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Japan, 2Division of Natural Science Solutions, Blue Earth Security Co., Ltd., Tokyo, Japan,
3Department of Vector Ecology and Environment, Nagasaki University, Institute of Tropical

Medicine, Nagasaki, Japan, 4Malaria Control Programme, Limpopo Department of Health, Tzaneen,

South Africa

Malaria is the cause of nearly half a million deaths worldwide each year, posing

a great socioeconomic burden. Despite recent progress in understanding the

influence of climate onmalaria infection rates, climatic sources of predictability

remain poorly understood and underexploited. Local weather variability alone

provides predictive power at short lead times of 1–2 months, too short to

adequately plan intervention measures. Here, we show that tropical climatic

variability and associated sea surface temperature over the Pacific and Indian

Oceans are valuable for predicting malaria in Limpopo, South Africa, up

to three seasons ahead. Climatic precursors of malaria outbreaks are first

identified via lag-regression analysis of climate data obtained from reanalysis

and observational datasets with respect to themonthlymalaria case count data

provided from 1998–2020 by theMalaria Institute in Tzaneen, South Africa. Out

of 11 sea surface temperature sectors analyzed, two regions, the Indian Ocean

and western Pacific Ocean regions, emerge as the most robust precursors.

The predictive value of these precursors is demonstrated by training a suite

of machine-learning classification models to predict whether malaria case

counts are above or below the median historical levels and assessing their

skills in providing early warning predictions ofmalaria incidencewith lead times

ranging from 1 month to a year. Through the development of this prediction

system,we find that past information about SST over thewestern PacificOcean

o�ers impressive prediction skills (∼80% accuracy) for up to three seasons (9

months) ahead. SST variability over the tropical Indian Ocean is also found

to provide good skills up to two seasons (6 months) ahead. This outcome

represents an extension of the e�ective prediction lead time by about one

to two seasons compared to previous prediction systems that were more

computationally costly compared to the machine learning techniques used in

Frontiers in PublicHealth 01 frontiersin.org

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.962377
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.962377&domain=pdf&date_stamp=2022-08-25
mailto:pmartineau@jamstec.go.jp
https://doi.org/10.3389/fpubh.2022.962377
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpubh.2022.962377/full
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Martineau et al. 10.3389/fpubh.2022.962377

the current study. It also demonstrates the value of climatic information and the

prediction framework developed herein for the early planning of interventions

against malaria outbreaks.
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Introduction

Malaria is a major infectious disease affecting about 250

million people and claiming more than half a million lives every

year (1). It is most prevalent in Africa where it accounts for about

95% of the cases worldwide. Sub-Saharan Africa is most strongly

affected due to environmental conditions that are favorable

for the spread of malaria by Anopheles mosquitos (2, 3), the

primary vector of the Plasmodium falciparum parasites causing

the disease.

Local weather observations such as rainfall and temperature

have been traditionally used to infer the number of expected

malaria cases (4–23). This inference is based on the influence

of weather on the life cycles of both the vectors and

parasites responsible for malaria transmission. Specifically,

rainfall provides good conditions for breeding sites thus exerting

an important control on mosquito reproduction (12, 16, 24, 25).

It generally takes about 6 to 8 weeks for a malaria outbreak, a

surge in malaria cases above typical levels, to occur from the

time of a rainfall event given the life cycle of the mosquito

and the infection cycles of the parasite in the mosquito and

human hosts. In addition to precipitation, the temperature

is also known to influence the survival and development of

Anopheles mosquitos (26–28), and incubation of Plasmodium

falciparum (29–31).

Over the years, various attempts were made to develop

early warning prediction systems (32) based on those local

weather observations, either process-based (33, 34) or

statistical-relationship-based (25, 35–38). Such predictions

and traditional knowledge based on empirical relationships

have been used by malaria control centers for local malaria

predictions, but the time separating malaria outbreaks

from rainfall events is usually too short, especially in

under-developed and unindustrialized nations, to procure

the additional budget and resources necessary for an

intervention strategy, such as providing mosquito nets

and spraying insecticides. In addition, it is required for

efficient planning of interventions to predict malaria outbreaks

one to two seasons ahead, but it is not possible to predict

local weather conditions that far in time (39). Ensemble

coupled ocean-atmosphere climate predictions, which

exploit the predictive power of coupled modes of climate

variability, were shown to be effective in extending the

prediction range (40, 41) but only by a few weeks besides being

computationally heavy.

Modes of climate variability that are of large spatial scale

and slowly evolving, such as El Niño–Southern Oscillation

(42) (ENSO) and the Indian Ocean Dipole (43) (IOD), which

affect the evolution of tropical sea surface temperatures (SSTs),

offer a potential source of predictability at long lead times.

These modes result from the coupling between the ocean

and the overlying atmosphere, with the former providing the

memory that is a source of skill in long-term predictions

(44, 45). Tropical modes of variability, through their influence

on tropical precipitation and resultant teleconnections to the

extratropics (46), can have broad impacts on temperature and

precipitation, such as the influence of ENSO and IOD on

African climate. More specifically, below-normal precipitation

is usually expected in Eastern South Africa during El Niño

(47–49) through weakened moisture flow. The IOD was

demonstrated to have a comparatively more important impact

on East-African short rain events through a modulation

of moisture transport by the Walker circulation (50). In

fact, ENSO (8, 51, 52) and IOD (14, 53, 54) have been

linked with malaria incidence in South Africa. In addition to

tropical variability, SST variability in the subtropics associated

with the Indian Ocean Subtropical Dipole (IOSD) (52), and

SST variability in the southwestern Indian Ocean (55) have

also been identified as precursors of malaria in Africa. SST

variability has also been proven useful in predicting malaria

outbreaks over other sectors such as India (56) and cholera

outbreaks (57).

The present study seeks to identify and make use of those

untapped large-scale climatic precursors of malaria outbreaks

using an extensive but cost-effective suite of machine-learning

techniques designed to provide early malaria warnings with

lead times up to two to three seasons with high accuracies.

We aim to provide predictions for seasonal averages since

weather factors that may lead to variations in malaria incidence

at shorter time scales (days to weeks) are not predictable at

the long prediction lead times considered (39). The prediction

framework developed herein aims to predict malaria cases in

the South African province of Limpopo—for which malaria

statistics are consistently archived since 1998—as a proof of

concept of the feasibility of long-rangemalaria predictions based

on climate variability.
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Methods

Data

Malaria data

The monthly malaria case count is compiled from 1998

to 2020 based on data (58) provided by the Malaria Institute

in Tzaneen, South Africa. This period corresponds to the

availability of data at the beginning of the development of our

machine-learning models. South African data is used here for

its quality and long-term consistency. This work focuses on

malaria outbreaks affecting the district of Vhembe situated in

South Africa’s northernmost province, Limpopo. This district

experiences some of the most severe malaria outbreaks of

all South Africa. Results for the district of Mopani, which

experiences the second-largest outbreaks, are briefly explored.

For this study, only passively surveyed cases (patients seeking

medical care) from hospitals and health centers are compiled,

avoiding the double-counting of patients consulting both at

private clinics and larger health centers. The analysis performed

in our study was carried out separately for each district but for

brevity, only the results for the Vhembe and Mopani districts,

where malaria cases are highest in Limpopo, are presented in

this work. In both districts, malaria incidence is maximized

and subject to the largest interannual variations in late austral

summer (Figure 1). A broad maximum comprises two local

maxima found before and after the month of February and a

minor peak is observed in October. Bimodal malaria patterns

were observed in other countries (59) and associated with the

long and short rainy seasons. We note however that rainfall

shows a single January peak in Limpopo (52) and that bimodal

distributions with well-separated double peaks are usually found

closer to equatorial Eastern Africa (50).

Malaria data, unless otherwise stated, is subjected to a 3-

month smoothing window. Thus, the predictions presented

herein are for entire seasons (e.g., December-January-February,

January-February-March, etc.). For brevity, predictions (or

dependent variables) are labeled with their central month

(January for a December-January-February prediction). It is not

the goal here to predict outbreaks with a precision of days or

weeks. Weather factors that may lead to variations in malaria

incidence at such a short time scale are not predictable at

the long prediction lead times considered (43). As discussed

later, using unsmoothed monthly data reduces the prediction

accuracy demonstrating that consideration of longer time scales

of variability is required for accurate early warning predictions

with lead times of seasons.

Climate data

Gridded (latitude by longitude) monthly time series of

climate variables (Table 1) are obtained from the NCEP/NCAR

reanalysis (60), the CPC Merged Analysis of Precipitation

FIGURE 1

Seasonal cycle of malaria incidence in South Africa. The

seasonal cycle of monthly malaria incidence (median) is

illustrated for the districts of Vhembe and Mopani, where the

highest malaria incidences are reported in the province of

Limpopo, South Africa. The highest incidences are observed in

austral summer when temperature and precipitation are

favorable for the spread of malaria. Interannual variations as

measured with the interquartile range (25th percentile to 75th

percentile) are shaded.

(CMAP) (61), and the NOAA OISST (62) datasets. All

these datasets are regularly updated to include the most

recent observations.

Lag-regression analysis

To identify SST precursors of malaria, we perform a lag-

regression analysis where SST is linearly regressed onto malaria

incidence according to themodel functionV(t+τ ) = a+bM(t),

where V is a monthly SST time series,M is the monthly malaria

count, t is time, and τ is lag. Malaria count is chosen as an

explanatory factor so that maps of the coefficients b illustrate

the typical SST anomalies associated with malaria outbreaks.

All data are first detrended before assessing the regression.

The calculation is performed grid-by-grid to obtain maps of

correlation coefficients r(τ ,φ, λ) that are a function of lag (τ ),

latitude (φ), and longitude (λ). Correlation coefficients are

assessed for lags ranging from 0 months (instantaneous) to −12

months. To identify seasonally varying precursors, this analysis

is carried out separately for eachmonth of the year. For instance,

rfebruary(τ = −1,φ, λ) is obtained by regressing V in January

onto M in February, thus describing the typical state of V

observed one month before malaria fluctuations occurring in

February. A similar analysis is carried out for the local climate

indices described in the next section. For the lag-regression

analysis, malaria and climate data are subjected to a 3-month

running mean.

We note that malaria incidence in September and October

is weakly correlated with the incidence in April and May

indicating a weak persistence throughout the high-risk season
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TABLE 1 List of climate variables with their origin, units, and spatial resolution.

Dataset Variable Label Units Resolution

OISST: Optimum Interpolation Sea Surface Temperature sea surface temperature sst ◦C 1◦ by 1◦

CMAP: CPC Merged Analysis of Precipitation precipitation precip mm/day 2.5◦ by 2.5◦

NCEP/NCAR Reanalysis 1 surface pressure pres Pa 1.875◦ by 1.9◦

2m mininum temperature tmin K 1.875◦ by 1.9◦

2m maximum temperature tmax K 1.875◦ by 1.9◦

10m eastward wind uwind m/s 1.875◦ by 1.9◦

10m northward wind vwind m/s 1.875◦ by 1.9◦

(Figure 2). We also note that early outbreaks (July, September,

October, November) and late outbreaks (March, April, May)

tend to be better correlated (slow decrease of correlation

further away from the reference month) while the outbreaks

occurring in January and February tend to be less correlated

with other months. These findings overall indicate a break

in the persistence of malaria incidences occurring between

the early and late seasons perhaps due to different climate

precursors, as confirmed by our analysis, and hence forecasts

for the beginning and end of the high-risk season should be

performed independently. We note that the break in persistence

cannot be explained by a bimodality of rainfall distribution

as rainfall seasonality exhibits a single January peak over

Limpopo (52).

Climate indices

Based on the analysis of precursors performed in this

study and previous studies on the connection between malaria

and climate variability (8, 51–55, 63), we investigate the

usefulness of tropical and subtropical modes of SST variability

for predictingmalaria. The domains used to compute the indices

characterizing these modes are listed in Table 2 and illustrated

in Figure 3 as well as in Supplementary Figure 1. Local climate

indices that are based on precip, tmax, tmin, pres, uwind, and

vwind are also considered. They are obtained by averaging

these variables over the South African province of Limpopo and

Mozambique (Supplementary Figure 1).

SST anomalies outside the tropics are also observed to be

associated with malaria incidences (not shown), but these are

typically considered to be driven by atmospheric variability (64)

on the seasonal time scale considered in this work and may

even be driven by tropical SST variability through atmospheric

teleconnections (65). They are thus not investigated.

The SST variability considered herein includes variability

associated with the Indian Ocean Dipole (IODeast and IODwest

in Figure 3 and Supplementary Figure 1), a prominent seesaw

of temperature variability in the tropical Indian Ocean (43),

the Indian Ocean Subtropical Dipole (IOSDeast and IOSDwest)

FIGURE 2

Persistence of malaria incidence. A cross-correlation of malaria

incidence for various reference months. Correlation is indicated

in color. For a specific month (y-axis) the correlation of malaria

incidence with respect to other months are shown along the

x-axis.

characterized by dipolar anomalies in the southern IndianOcean

(66), the El Niño–Southern Oscillation (ENSO; characterized

by Niño indices) which strongly affects eastern Pacific SST

anomalies (42). In addition to these well-recognized modes of

SST variability, we add sectors to characterize SST variability in

the western Pacific (WPsouth andWPnorth) and in the southern

Pacific (SPsouth and SPnorth).

We note that these climate predictors are not necessarily

independent from each other. Cross-correlations are often

observed (e.g., Supplementary Figure 2). For instance, WP

indices are anticorrelated with Niño indices suggesting that the

earlier are associated in part with ENSO variability (67).

The time scale of variability of the resulting climate indices is

illustrated via their autocorrelation in Supplementary Figure 3.

We note that SST-based climate indices tend to be markedly

more persistent in contrast to local indices.
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TABLE 2 Local and global climate predictors used to predict malaria

incidence and their domains.

Scope Variable/Index Sector Latitude

range

Longitude

range

Local precip LP/MZ — —

tmax LP/MZ — —

tmin LP/MZ — —

pres LP/MZ — —

uwind LP/MZ — —

vwind LP/MZ — —

Global (SST) IODeast Indian Ocean 10◦S−0◦S 90◦E−110◦E

IODwest Indian Ocean 10◦S−10◦S 50◦E−70◦E

IOSDeast Indian Ocean 28◦S−18◦S 90◦E−100◦E

IOSDwest Indian Ocean 37◦S−27◦S 55◦E−65◦E

Niño3 Pacific Ocean 5◦S−5◦N 210◦E−270◦E

Niño3.4 Pacific Ocean 5◦S−5◦N 190◦E−240◦E

Niño4 Pacific Ocean 5◦S−5◦N 160◦E−210◦E

WPsouth Pacific Ocean 40◦S−10◦S 145◦E−170◦E

WPnorth Pacific Ocean 5◦S−20◦N 120◦E−160◦E

SPsouth Pacific Ocean 40◦S−25◦S 180◦W−95◦W

SPnorth Pacific Ocean 25◦S−5◦S 150◦W−70◦W

Local climate variables are averaged over Limpopo (LP) and Mozambique (MZ). The

coordinates delimiting the sectors where SST is averaged for the indices representing

variability over the tropical Pacific Ocean associated with ENSO (Niño3, Niño3.4, and

Niño4), the Indian Ocean Dipole mode (IODeast and IODwest), the Indian Ocean

Subtropical Dipole (IOSDeast and IOSDwest), western subtropical Pacific variability

(WPnorth, WPsouth), and South Pacific variability (SPnorth, SPsouth) are indicated.

These sectors are illustrated in Figure 3 and Supplementary Figure 1. The IOD index is

obtained as IODwest-IODeast and the IOSD index as IOSDwest-IOSDeast.

Machine-learning techniques

The task of predicting malaria outbreaks is here set up as

a classification problem where for each month of the year, we

attempt to predict whether the malaria case count is higher or

lower than usual as independently defined for each calendar

month’s historical median value to account for the seasonal cycle

of malaria (Figure 1). Thus, our predictions do not depend on

the seasonal cycle. It is predicted whether the malaria cases are

higher or lower than usual relative to each month’s historical

incidences. A set of machine-learning classifiers is then trained

to predict the occurrence of each category using the defined

climate indices as predictors. Because the climatic precursors

are herein demonstrated to be seasonally varying, training and

prediction are performed month-by-month, which removes any

seasonality in the data. To identify sources of predictability, a

series of experiments are carried out with various subsets of

predictors (Table 3).

To perform the predictions, a set of classifiers

(Supplementary Table 1) are trained to predict the

aforementioned malaria incidence classes using the climate

indices defined in the previous section. Training is performed

independently for each calendar month and lead time to

account for the seasonally-varying precursors. It would

be possible to train the classifiers with all months of the

year simultaneously if using non-linear classifiers such as

random forests, but the inclusion of linear classifiers in

our study prevents such an approach. All the classifiers

are provided in the scikit-learn (68) Python module.

With these classifiers, predictions are prepared for lead

times ranging from 1 to 12 months, in steps of 1 month

(Supplementary Figure 4). As a standard, predictors are

provided only for the last month of observations. We note

that whereas general statistical relationships were investigated

with linear assumptions in the previous section, some of the

classifiers used herein can resolve more complex non-linear

climatic influences.

For model training and evaluation, we use nested cross-

validation (Supplementary Figure 5). This method consists of

two loops where the inner loop is nested into the outer loop. The

inner loop is used to carry out hyperparameter tuning of each

classifier. These hyperparameters describe the characteristics

of the classifiers and cannot be trained. Predictions using

many combinations of hyperparameters are performed and the

best parameters, based on accuracy, are retained for future

predictions. Precise identification of hyperparameters is out of

the scope of this work. The best hyperparameters are selected

based on the prediction accuracy of validation data. It is also with

the accuracy to predict validation data that the models with the

best accuracies (three-best and five-best) are chosen to construct

multi-model voting ensembles (Supplementary Table 1). We

note that, unlike climate model ensemble members which use

the same models with different initial conditions, our voting

ensemble combines the votes of different classifiers. The models

that are included in these ensembles are selected separately

for each calendar month and prediction lead time. Since the

multi-model voting ensembles are constructed based on the

outcome of the inner loop (without knowledge of the test data;

see Supplementary Figure 5), its accuracy as evaluated in the

outer loop adequately reflects the expected operational accuracy.

For the inner loop, we use a leave-one-out approach to select

validation data.

Once hyperparameter tuning and model selection for the

multi-model voting ensembles have been carried out in the inner

loop, all models are retrained with the entire samples of the

inner loop (including the validation data set aside). Then, in

the outer loop, test data are put aside each iteration to assess

the overall accuracy of predictions resulting from the process

of hyperparameter tuning and ensemble model selection. Here

we use a leave-two-out technique where two samples (2 months)

are put aside as test data for all possible combinations and n-2

samples are used for training, where n is the total sample size.

This validation technique is superior for small sample sizes, as

in the case of malaria predictions since it allows training on a

maximal amount of data and thoroughly assesses accuracy with
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FIGURE 3

Sea surface temperature precursors of malaria in South Africa. Lag-regression maps of SST on malaria incidence in South Africa (Vhembe district

in Limpopo province) are shown in function of target malaria month (rows) and lag (columns). The month when the precursors are observed is

indicated in the bottom-right corner of each panel. For example, lag −3 precursors of observed malaria incidence in January are observed in

October. Correlation is shaded at an interval of 0.2 with blue and red shadings for negative and positive correlations, respectively. Correlations

that are significant at the 5% significance level are hatched in magenta. The conditions illustrated are associated with high malaria incidence. See

Supplementary Figure 1 for the location of Limpopo. The sectors used later to construct SST-based climate indices are illustrated in the

bottom-right panel according to the legend.

all samples available. For each of these iterations of the outer

loop, iterations over the inner loop are performed.

Smoothing

Climate indices are susceptible to being affected by high-

frequency weather noise which may adversely affect model

training and predictions. This is especially true for the local

indices constructed over Limpopo and Mozambique since their

areas are relatively small (see Supplementary Figure 1) and thus

affected by small-scale transient weather systems. Similarly,

noise in malaria data may also be detrimental to predictions. As

a standard, we apply a 3-month running mean to both climate

indices and malaria data.

In experiments using a 3-month smoothing window for

malaria data, we labeled malaria predictors using the last month

used. For example, malaria incidence labeled as March 2020 is

an average of malaria cases in January, February, and March.

We note that with such convention, there is a 1-month overlap

between the averaging windows of malaria predictors and

malaria predictands at a 1-month lead which may artificially

inflate accuracies. We note however that this is not an issue here

as such a short lead time is not the focus of our work. Similarly,

climate predictors (or independent variables) are labeled using

TABLE 3 List of experimental setups.

exp# Malaria predictors Climate predictors

1 • SST[IODwest,IODeast]

2 • SSTIODwest

3 • SSTIODeast

4 • SSTIOD

5 • SST[IOSDwest,IOSDeast]

6 • SSTIOSDwest

7 • SSTIOSDeast

8 • SSTIOSD

9 • SSTNINO[3,3.4,4]

10 • SSTWP

11 • SSTSP

12 • SST

13 • precip, tmax, tmin

14 • pres, vwind, uwind

15 • local

16 • all

17 • -

18 SST[IODwest,IODeast]

The details of each experimental setup are indicated. A complete list of climate predictors

is provided in Table 2. “all” denotes all of the climate indices listed in the table.
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the last month used in the smoothing window to emulate real

operational capabilities.

Control experiment and sensitivity
experiments

To understand the impact of various modeling techniques

used in our malaria prediction framework on prediction

accuracy, we perform various experiments where predictors

(Table 3) and prediction techniques (Supplementary Table 2)

are altered. The various techniques that are switched on

or off are described below. As a basis for comparison, the

standard prediction setup for which we obtained overall the

highest prediction accuracies, described in more detail in this

manuscript, is referred to as the control experiment (exp1). It

uses malaria case data and SST-based climate indices over the

tropical Indian Ocean (IODwest and IODeast).

Malaria predictors

If historical malaria data are provided, they are provided

only for the most recent month of predictor history

(Supplementary Figure 4). It is provided as a normalized

quantity, thus giving a sense of whether it is higher or lower

than usual for the specific month it is provided. To test whether

malaria predictors provide predictive power, they are excluded

in one experiment (exp18) and provided as the sole predictor in

another (exp17; Figure 5).

Climate predictors

To understand the value of climate predictors, we

perform experiments where predictors are limited to various

combinations of SST-based indices (exp1-12) and local

variables (exp12-15). SST-based indices are also further

divided whether they describe SST variability associated with

the Indian Ocean Dipole (IOD; exp1-3), the Indian Ocean

Subtropical dipole (IOSD; exp5-8), ENSO (NINO; exp9),

the SST precursors identified over the western Pacific sector

(WP; exp10; see Figure 3), and subtropical South Pacific

variability (SP; exp 11). The domains used to construct these

indices are indicated in Figure 3, Supplementary Figure 1 and

Table 2.

Assessment of skill

Since the classes of malaria predicted in this study are

balanced, we can use the accuracy, defined as the ratio of

successful predictions to the total number of predictions, to

characterize the skill of our predictions without worrying about

unbalances in the representation of classes:

Accuracy =
#Success

#predictions
=

TN + TP

P+N

where TN and TP are the number of true negatives and true

positives, respectively. Qualitatively similar results are obtained

by analyzing the sensitivity, specificity, F1 score (not shown),

and area under the receiver operating characteristic (ROC)

curves (69) (Supplementary Figure 6). Only the accuracy is

reported in the main results for brevity.

A note on below-chance accuracies

Prediction accuracies and the area under the curve below

chance levels (<0.5) are sometimes observed (e.g., Figure 5),

suggestive of anti-learning (70). Flipping these predictions

would provide above-chance accuracies if the decision to flip

them could be made based on the training data, without

knowledge of the prediction accuracy of test data (see

Supplementary Figure 5), as would be the case for a real

prediction. It is however not possible here since we observe that

in these instances, the prediction accuracy of the training data is

well above 0.5 (not shown), despite the below-chance accuracy of

test data. In other words, not until the outcome of the prediction

is known are we aware of the below-chance performance, thus

no action can be taken ahead of time. Below-chance accuracies

were shown to occur for small sample sizes when the effect

of a predictor on the predictand is too small to be detected

by a classifier (70–72). Below-chance accuracy should thus be

interpreted here as an absence of prediction skill.

Limitations on prediction accuracy

One limitation of the prediction method developed herein

is the exclusion of socioeconomic factors, which also influence

infection rates (73, 74). For instance, cross-border migration

can contribute to up to 70% of observed cases in South Africa

(75), thus year-to-year changes in migration may influence

malaria infection rates. It cannot however be included in the

machine-learning techniques developed herein because it is

not adequately monitored (75, 76). The sharing of malaria

case data together with human migration data among South

African counties would be helpful to further improve such early

warning systems of malaria. Other potential socioeconomic

factors include temporal variations in the malaria control efforts,

which have an important impact on malaria incidences but are

not sufficiently documented to be included here as predictors.

It may thus be best practice to consider that the predictions

provided are produced for typical socioeconomic conditions and

to carefully consider changes in social factors when developing

planning interventions.
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In addition, interdecadal changes in the coupling between

modes of SST variability and their teleconnection to South

African weather as well as noise in the reporting of

malaria case data can introduce uncertainties which reduce

prediction accuracy.

Results

Climatic precursors of malaria

Potential predictors of malaria outbreaks are first identified

through lag regression analysis. Given the documented influence

of modes of SST variability on the South African climate

and malaria incidences, we first investigate their statistical

relationship in more detail (Figure 3). A striking feature is

the seasonality of these precursors throughout the malaria

season (see Figure 1 for the seasonal cycle of malaria in

Vhembe, Limpopo). This seasonality could be partly attributed

to seasonal modulations of the extratropical response of tropical

modes of variability (46) and/or the seasonal phase-locking

of ENSO and IOD variability (43, 77, 78). Some of the most

important precursors at a lag of −3 months (one season)

include cold anomalies over the Indian Ocean (preceding

malaria outbreaks in January-May), warm anomalies in the

western Pacific located east of Australia and the Philippines

(preceding malaria outbreaks in November-May), and cold

anomalies over the eastern equatorial Pacific associated with La

Niña (preceding malaria outbreaks in September). We also note

a dipole in the subtropical south Pacific preceding outbreaks

in May. SST precursors of malaria outbreaks also depend on

the time separating the precursors from the occurrence of

malaria outbreaks, which is likely a consequence of the periodic

variability of the modes of tropical SST variability and their

lagged influences on the South African climate. This dependence

is most obvious for the precursors of malaria outbreaks in May

over the eastern Pacific, which shows amplified cold anomalies

at shorter lags.

To investigate further the lagged relationship between SST

precursors and malaria outbreaks we then examine in more

detail documented modes of tropical SST variability. To this

end, we select modes that are known to have a remote

impact outside the tropics and we also consider new indices

defined here to capture SST variability in the western Pacific

(WP) and over the subtropical south Pacific (SP; Figure 3,

Table 2, and Supplementary Figure 1). As noted before, the

lagged relationship between malaria incidence and these modes

of SST variability varies with respect to target malaria season

and lag time (Figure 4). In austral spring, cold precursors are

found primarily over the IOSDwest sector. In austral summer

warm precursors include IODeast, WPnorth, and WPsouth

and cold SST anomalies are found over the IODwest and

IOSDeast sectors. In comparison, cold Pacific precursors (52,

55), as captured by the Niño indices, are less robust in our

analyses. Although regression maps reveal prominent La-Niña-

like cold anomalies in the eastern tropical Pacific (not shown),

the correlation with malaria incidence is not as large as with

other sectors. Finally, in austral fall, cold precursors are observed

over SPnorth and warm precursors are seen for the SPsouth,

WPnorth, and WPsouth sectors. We note that SST variability

over the WP sectors is partly related to ENSO variability as

the WP and ENSO indices are significantly anticorrelated (e.g.,

Supplementary Figure 2).

Atmospheric variables (surface temperature and

precipitation), that are expected to have a direct impact

on the life cycles of the Anopheles mosquito and Plasmodium

falciparum parasite, and other variables indicative of the passage

of weather systems (surface pressure and surface wind) affecting

those atmospheric variables are analyzed over Limpopo. Since

temperature and precipitation over Mozambique were also

shown to be associated with malaria outbreaks in Limpopo

(52), likely through importation of cases originating from

Mozambique via cross-border human migration (75), we also

consider their variability here. Among the important precursors,

there is an overall tendency for precipitation to be enhanced

over a period of 12 months leading to malaria outbreaks in the

early malaria season (Sep-Dec) of Limpopo and Mozambique.

Surface pressure also generally shows positive correlations,

albeit weaker. Minimum temperatures are usually colder than

usual at long lags before austral spring malaria outbreaks.

Zonal wind (uwnd) over Mozambique also shows a strong

linear relationship with malaria outbreaks with large positive

correlations in the few months leading to malaria outbreaks in

austral spring and summer. Enhanced meridional winds (vwnd)

over Limpopo typically precede malaria outbreaks occurring in

austral spring and summer.

It is found that local and global indices sometimes share

an important fraction of variance (Supplementary Figure 2),

indicating that local variables are under the influence of climate

modes of variability through atmospheric teleconnections,

which contribute to their variability on slower time scales. In

this way, the tropical modes of SST variability could influence

malaria in Africa through the modulation of local weather

conditions. Hence, the predictive power of these climate indices,

slowly varying with longer prediction lead time, is examined in

the following section.

Predicting malaria with machine learning

To predict malaria, the climate indices investigated in

the previous section and malaria case data are provided as

predictors and predictand (dependent variable), respectively,

for the training of machine-learning models that are described

more extensively in the methods section. Various configurations

of prediction techniques and selections of predictors are
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FIGURE 4

The lagged relationship between climate indices and malaria incidence in South Africa. Correlations between climate indices and malaria

incidences throughout the malaria season (y-axes) and lags (x-axes) are illustrated with color shadings. Correlations that are significant at the 5%

significance level are hatched in magenta. They are reported for various climate indices indicated above each panel (listed in

Supplementary Table 1). The sectors used for SST indices (IODwest, IODeast, IOSDwest, IOSDeast, Niño3, Niño3.4, Niño4, SPnorth, SPsouth,

WPnorth, and WPsouth) and local indices (precip, pres, tmax, tmin, uwnd, and vwnd; with the subscripts LP and MZ if averaged over Limpopo or

Mozambique, respectively) are illustrated in Supplementary Figure 1. Domain boundaries are indicated in Table 2.

investigated to optimize model performance (Table 3,

Supplementary Table 2). It is found that for December-

April, some of the most accurate predictions are obtained by

providing only SST-based climate indices over the tropical

Indian Ocean (exp1; IODwest and IODeast) along with past

malaria cases, with accuracies above 70% up to a lead time

of 6 months (Figure 5). This accuracy is better compared

to those obtained with only IODwest (exp2) or IODeast

(exp3). Predictions based on the IOD index, calculated as

their difference (IODwest-IODeast; exp4), has slightly reduced

accuracy at shorter leads but with slightly better accuracies at

longer leads compared to exp1. It is also worth noting that the

accuracy is slightly lower when providing all SST indices (exp12)

compared to only IOD-related indices (exp1). This likely is

indicative of the overfitting of training data by the classifiers.

In contrast, providing information about local weather/climate

variables results in a much lower prediction skill on long lead

times (exp13, exp14, and exp15), and providing all variables

considered in this study (exp16) yields a reduced accuracy

compared to providing only IOD-related indices (exp1),

again likely because of overfitting. An important drop in

accuracy is observed at long leads when attempting to predict

malaria purely based on previous malaria incidences without

climate indices (exp17), clearly showing impact of climate

modes. Meanwhile, knowledge about the past evolution of

malaria is nonetheless important, as the prediction accuracy

decreases when it is excluded from predictions (comparing

exp18 to exp1). Interestingly, except for the predictions based

on SST variability over the western Pacific (exp10), which

displays more moderate skill, other SST-based indices are

of little value for long-term predictions for this period of

the year.
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FIGURE 5

Summary of malaria prediction skills for various experimental setups. Malaria prediction accuracy is averaged over the months of

December-April when malaria incidence is high (Figure 1). It is reported for a multi-model voting ensemble composed of the three best

classifiers for each experimental setting (y-axis) and prediction lead (x-axis). Accuracy is indicated with numbers as the percentage of successful

predictions and illustrated with colors with warmer colors indicate higher accuracies. Accuracies below 50 % are shown in purple.

Prediction accuracies for the experiment using IOD-related

predictors (exp1; Figure 6) are particularly high in December

and January, which is a critical time for the planning of

prevention interventions. For that purpose, predictions with

accuracies around 80–90% can be provided up to ∼4–6 months

in advance. In contrast, accuracies for the predictions based on

WP predictors are largest in austral fall, and peak at longer

leads (5–8 months) with accuracies reaching up to 80–90%. In

fact, WP indices provide by far the greatest accuracies in austral

fall (Supplementary Figure 7). Overall, at long lead times, these

accuracies are far superior to those of predictions based on

malaria time series alone (Supplementary Figure 8).

We note that it may seem at first counterintuitive to

see prediction accuracies increasing with time (instead of

decreasing) in Figures 5, 6. This feature was supported

by the lagged-correlation analysis shown in Figure 4. For

instance, the correlation between malaria incidence and

sst_WPnorth is largest at lags −7 to −8 for April malaria

predictions and decreases for shorter lags. This indicates that

the influence of SST variability over that sector on South

African climate, and thus malaria, is most efficient several

months before the outbreaks while weak just before the

outbreak. This could be due to seasonal differences in the

atmospheric teleconnection associated with sst_WPnorth

variability, which may be sensitive to changes in the

seasonal-mean flow. IOD-based precursors also exhibit a

similar “seasonal locking” and this is ultimately reflected in

prediction accuracy.

Prediction accuracy for the district affected by the second-

largest outbreaks, Mopani (Figure 1), is also tested in the study

(Figure 7). In comparison to Vhembe, a general decrease of

prediction accuracies is noted in December and January but it

increases substantially at the beginning of the malaria season

in September and October when using IOD-based climate

predictors. A similar decrease in accuracy is observed when

using the WP-based predictors.

Additional experiments are performed for Mopani

by discarding malaria data for 2017, which is an outlier

characterized by an extremely strong and unusual outbreak

(above 4 standard deviations), as well as discarding samples

between the 42.5 and 57.5 percentiles, whose classification

into high and low incidence categories is more ambiguous

and susceptible to measurement errors. By discarding these

ambiguous samples, a non-negligible improvement of the

accuracy is observed in December and January for IOD-based

experiments and a similar increase is observed for these 2

months for WP-based experiments.

Teleconnections

Atmospheric circulation patterns preceding malaria

outbreaks are briefly investigated to qualitatively verify the

processes originating from slowly varying SST anomalies/indices

in selected regions. They are shown for a 5-month lag preceding
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FIGURE 6

Seasonal cycle of malaria prediction skill. Prediction accuracy is shown in function of target malaria prediction month (y-axis) and prediction

lead (x-axis) for (left) exp1 which makes use of SST-based climate indices over the tropical Indian Ocean (IOD) and (right) SST over the western

Pacific (WP; exp10). The skill is assessed with a multi-model voting ensemble composed of the three best classifiers selected for each

lead/month combination. Accuracy is illustrated and indicated with numbers and colors as in Figure 5.

FIGURE 7

Predictions for Mopani: Similar to Figure 6 but for the district of Mopani instead of Vhembe. Results from additional experiments, labeled as

discard, in which ambiguous categories and 2017 malaria data are discarded, are also shown.

December malaria outbreaks and a seven-month lag preceding

April malaria outbreaks, periods when IOD-related predictors

and WP-related predictors contribute to higher prediction

accuracies, respectively (Figure 8). We note that precursors of

December malaria outbreaks are characterized by enhanced

500-hPa geopotential height and surface pressure in the

vicinity of South Africa, indicating the presence of a barotropic

high-pressure system. Circulation anomalies are also observed

at remote locations, in alternating patterns of high and low

anomalies, suggesting that the generation and propagation

of quasi-stationary Rossby wave trains may play a role in

producing the local response. Precursors of April outbreaks

are less obvious in South Africa, with a weak hint of enhanced

500-hPa height and surface pressure. The detailed study of

dynamical processes, such as the forcing by SST anomalies,

leading to these responses, their impact on local weather, and

factors that contribute to their impact on malaria outbreaks at

such long lead times will be the topic of future work.

Sensitivity to machine-learning setup

Classifier performance

Overall, it is found that linear discriminant analysis and

logistic regression are the classifiers that offer the greatest

accuracy for the peak malaria season (Supplementary Figure 9).

We note that at short lead times, persistence is often among

the most accurate classifiers suggesting that information about

short-time scale climate information is not adding value

to predictions. At longer lead times, however, the standard

classifiers often exhibit higher accuracy, indicating the value

of slowly varying climate information. An exception is for

the month/lead combinations where accuracy is very low

and for the beginning and end of the high-risk season

when malaria persistence is highest (Figure 2). We also

note that the multi-model voting ensembles are rarely the

best but serve here as a more conservative indicator of

prediction accuracy since the members are selected without
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FIGURE 8

Atmospheric teleconnections: 500-hPa (black contours) and sea level pressure (green contours) precursor to December (left) and April (right)

malaria outbreaks are shown for −5 months and −7 months lags, respectively. Precursors are illustrated as correlations with solid and dashed

contours (intervals of 0.2) for positive and negative correlations respectively. They are overlaid on SST precursors shown with red/blue shading.

Correlations above 0.4 and below −0.4 are significant at the 95% significance level.

knowledge of the prediction outcome, as is the case for

real predictions.

Categories

As a standard, we use binary classification—more than

usual, and less than usual—as described earlier. We stress that

classification is performed month-by-month thus no seasonal

cycle is present in the classification outcome, i.e., each month

has an almost equal number of years classified as high and low

incidence. Predictions with more classes: 3 classes (divided by

the 33rd and 66th percentiles), 4 classes (divided by the 25th,

50th, and 75th percentiles), and 5 classes (divided by the 20th,

40th, 60th, and 80th percentiles), were also briefly investigated.

Only the results of the 3-classes predictions are reported (expS2).

Predictions with three classes show overall an important drop

in accuracy (Supplementary Figure 10) but are above what is

expected for random guesses (33.3%). Beyond 3 classes (not

shown), accuracies are quite low and are likely of little value

for decision-makers.

Lags included

For most predictions, only the last month of observations

is provided (indicated in blue in Supplementary Figure 4). This

is the most sensible choice to learn about the temporal origin

of predictors. Using many time steps at once would blur this

information. We nonetheless test the impact on predictions

when including a long history of predictors (12 months in

expS4). It is found that it overall does not improve the accuracy,

likely due to overfitting as a result of the excessively large number

of predictors compared to the samples available for training

(Supplementary Figure 10).

Smoothing

We test the impact of smoothing by turning it off in

one experiment (expS1). This results in a significant drop in

accuracy, especially at long lead times (Supplementary Figure 8).

This indicates that it is beneficial to exclude high-frequency

weather noise, and focus on variability on the seasonal

time scale and longer for skillful predictions at long

lead times.

Trends

Although the identification of precursors through lag

regression uses detrended data, actual predictions are

performed with raw data because to plan interventions, it

is useful to provide forecasts relative to the historical record.

We show briefly, however, the impact of detrending in

Supplementary Figure 11. For this exercise, we use exp1 for

malaria prediction in December based on a 5-months lead

time. Comparing raw to detrended malaria incidence, we

observe a non-negligible impact on malaria classification

and prediction. In raw data, a clear downward trend in

malaria incidence is observed which results in a higher

frequency of higher-than-usual incidences for the first half of

the record compared to the second half. Detrended data, in

contrast, shows a greater balance of classes throughout the

record. This greater balance is however accompanied by a

reduction in prediction accuracy (0.68 vs. 0.86). Overall a small

reduction in accuracy is observed in austral summer (expS3 in

Supplementary Figure 10).

Impact of sample size

As in all machine-learning applications, the quantity

of data has a strong impact on prediction accuracy.

Generally, the prediction skill increases as more recent

data is made available (Supplementary Figure 12) and is

expected to further improve over time as more malaria

case data becomes available to train the machine learning

models by reducing uncertainties in the climate-malaria

connection, highlighting the importance of continuous

and long-term monitoring of malaria in malaria-endemic

Frontiers in PublicHealth 12 frontiersin.org

https://doi.org/10.3389/fpubh.2022.962377
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Martineau et al. 10.3389/fpubh.2022.962377

countries. We note that discarding the first few years seems to

improve the overall prediction accuracy, indicating that early

malaria records may not be of the same quality as in more

recent years.

Summary and discussion

Early warning predictions of malaria outbreaks, by

providing estimates of future infection rates with lead times

of one to two seasons (3–6 months), are valuable to decision-

makers for the effective planning of intervention measures.

These measures, such as the distribution of mosquito nets,

the indoor spraying of insecticides, and the supply of drugs to

handle a rise in the number of patients are effective against the

transmission and spread of malaria and greatly contribute to

reducing malaria-related deaths and socioeconomic burden (1).

To assist this planning, and contribute to the fight against

malaria by providing skillful predictions with sufficient lead time

for the planning of intervention measures, a novel machine-

learning-based approach to malaria prediction is developed

based on remote SST variability, offering impressive prediction

skills up to three seasons ahead (6–9 months). A unique feature

of this prediction system is that it provides predictions ofmalaria

incidences locally based on remote SST variability through

computationally cost-effective machine learning methods. More

specifically, a set of machine-learning classifiers is trained and

optimized to predict whether malaria incidences rise above or

fall below normal values.

Through the development of this prediction system for the

province of Limpopo in South Africa, we identified a sector over

the western Pacific Ocean from which past information about

SST offers impressive prediction skills (∼80% accuracy) up to

three seasons (9 months) ahead (Figure 6). SST variability over

the tropical Indian Ocean is also found to provide good skills

up to two seasons (6 months) ahead. This outcome represents

an extension of the effective prediction lead time by about one

to two season compared to previous prediction systems (40, 41)

that were more computationally costly, and less suitable for

decision-makers in unindustrialized malaria-endemic countries.

In contrast to these SST-based sources of predictability,

local weather information provides predictive power only at

much shorter lead times (1–2 months), actually too short

to be valuable to plan intervention measures. In addition,

malaria-endemic countries traditionally relied on predictions

based on local weather which lacked information on weather

conditions in the neighboring countries which is important for

overall malaria incidences through migration. This, together

with the unavailability of inter-country migration numbers,

make predictions difficult in those traditional methods. These

issues are to a great extent covered by the large-scale climate

phenomena investigated here that influence wider regions

through teleconnection mechanisms.

While the actual mechanism(s) through which these climate

phenomena and associated teleconnections affect the local

weather remains to be understood, the prediction framework

developed herein could be useful to predict malaria for other

sectors of Africa, and potentially for the South-East Asian,

Eastern Mediterranean, and American sectors also afflicted

with malaria (1). These other sectors likely have distinct

relationships between climate variability and regional malaria

incidence that remain to be uncovered with the techniques

developed herein. More extensive research on the connection

between malaria and climate variability, including the search

for new predictors, is expected to further contribute to our

understanding of the climate’s impact on malaria, improve

malaria predictions and reduce the related socioeconomic

burden through informed decision-making.
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