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ABSTRACT
To investigate how additional visual feedback (VFB) affects postural stability we
compared 20-sec center-of-pressure (COP) recordings in two conditions: without and
with the VFB. Seven healthy adult subjects performed 10 trials lasting 20 seconds in
each condition. Simultaneously, during all trials the simple auditory reaction time
(RT) was measured. Based on the COP data, the following sway parameters were
computed: standard deviation (SD), mean speed (MV), sample entropy (SE), and
mean power frequency (MPF). The RT was higher in the VFB condition (p< 0.001)
indicating that this condition was attention demanding. The VFB resulted in decreased
SD and increased SE in both themedial-lateral (ML) and anterior-posterior (AP) planes
(p< .001). These results account for the efficacy of the VFB in stabilizing posture and in
producingmore irregular COP signals whichmay be interpreted as higher automaticity
and/or larger level of noise in postural control. TheMPFwas higher during VFB in both
planes as was the MV in the AP plane only (p< 0.001). The latter data demonstrate
higher activity of postural control system that was caused by the availability of the
set-point on the screen and the resulting control error which facilitated and sped up
postural control.

Subjects Bioengineering, Neuroscience, Kinesiology
Keywords Body balance, Sway entropy, Biofeedback, Attentional focus

INTRODUCTION
The contribution of visual control of balance while standing increases significantly with
additional visual feedback (VFB) implemented through the conscious control of the center
of pressure displacements under the feet (COP) (Litvinenkova & Hlavacka, 1973).

A positive effect of VFB has been shown in many studies (Litvinenkova & Hlavacka,
1973; Takeya, 1976; Rougier, 2003) indicating a reduction of the centre of gravity motions
with associated increase in muscular activity. However, there are also the investigations
that do not confirm such influence. Results of Danna-Dos-Santos et al. (2008) indeed
demonstrated that participants were unable to decrease sway amplitude when presented
with visual feedback, whereas in Boudrahem & Rougier (2009) it has been shown that only
69% of subjects were able to use additional visual feedback to reduce COP displacements.
Ambiguous findings are also found in reports of attempts to apply VFB technique for
rehabilitation. In some studies, the effects appear quite positive (Shumway-Cook, Anson
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& Haller, 1988; Sihvonen, Sipilä & Era, 2004; Cheng et al., 2004; Ledebt et al., 2005; Sayenko
et al., 2010), whereas others should be considered as scarce (Walker, Brouwer & Culham,
2000; Geiger et al., 2001). The sources of these discrepancies may be inherent in the way
of presenting feedback e.g., insufficient scale display of COP on the screen (Vuillerme,
Bertrand & Pinsault, 2008) and/or delay of the signal on the screen (Rougier, 2004; Van den
Heuvel et al., 2009), but also high cognitive demands associated with learning a new task
(Wulf & Shea, 2002; Van Vliet & Wulf, 2006). Also, many studies have provided evidence
that there are significant attentional requirements for postural control (Woollacott &
Shumway-Cook, 2002). Further, the attentional demand associated with postural control
can be modified by the sensory context (Vuillerme, Isableu & Nougier, 2006).

A fuller understanding of postural control mechanisms through the conscious control
of the center of pressure displacements under the feet allows for a more in-depth diagnosis
of certain pathological conditions, and can also be important in training the balance of
both patients and athletes (Szczepańska-Gieracha et al., 2016).

Taken together, there is still no consensus as to how vertical posture is controlled
when the participants are presented with visual feedback from the actual position of
their COP. The predominant view is that attentional resources must be involved due
to the larger complexity of the VFB as compared to quiet stance (Lakhani & Mansfield,
2015), however little is known in what way these resources are used and whether their
shifts facilitate or interfere with maintaining balance. To better elucidate the underlying
mechanisms, it seems crucial to compare the COP measures during VFB and quiet stance
with simultaneously recorded reaction time task. While the traditional sway measures
account for postural performance, of special interest is sway entropy which quantifies the
attentional investment in postural control (Roerdink, Hlavackova & Vuillerme, 2011).

Therefore, this study aims to answer the question whether and how the postural task with
additional visual feedback requires more attentional demands in young adults. Therefore,
we examined reaction times during VFB and while changing the amount and structure of
COP time series.

METHODS
Seven young students participated in the study (mean age (SD): 22.9 (1.1) years; range:
22–25 years, three females, four males). All subjects were healthy and did not undergo any
disease that might affect the balance system. They gave their written informed consent to
the procedure and were naive as to the purpose of the experiment. The study was approved
by the Senate Ethics Committee for Research at the University School of Physical Education
in Wroclaw. Written informed consent was obtained from all participants.

Data were collected as previously described in Simoneau, Bégin & Teasdale (2006) and
Vuillerme, Isableu & Nougier (2006). Specifically, postural stability was assessed on a force
plate (AccuSway, AMTI, Watertown, MA, USA) in front of a computer monitor positioned
at eye level at a distance of 1 m. Participants were asked to perform two different dual
tasks. In the reference condition (REF), they were asked to sway as little as possible fixating
a white sign on the screen and simultaneously perform a probe-reaction time (RT) task.
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The RT task consisted of responding as rapidly as possible to an unpredictable auditory
stimulus by pressing a handheld button. Eight reaction time stimuli were presented within
each 20 s trial. During the second condition (VFB), the COP position was displayed as a
spot (diameter of about 4 mm) on the monitor and the subjects were instructed to keep
the spot inside the circle (diameter of about 5 mm) on the monitor and simultaneously
perform the RT task. The ratio between the real displacements of the COP and their display
on the 19-inch screen was twofold for both the anterior-posterior (AP) and medial-lateral
(ML) planes. The AP and ML displacements of the COP were represented on the screen
from top to bottom and from left to right, respectively. Postural tasks were the primary
tasks, and the subjects were asked to treat it as a priority. Subjects stood in the position
as follows: 17 cm between heel centers, with an angle of 14◦ between the long axes of the
feet (McIlroy & Maki, 1997). Ten trials for each condition (lasting 20-second each) were
presented in pseudo-random (balanced) order.

Data were recorded at sampling frequency 50 Hz. The instantaneous center of foot
pressure was calculated from the recorded ground reaction forces in the medial-lateral and
anterior-posterior plane separately. The raw COP data were not digitally filtered. Postural
balance was evaluated by following parameters based on the COP time-series: standard
deviation (SD), mean speed (MV), mean power frequency (MPF) (Prieto et al., 1996;
Duarte & Freitas, 2010) and sample entropy (SE) (Richman & Randall Moorman, 2000).
The SD and MV measure postural performance, with lower values of these parameters
indicating better performance and MPF reveals postural strategy. SD, MV and MPF were
computed using MATLAB codes available at Duarte & Freitas (2010). SD is the dispersion
of COP displacement from the mean position during a trial duration, MV was calculated
as the total COP displacement divided by trial duration and MPF is the mean spectral
power frequency of the signal estimated up to 25 Hz range. The power spectral density
of the detrended COP data was estimated by the Welch periodogram method. SE indexes
the regularity or predictability of a time-series. Increased values of sample entropy, which
indicate larger irregularity of the COP, has been attributed to a reduced amount of
attention invested in posture (Roerdink, Hlavackova & Vuillerme, 2011). Input parameters
for estimating the sample entropy were based on the median value of the relative error
(Lake et al., 2002) resulting in the selection of pattern length m= 2 and error tolerance
r = 0.08 and 0.05 as optimal parameters for ML and AP time series (normalized to unit
variance) respectively of all subjects and trials. SE was computed using MATLAB script
available at http://www.physionet.org. RT (in milliseconds) helped for determining the
attentional demand associated with postural control and was defined as the time interval
between the presentation of the auditory stimulus and the subjects’ pressing the handheld
button (Abernethy, 1988).

A linear mixed-effects model was used to test the effect of VFB on RT and COP indices.
Trial, feedback (no feedback vs. additional visual feedback) and their interaction were
subjected as fixed factors. The effect of trial was chosen as fixed factor to account for any
potential fatigue and/or learning effects. Participants were included as a random intercept
to take dependency (correlation structure) in the data into account (Kuznetsov et al., 2015;
Boisgontier et al., 2017). Due to skewed distributions, we used log10-transformed data.
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Figure 1 Violin plots of the RT for the REF and the VFB conditions collapsed over trials with mean
and standard deviations superimposed. These plots show full distribution of the data obtained by kernel
density estimation. The dot symbol denotes mean, whisker denotes standard deviation.

Full-size DOI: 10.7717/peerj.5101/fig-1

The level of significance was set at P < 0.05. Random intercept models take into account
the dependence of repeated trials and have substantial advantages over repeated measures
ANOVA. All analyses were performed using free and open software JAMOVI 0.8.2.2 with
GAMLj module (retrieved from https://www.jamovi.org).

RESULTS
RT was higher in the VFB condition (fixed effects ANOVA, F(1,1094)= 96.89, p< 0.001).
No trial main effect (F(9,1094)= 1.32, p= 0.219) or feedback × trial interaction
(F(9,1094)= 1.16, p= 0.317) showed statistical significance. The distributions of the
RT are shown in Fig. 1.

For SD there were no interaction feedback× trial effects for both ML (F(9,114)= 0.92,
p= 0.507) and AP planes (F(9,114)= 1.82, p= 0.072). SD was lower in the VFB
condition for both ML (F(1,114)= 68.24, p< 0.001) and AP planes (F(1,114)= 62.47,
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p< 0.001); there was no significant main effect of trial (ML: F(9,114)= 1.13, p= 0.347;
AP: F(9,114)= 0.95, p= 0.483).

For MV there were no interaction feedback× trial effects for bothML (F(9,114)= 0.96,
p= 0.479) and AP planes (F(9,114)= 1.40, p= 0.198). MV was higher in the VFB
condition for AP plane (F(1,114)= 15.08, p< 0.001) and showed no change in the ML
plane (F(1,114)= 0.71, p= 0.402); there was no significant main effect of trial (ML:
F(9,114)= 0.85, p= 0.570; AP: F(9,114)= 0.74, p= 0.675).

For SE there were no interaction feedback × trial effects for both ML (F(9,114)= 0.94,
p= 0.490) and AP planes (F(9,114)= 1.07, p= 0.393). SE was higher in the VFB
condition for both ML (F(1,114)= 78.61, p< 0.001) and AP planes (F(1,114)= 74.83,
p< 0.001); there was no significant main effect of trial (ML: F(9,114)= 1.61, p= 0.120;
AP: F(9,114)= 1.60, p= 0.123).

ForMPF there were no interaction feedback× trial effects for bothML (F(9,114)= 0.98,
p= 0.463) and AP planes (F(9,114)=0.846, p= 0.575). MPF was higher in the VFB
condition for both ML (F(1,114)= 68.49, p< 0.001) and AP planes (F(1,114)= 99.99,
p< 0.001); there was no significant main effect of trial (ML: F(9,114)= 0.813, p= 0.605;
AP: F(9,114)= 0.50, p= 0.827).

The distributions of the COP parameters are shown in Fig. 2.
All analyses are available for download using the Open Science Framework:

https://osf.io/mptkr/.

DISCUSSION
The purpose of this study was to determine whether and how the postural task with
additional visual feedback requires additional attentional demands in young adults. The
results show that: (1) VFB condition requires additional attentional demands because
reaction times were longer, (2) concurrent visual feedback about postural sway shifts
focus of attention not directly to postural control because of increase of SE, (3) the
implementation of the VFB task has triggered the need for a change in the postural strategy
through a reduction in the amount of sway and increase of MV and MPF.

In agreement with our work, the increased COP entropy during visual feedback tasks
was reported byDonker et al. (2008) and Lakhani & Mansfield (2015). They attributed these
results to the effect of using the external reference system which is thought to facilitate
more automatic control of posture (Wulf, McNevin & Shea, 2001). Similarly, the increased
reaction times in our experiments account for shifting the attention of participants to the
task of keeping their COP inside the target on the screen. Focusing significant attentional
resources on the latter task took from the attention which is normally used to maintain
postural control which also implies more automaticity in maintaining balance.

All participants were able to effectively use the VFB in reducing their sway amplitude,
yet this activity was accompanied by the increase in sway frequency. Higher frequency
of postural sway has been often reported during dual tasks that led to reduced amount
of attention which is normally involved in postural control. It is argued that increased
sway frequency results from increased joint stiffness (Vuillerme & Vincent, 2006; Bieć et al.,

Kręcisz and Kuczyński (2018), PeerJ, DOI 10.7717/peerj.5101 5/11

https://peerj.com
https://osf.io/mptkr/
http://dx.doi.org/10.7717/peerj.5101


Figure 2 Violin plots of the COP parameters for the REF and the VFB conditions collapsed over tri-
als with andmean± standard deviations superimposed: SD, variability; MV, mean speed; SE, sample
entropy; MPF, mean power frequency. These plots show full distribution of the data obtained by kernel
density estimation. The dot symbol denotes mean, whisker denotes standard deviation.

Full-size DOI: 10.7717/peerj.5101/fig-2

2014). Such an interpretation seems justified based on the relationship between the effective
postural stiffness and the frequency of the COP signal that was established by Winter et
al. (1998). In contrast, Stins, Roerdink & Beek (2011) did not find a direct association
between postural stiffness and the level of automaticity in controlling posture. However, it
is possible that postural tasks with visual feedback have different effects on the distribution
of attentional resources than other supplementary cognitive tasks that are apparently not
related to posture.

The difference lies in the final application of the attention diverted from posture and
invested into the supplementary task. In the latter tasks a necessary portion of attentional
resources is being withdrawn from the normal postural control and this loss requires
compensation or some other form of reinforcement. According to several authors, this
is usually accomplished by promoting the more automatic control process (Kuczyński,
Szymańska & Bieć, 2011; Lakhani & Mansfield, 2015).

However, in the former task, attention transferred to the VFB was indirectly reverted
and actually supported the process of postural control. Larger reaction times in the VFB
indicate that this task is attention demanding and one can speculate that the diverted
attention is necessary for the integration of the ancillary visual input with the remaining
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sensory information. Again, elevated sway frequency seems to irrevocably contribute to
this purpose. In fact, the stiffening of postural strategy was suggested as the means to
perform the postural exploratory and/or monitoring function which significantly increases
with the difficulty of postural tasks (Latash et al., 2003). This exploratory function of sway
is ceaselessly active, even during conscious control of posture, and is thought to have
random bearing. A certain level of randomness of spontaneous sway is inherent because
of its unconscious origin. However, an additional and quite substantial uncertainty in
this signal may develop from the conscious action of participants using the visual error to
correct their position inside the target on the screen. Although the purpose of the action
is conscious, its timing and magnitude are not, and the two latter factors depend heavily
on the sensorimotor abilities and performance of the subjects. In other words, increased
sway entropy observed during VFB may not only be the consequence of a more automatic
control of posture but also the reflection of increased uncertainty in performance. This
would be in agreement withMorrison, Hong & Newell (2007) who found that subjects who
voluntarily produced random sway motions exhibited higher COP entropy as compared to
standing still. In a similar vein Borg & Laxaback (2010) postulated that higher entropy may
be interpreted as an inability in some circumstances to exert effective attentive control.

CONCLUSIONS
In conclusion, the VFB is effective in enhancing and improving postural performance.
This benefit is associated with increased sensorimotor activity, and its effect on humans,
depending on circumstances, may be different. VFB has higher attentional demands as
compared to normal stance. VFB increases irregularity and entropy of sway, still presented
results seem insufficient to disentangle the role of elevated automaticity or noisiness in
these changes.
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