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In this study, Cu-based multicomponent metallic compound materials M-Cu (M = Mn, Fe,
Co, Ni, and Pt) were studied as electrocatalytic materials for water splitting. Different metal
materials attached to the copper foam substrate can change the valence states of copper
and oxygen, resulting in the change of electronic structure of the materials, thus changing
its catalytic activity.
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HIGHLIGHTS

• The M-Cu (M = Mn, Fe, Co, Ni, and Pt) samples were obtained by a facile method on the
copper foam substrate.

• The good HER and OER performances come from the introduction of the second ions, which
change the valence states of copper and oxygen elements, resulting in the change of electronic
structure of the materials.

INTRODUCTION

Electrochemical processes such as water splitting are a promising method to alleviate energy and
environmental problems (Zhang et al., 2017a; Anandhababu et al., 2018; Zhang et al., 2019a).
However, the efficiency of anodic oxygen evolution (OER) is limited by its slow kinetics (Zhou et al.,
2018; Sultan et al., 2019). At present, precious metal is still the best catalyst (Li et al., 2018); in order to
reduce the consumption of precious metal, looking for cheap alternatives is the general trend.

Recently, the transition metallic compound has attracted a lot of attention due to their intrinsically
enhanced safety and high availability through the conversion reaction (Kim et al., 2021; Zhang et al., 2021;
Zhu et al., 2021). Among them, single-component metallic compound has also shown excellent behavior
as an electrocatalyst for water splitting (Jebaslinhepzybai et al., 2021). In particular, the introduction of the
second metal ions can change the electronic state of the active metal, vacancy concentration (Yuan et al.,
2021), coordination environment, or electron band structure (Zhang et al., 2017b), therefore enhancing
HER kinetics (Yang and Chen, 2020; Li et al., 2021), such as the use of plasma treatment method to
activate the Cu surface (Lee et al., 2018; Tomboc et al., 2020), by doping additional elements or with other
metal alloys to adjust the binding energy of the reaction intermediates (Gatalo et al., 2019), and the Cu
species into a specific structure or a specific crystal plane (Koh and Strasser, 2007; Liu et al., 2021; Yan
et al., 2021; Yang et al., 2021). Christoph R. Muller (Kuznetsov et al., 2020) studied the surface oxygen
vacancies (VO) in Y1.8M0.2Ru2O7−δ (M = Cu, Co, Ni, Fe, Y) by an increased concentration of VO sites
correlating with a superiorOER activity. These studies show that not only the dispersion ofmetal particles
but also the properties of the substrate can alter the electronic states and chemical properties of the active
site (Zhu et al., 2017), thus altering the catalytic activity (Yan et al., 2020; Zhang et al., 2020; Qiu et al.,
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2021; Wu et al., 2021). However, obtaining a catalyst of high activity
remains a huge challenge. Therefore, it is necessary to design a new
strategy for Cu-based catalysts.

Herein, M-Cu (M = Mn, Fe, Co, Ni, and Pt) multicomponent
metallic compound materials are studied as electrocatalytic
materials for water splitting. Different metal materials attached
to the copper foam substrate can change the valence states of
copper and oxygen, resulting in the change of electronic structure
of the materials, thus changing its catalytic activity. As a result, for
non-precious metal, the overpotentials for the Co–Cu sample at a
current density of 10 mA/cm2 were 207.0 mV for OER and
329.8 mV for HER in 1 M KOH. Moreover, when adding the
precious metal Pt, the high OER and HER catalytic efficiencies
were also observed in the Pt–Cu sample.

EXPERIMENTAL SECTION

The Cu foam was purchased from Jia Yisheng Co., Ltd. (Kun
Shan); the thickness is 1.5mm, the surface density is 600 g/m2,
and the hole number is 110 ppi. Firstly, the copper foam was cut
into 2 cm × 2 cm sized squares and soaked in hydrochloric acid
(deionized water: hydrochloric acid = 3:1) using an ultrasonic
cleaner for 30 s.

Then, they were immersed in an equimolar solution of FeCl3
(0.6 g per 30 ml), CoCl2, NiCl4, MnCl2, and chloroplatinic acid
solution for 30 min, separately. Finally, they were taken out and
allowed to dry using a hair dryer.

MATERIAL CHARACTERIZATION

The morphologies of the products were investigated by field-
emission scanning electron microscopy (SEM, Helios Nanolab
600i), transmission electron microscope (TEM, Tecnai G2 F30),
X-ray diffraction (XRD, D8 Advance), and X-ray photoelectron
spectroscopy (XPS, Thermo Fisher).

ELECTROCHEMICAL TEST

All electrochemical performances were measured in the
electrochemical workstation (CHI 760E). The HER and OER
properties were measured in a three-electrode system, and the
obtained samples, Hg/HgO, and carbon rod were used as working
electrode, reference electrode and counter electrode, respectively.
The electrolyte was 1.0 M KOH solution. All the potential was
converted to RHE. LSV tests were carried out at a scan rate of
2 mV/s. The EIS measurement was carried out in a frequency
range from 0.1 Hz to 100 kHz.

RESULTS AND DISCUSSION

In this work, theM-Cu (M=Mn, Fe, Co, Ni, and Pt) samples were
achieved by a facile method; the surface morphology of the
pristine samples was investigated by SEM. As shown in

Figure 1, combining the SEM-mapping analysis
(Supplementary Figure S1), the simple electron microscopic
diagram proves that the whole foam copper is covered by the
sample.

X-ray diffraction (XRD) analysis is employed to confirm the
crystal structure of the as-synthesized M-Cu samples. It can be
seen from Supplementary Figure S2 that the M-Cu samples were
located at 43.3, 50.4, and 74.1°,corresponding to (111), (200), and
(220) crystal planes of the spinel Cu (PDF# 04-0836), and the
peaks located at 37.0, 42.6, 62.4, and 74.4°, corresponding to
(111), (200), (220), and (311) crystal planes of the spinel Cu2O
(PDF# 34-1354). Obviously, no other diffraction peaks appeared.

The surface composition and chemical states of the samples
were further explored by XPS, as shown in Figure 2. It shows that
the main elements of Mn, Fe, Co, and Ni were recorded from the
XPS. Figure 2A depicts the peaks at 640.9, 642.6, 649.2, 644.1, and
652.7 eV, assigned to two spin–orbit doublets ofMn 2p1/2 andMn
2p3/2 and two shake-up satellite peaks (Guo et al., 2017).
Figure 2B shows the Fe 2p spectrum consisting of two
spin–orbit doublets and two shake-up satellites. The multiple
peaks at 713.2, 725.2, 711.0, and 713.1 eV can be assigned to the
Fe3+ 2p1/2, Fe

3+ 2p3/2, Fe
2+ 2p1/2, and Fe2+ 2p3/2, while the shake-

up satellite peaks are observed at 718.3 and 733.9 eV (Ge et al.,
2018). The high-resolution Co 2p spectrum (Figure 2C) displays
two major peaks at 781.4 and 797.1 eV, corresponding to Co 2p3/2
and Co 2p1/2, respectively (Wang et al., 2021; Tabassum et al.,
2019). The Ni 2p XPS spectra can be fitted to four components
located at 855.9 and 873.5 eV corresponding to Ni 2p3/2 and Ni
2p1/2, as shown in Figure 2D (Wu et al., 2017).

The valence state of the Cu and O elements for all M-Cu (M
= Mn, Fe, Co, Ni, and Pt) was studied to establish its potential
correlations with the HER and OER activities. It can be seen
that compared with the pure copper foam, the valence states of
copper and oxygen elements changed obviously after adding
other metal elements from Figure 2. Three fitting components
were found on the surface of the sample by O 1s XPS detection:
lattice oxygen, surface oxygen species, and oxygen vacancies at
the respective energies of ~530.6, 532.3, and 531.3 eV
(Kuznetsov et al., 2020), (Banger et al., 2011). However, for
the Cu 2p spectrum, which consists of two spin–orbit doublets
and two shake-up satellites, the multiple peaks at 932.9, 934.7,
952.4, and 954.8 eV can be assigned to the Cu+ 2p3/2, Cu

2+ 2p3/
2, Cu

+ 2p1/2, and Cu
2+ 2p1/2, respectively (Chauhan et al., 2017;

Zhang et al., 2019b), while the shake-up satellite peaks are
observed at 934.0 and 962.5 eV. After the addition of the
second metal ion, the second metal ion will be doped into
Cu2O, which may change the lattice parameters, resulting in
the shift of the peaks. This indicates that the strong electronic
interaction between the cations and the second metal ion leads
to electron accumulation around Cu centers (Yan et al., 2021).
And for O 1s, the addition of the second metal ion results in the
positive shift of the peaks. This indicates that different oxygen
vacancy concentrations existed in M-Cu samples (Kuznetsov
et al., 2020). Obviously, with the addition of the second metal
ion, the valence states of copper and oxygen are changed in
different degrees, which will have different degrees of influence
on the HER and OER performances.
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The HER and OER performances of M-Cu (M = Mn, Fe, Co,
Ni, and Pt) samples were measured in 1 M KOH solution using a
conventional three-electrode electrochemical setup. By contrast,
the HER and OER performances of Cu foam have been tested and
are shown in Supplementary Figure S3. The overpotentials for
the Cu foam at a current density of 10 mA/cm2 were 728.0 mV for
OER and 438.1 mV for HER in 1 M KOH. The higher OER
catalytic efficiency is observed on the Co–Cu with a low
overpotential of 207.0 mV at 10 mA/cm2, as evident in
Figure 3A, smaller than Fe–Cu: 256.8 mV, Ni–Cu: 309.8 mV,
and Mn–Cu: 403.2 mV. The excellent kinetic performance of
Co–Cu can be proved by its smallest Tafel slope of 56.1 mV/dec
(Figure 3B). As depicted in Figure 3C, it can be found that the
HER activity is also with a low overpotential of 215.8 mV at
10 mA/cm2 for the Fe–Cu sample and 329.8 mV at 10 mA/cm2

for the Co–Cu sample. The excellent electrochemical
performance of all samples can be attributed to the
improvement of fast charge transfer kinetics (Yan et al., 2022),
so electrochemical impedance spectroscopy (EIS) as a further
research was carried out. As shown in Figure 3D, the charge
transfer resistance of Co–Cu is also significantly smaller,
illustrating the small electrode polarization and better
electrochemical kinetics. In order to explore the stability of the
obtained samples, the chronoamperometric HER test is
conducted in Supplementary Figure S4. The steady curves
obtained at -10 mA cm−2 suggest the stable hydrogen evolution
behaviors. Additionally, we have added the electrochemical active
area (ECSA) tests for the samples (Supplementary Figure S5),
through the following equation (Voiry et al., 2018):

ECSA � Cdl/Cs

where Cdl represents the electrical double-layer capacitance of
the corresponding catalyst and Cs represents the specific
capacitance of smooth oxide in 1 M KOH, which is about
0.04 mF/cm2.

The calculated double-layer capacitance results of Co–Cu,
Fe–Cu, Ni–Cu, and Mn–Cu were 20.3, 11.7, 13.4, and
18.7 mF cm−2, respectively. We have also standardized the
polarization curves into TOF as follows (Zhang et al., 2017c):

TOFO2 = |J| p mA/ECSA p 1 C s−1/1000 mA p 1 mol e–/
96,495.3 C p 1 mol O2/4 mol e– p 6.022 p 1023 O2 molecules/
1 mol O2

= |J|/ECSA p 1.56p1015 O2 s
−1 per mA/cm2

The calculated results are shown in Supplementary Figure S6
as follows: in the overpotential of 300 mV, TOF values of Co–Cu,
Fe–Cu, Ni–Cu, and Mn-Cu were 1.928p1015, 0.516p1015,
0.079p1015, and 0.002p1015 O2 s

−1 per mA/cm2, respectively.
Further insights into the morphology and structure of the as-

prepared Pt–Cu products were elucidated by TEM and HRTEM.
The (111) planes of Pt were observed in the HRTEM images of
Figure 4B. Distribution of elements across Pt–Cu was analyzed
using the high-resolution EDX elemental mapping analysis in
transmission electron microscope (TEM). These EDX maps
(Figure 4C) confirm the uniform distribution of Pt, Cu, and
O across the sample. The Pt 4f peak (Supplementary Figure S7)
could be separated into two peaks: 75.1 and 77.5 eV, representing
the Pt 4f5/2 and Pt 4f7/2, respectively (Han et al., 2020). Moreover,
when it comes to precious metal Pt, the high OER and HER
catalytic efficiencies are observed on the Pt–Cu, as evident in
Figures 4D,E.

CONCLUSION

In summary, we have synthesized the M-Cu (M = Mn, Fe, Co,
Ni, and Pt) samples by a facile method on a copper foam
substrate. The electrode shows good HER and OER
performances. For non-precious metal, the overpotentials
for the Co–Cu sample at a current density of 10 mA/cm2

were 207.0 mV for OER and 329.8 mV for HER in 1 M
KOH solution. Moreover, when adding precious metal Pt,

FIGURE 1 | SEM images of (A) Cu foam, (B) Mn–Cu, (C) Fe–Cu, (D) Co–Cu, (E) Ni–Cu, and (F) Pt–Cu.
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the high OER and HER catalytic efficiencies were also observed
in the Pt–Cu sample. The good HER and OER performances
come from the introduction of the second ions, which change

the valence states of copper and oxygen elements, resulting in
the change of electronic structure of the materials, thus
changing its catalytic activity.

FIGURE 2 | XPS spectra of (A) Mn 2p for Mn–Cu, (B) Fe 2p for Fe–Cu, (C) Co 2p for Co–Cu, (D) Ni 2p for Ni–Cu and XPS spectra of (E) Cu 2p and (F) O 1s for
Pt–Cu, (G) Cu 2p and (H) O 1s for all M-Cu samples.
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FIGURE 3 | (A) LSV curves and (B) Tafel plots of the obtained catalysts for HER tests. (C) LSV curves of the obtained catalysts for OER tests. (D) Nyquist plots of
the obtained catalysts.

FIGURE 4 | (A) TEM image and (B) HRTEM image of Pt–Cu. (C) Element mapping of Pt–Cu. LSV curves of (D) HER tests and (E)OER tests for the Pt–Cu sample.
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