temperature for 2 h with gentle vortexing for Alexa Fluor 647 dye conjugating to the 
primary amines (R-NH2) of proteins on viral capsid. Then, unincorporated dye was removed by three high-speed 
centrifugations at 14,000 × g (Beckman Micrifuge 20 R Centrifuge) at 4 °C for 60 min. Labelled virus was exam-
ined under a transmission electron microscope (Supplementary Fig. S5) and stored at 4 °C. To test whether label-
ling Alexa Fluor 647 would affect the infectivity of SGIV, we used the western blot to investigate the protein level 
of SGIV MCP (Supplementary Fig. S6).

Cell transfection.  GS cells grown to 50 or 70% confluence in 35-mm glass bottom culture dishes or 24-well 
plates were transiently transfected with each plasmid using Lipofectamine 2000 (Invitrogen) according to the 
manufacturer’s instructions. Briefly, 0.8 μg of each plasmid and 2 μl of Lipofectamine were diluted in 100 μl of 
serum-free medium containing OptiMEM and L-15 medium (1:1). After a 30-min incubation, the DNA-liposome 
mixture was added to the cells for 6 h of incubation at 28 °C. Then, the cells were replaced in serum-containing 
medium and cultured for further analysis.

Virus infection assay.  GS cells were cultured in 24-well plates, transfected with pcDNA-3.1, 
pcDNA-EaCLCa-W119R and pcDNA-EaCLCb-W122R, and then incubated with SGIV (MOI = 1) 24 h after 
transfection. At 24 hpi, the cells were collected for western blot or fixed with 4% paraformaldehyde. The fixed 
samples would be stained with Hoechst 33342 to highlight the nucleus and viral factory. Images were taken by an 
inverted fluorescence microscope (Zeiss, Germany), and the infected foci were counted.

SGIV binding and entry assays.  The virion binding and uptake assay was performed by measuring the 
amounts of SGIV particles attached to the cell surface and in the cytoplasm, respectively. In brief, 24 h after plas-
mid (pcDNA-3.1, pcDNA-EaCLCa-W119R or pcDNA-EaCLCb-W122R) transfection, GS cells were incubated 
with Alex-Fluor 647 labelled SGIV (MOI = 10) at 4 °C for 1 h to allow virus binding. Then, the cells were either 
fixed immediately with 4% paraformaldehyde or transferred to 28 °C to allow SGIV entry and fixed at 2 hpi. These 
samples were further analysed by Confocal Laser Scanning Microscope (CLSM). The experiments repeated three 
times independently.

Colocalization analysis of SGIV particles and Rab5 or actin.  GS cells were transfected with dif-
ferent combined sets of plasmids (pEGFP-Rab5 and pcDNA-3.1, pEGFP-Rab5 and pcDNA-EaCLCa-W119R, 
pEGFP-Rab5 and pcDNA-EaCLCb-W122R). At 24 h post transfection, the cells were incubated with Alex-Fluor 
647 labelled SGIV (MOI = 10) at 4 °C for 20 min to allow virus binding, then transferred to 28 °C to allow SGIV 
entry and fixed at 0.5 hpi. Further analysis was performed by CLSM.

The plasmids pcDNA-3.1, pcDNA-EaCLCa-W119R and pcDNA-EaCLCb-W122R were separately transfected 
into cells 24 h prior to SGIV infection. Alex-Fluor 647 labelled SGIV (MOI = 10) was added to the cells at 4 °C 
for 20 min, and the cells were then moved to 28 °C to allow SGIV entry and fixed at 1 hpi. The fixed samples were 
stained with Alexa Fluor 488 phalloidin to highlight actin. Further analysis was performed by CLSM.

Confocal imaging assay.  Fluorescent images were obtained through a ZEISS LSM 7 DUO confocal micro-
scope. The signals of EGFP and DiO were excited using a 488-nm Ar-Kr laser and a 500–550 nm bandpass filter 
for emission. Alexa 647 and mCherry were excited with a 633-nm helium neon laser and a 650–700 nm bandpass 
filter for emission. Fluorescence emission was collected and imaged through a 100× (numerical aperture, 1.4) 
oil immersion objective. Image stacks were acquired with a 200-nm z-step size. For quantification analysis, con-
focal images were obtained by noise filtering, edge detection and fluorescent signal extraction using a MATLAB 
program. Approximately 100 cells were randomly analysed by the MATLAB program to calculate the number 
of SGIV particles on the cell membrane or in the cytoplasm. In addition, the 3D images of the colocalization 
between virus particles and Rab5/actin were performed by CLSM. Furthermore, the quantification of the colo-
calization between SGIV and Rab5/actin were analysed in more than 60 randomly chosen cells (2D images) by a 
MATLAB program.

Western blot.  Cells were harvested and dissolved in RIPA buffer. Proteins were separated by 10% SDS-PAGE 
and transferred onto Immobilon-Polyvinylidene difluoride membranes (Millipore, Temecula, CA, USA). Blots were 
incubated with the indicated primary antibody: anti-β-tubulin (1:2,000 dilution), anti-SGIV major capsid protein 
(MCP) (1:1,000 dilution). Subsequently, they were incubated with peroxidase-conjugated affinipure goat anti-rabbit 
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IgG (1:5,000 dilution). The polyclonal anti-MCP antibody of SGIV were prepared in our lab. Immunoreactive pro-
teins were visualized using an Enhanced HRP-DAB Chromogenic Substrate Kit (Tiangen, China).

Statistical analysis.  Statistical significance was calculated using the Student’s test (*p < 0.05).

Ethics statements.  All animal-involving experiments of this study were approved by the Animal Care and 
Use Committee of College of Marine Sciences, South China Agricultural University, and all efforts were made to 
minimize suffering.
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