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Abstract

Background: Translational research platforms share the aim of promoting a deeper understanding of stored data by
providing visualization and analysis tools for data exploration and hypothesis generation. However, such tools are usually
platform bound and are not easily reusable by other systems. Furthermore, they rarely address access restriction issues
when direct data transfer is not permitted. In this article, we present an analytical service that works in tandem with a
visualization library to address these problems. Findings: Using a combination of existing technologies and a
platform-specific data abstraction layer, we developed a service that is capable of providing existing web-based data
warehouses and repositories with platform-independent visual analytical capabilities. The design of this service also allows
for federated data analysis by eliminating the need to move the data directly to the researcher. Instead, all operations are
based on statistics and interactive charts without direct access to the dataset. Conclusions: The software presented in this
article has a potential to help translational researchers achieve a better understanding of a given dataset and quickly
generate new hypotheses. Furthermore, it provides a framework that can be used to share and reuse explorative analysis
tools within the community.

Keywords: visualization; visual analytics; translational research; explorative analysis; federated analysis; web service

Background

In the field of translational research, we are facing an ever-
growing amount of preclinical, clinical, OMICS, and mobile-
sensor data that should be considered as a whole to understand
the bigger picture of underlying diseases and biological pro-
cesses. A platform that is able to store, link, and analyze the dif-
ferent data formats in an integrative manner is of urgent need.
In recent years, several tools [1] have emerged in an attempt
to solve these issues by providing a framework with standard-
ized formats and tools for data-driven statistical analysis. Of-
ten performed before the time-consuming and computationally

expensive hypothesis-driven analysis, the data-driven analysis
helps researchers achieve a better understanding of the data and
subsequently filter and generate new hypotheses. Some known
examples of such translational research platforms are i2b2 [2],
tranSMART [3], and cBioPortal [4]. These and other related plat-
forms all share similar core functionalities that are responsible
for analysis and visualization. Usually these internal analytical
systems are complex constructs that require high maintenance
due to changing data structures and requirements. This also ex-
plains why most, if not all, translational research platforms im-
plement their own version of such systems. Statistical analysis
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scripts in those implementations usually make strong assump-
tions about the given data format, and the visual counterparts
make similar strong assumptions about the user interface (UI),
of which they are part of. This makes the implementation in a
given platform substantially easier but at the same time highly
platform dependent and, in most cases, unusable by other ser-
vices. SmartR [5] is a concrete example for such a visual ana-
lytical system. It equips tranSMART with modern and interac-
tive data analysis tools but suffers from the mentioned plat-
form dependency, which makes the integration into other ser-
vices very difficult. Shiny [6], Plotly [7], and Bokeh [8] are popu-
lar tools to address some aspects of this issue. They all make in-
teractive visual analytics accessible to researchers with limited
resources and, in some cases, can even be combined, as is the
case with Shiny and Plotly. These tools operate at a lower level,
which makes them customizable. However, in the case of data
analysis, these tools difficult to share and reuse across different
existing web applications with different data formats and appli-
cation programming interfaces (APIs). Furthermore, none of the
mentioned software tools directly address the data access re-
striction issue that often accompanies patient studies contain-
ing protected health information. Another approach is to pro-
vide researchers with a higher-level solution in the form of web
applications with well-defined input formats, as shown in [9]
and [10], that operate on a specific set of problems. This is a very
powerful approach because it shifts the focus of the researcher
to the data analysis instead of having to worry about data for-
mats, analysis code, and APIs.

Fractalis is such a web application with focus on general hy-
pothesis generation, data exploration, scalability, and ease of
integration with existing platforms. It is capable of equipping
existing translational research platforms with a powerful visu-
alization component and an analytical system with federated
data analysis abilities. Modern web technologies enable a dy-
namic and modern experience for the user, while a powerful
distributed job pipeline ensures that the service is scalable and
performant. Furthermore, the isolation of platform-specific code
into a single layer makes it possible to extend Fractalis with sup-
port for virtually any translational research platform. This can
lead to a significant reduction of resources invested in develop-
ing own visual analytical solutions.

Findings

Building an external service for distributed data analysis alone
would not solve the problem of platform dependency. APIs and
data formats are likely unique to a given platform, so analy-
sis scripts and visualizations based on the returned data would
not be easily reusable. Instead, we split up the solution into two
components. One is a web service that is capable of extracting
data from foreign APIs and transforming them into an internal
standard format, so given analysis scripts would always operate
the same. The other component is a library that acts as a com-
munication channel between the UI of the supported platform
and the Fractalis back-end. It is also largely responsible for the
visualization of the analysis results.

The service

We used a Python web framework called Flask [11] as a base
for our service. The main reason for that choice is the ability to
use Python and R (via rpy2) natively for statistical computations.
This also reduces the complexity of the application and mas-
sively improves the debugging capabilities by eliminating the

need for an additional service such as RServe [12]. To avoid tight
coupling with foreign platforms, we introduced a new concept
called Micro-ETL within our service. Unlike usual ETLs (extract,
transform, load) that migrate large parts of a database, these
Micro-ETLs only migrate data that are currently required. The
knowledge of what is required is relayed to the Fractalis ser-
vice via a JavaScript library located within the foreign UI. Once
this information reaches the service, a Micro-ETL factory decides
which implementation can handle the migration based on the
given information. What follows are the three major steps of ev-
ery ETL:

1. The extraction of the data is usually done via REST API but
can also involve other processes or protocols. Micro-ETLs
contain all knowledge necessary to communicate with a
given API or extract data by other means.

2. The transformation is the key to platform independence.
It ensures that all incoming data are transformed to one
of the internal standard formats (currently numerical data,
categorical data, and array data); this makes all available
analysis scripts reusable by other services that use Fractalis
with similar data.

3. In the loading step, the data are written to a nonpersistent
cache whose location is tracked by Redis [13]. This prevents
unnecessary data extraction in subsequent tasks. This is
very important, given the fast-paced exploration that we
want to provide.

Once the data are cached, we can perform statistical analy-
ses on them and send the results, be it an HTML document, an
image, or complex statistics, to the JavaScript library for further
processing and visualization.

Some important challenges that visual analytics tools cur-
rently face are scalability in terms of parallel distributed job ex-
ecution, federated analysis, and handling very large genomic
datasets. In the following text, we introduce the Fractalis tech-
nology stack and describe how it handles these tasks.

The MicroETL and analysis stack mentioned before are sup-
ported by Celery [14] with RabbitMQ [15] as a message broker
and Redis as a result and metadata store. A schematic of how
these services are interconnected can be seen in Fig. 1, where it
is shown that the back-end part of Fractalis is separated into a
central component and a remote component. Celery allows us
to spawn many computational nodes (workers) on different re-
mote machines in order to move most of the workload out of the
web service itself and enable support for a very large number of
parallel requests by many users. One can also observe that the
data cache resides in the remote component, which has no link
to the central component. This design supports the federated
analysis paradigm because it allows us to deploy workers in re-
strictive environments, where they can perform or relay analysis
requests and only return statistics/results, not the data itself, to
the central Redis result store, where they can be subsequently
visualized.

The very same concept also enables the combination of
small- to medium-sized phenotype/omics statistical analyses
with large-scale genotype analyses, e.g., PCA, MDR, GWAS,
and QTL. In such a scenario, Fractalis can handle the pheno-
type/omics data and relay analysis requests to frameworks such
as Hail [16] that can analyze large-scale genotype data. Fractalis
can then combine these results in a single visualization, which
is often necessary to fully understand biological processes.

Developing new Micro-ETLs or analytics within Fractalis per-
mits, but does not enforce, usage of the more advanced function-
alities of the computational stack. For instance, it is possible to
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Figure 1: The Fractalis stack. Shown is a schematic view of the three major components: the visual component, which resides in the web browser and interacts with

the user; the central server component, which manages the application states and handles job distribution; and the remote server component, which can be deployed
remotely and handles the majority of the application workload.

write a fully independent Python script that will be executed on
a remote Celery worker without ever having heard of the tech-
nology. However, a more knowledgeable developer might want
to queue several subsequent jobs or parallelize certain parts of
the analytical process using the more advanced Celery interface.
This is achieved by a design pattern known as factory method,
which we used several times within the application to improve
pluggability of new scripts and ETLs.

The visualization library

The purpose of the front-end component is to provide a simple
API that allows the integration into existing UIs and to render
visualizations based on the statistics computed by the Fractalis
service. In Figs. 2 and 3 one can see several examples of such vi-
sualizations: a scatter plot with correlation analysis and linear
regression, a PCA, box plots with one-way analysis of variance
(ANOVA), a volcano plot with differential expression analysis,
and a survival analysis with Kaplan-Meier or Nelson-Aalen esti-
mator.

The API is usually connected to platform-specific tools for
patient subset selection and other methods for selecting vari-
ables of interest. This information is sent to the Fractalis service,
where they trigger MicroETLs to prepare data for the analysis
cache. This type of integration is illustrated in Fig. 2. The figure
shows how we included Fractalis into another web-based data
platform called Ada [17] to display statistics for a publicly avail-
able wine quality dataset (see [18]). To avoid potential conflicts
with other libraries and the name scope of the parent applica-
tion, we used native ES6/JavaScript components in combination
with webpack [19], which compiles the entire project into a sin-
gle scoped JavaScript file. Cross-browser compatibility and sup-
port for new or experimental features is ensured by Babel [20].

At the time of writing this manuscript, modern versions of Fire-
fox, Chrome, and Safari were tested and supported. The charts
have been created using Vue.js [21] together with a wide range of
helper libraries. Reasons for this choice are the good documen-
tation and the unopinionated nature of the framework, allow-
ing for contributions by every moderately experienced JavaScript
developer. We also extended Vue.js with Vuex [22] for the ability
to have cross-component states. This is useful for mirroring the
state of the server-side session or enabling the reaction of sev-
eral components to a single event. In the case of Fractalis, we
used this technology to connect all charts with each other such
that a selection within a single chart (“brushing”) would inform
all listeners about this event and subsequently trigger a recom-
putation and rerendering of the entire view. This is very useful
for explorative analysis because it allows the researcher to se-
lect groups of interest and see instantly how statistics change
in comparison. Simple examples for this are the comparison be-
tween case and control group or the exclusion of subjects with
an age lower than 30 years. To fully understand how this tech-
nology works, we recommend a look into the videos and guides
that are linked in the Supplementary Materials.

Ensuring continuous reproducibility

Several measures have been taken to ensure reproducibility and
ease of deployment when working with the Fractalis service.
First, the code is properly documented and tested with roughly
250 unit and functional tests at the time of writing. These tests
are executed for every code submission to our self-hosted Git-
Lab repository and for every release. The release process is com-
pletely automated and requires no manual interaction. By push-
ing a new tag to the code repository, the continuous integration
pipeline is instructed to build a new test environment, run all



4 Fractalis: platform-independent visual analytics

Figure 2: Fractalis in Ada. Shown is a self-hosted instance of Ada using Fractalis to display several statistics for the selected dataset. Notable is the native look of
Fractalis within the existing UI, making the integration almost completely invisible to the user.

tests within this environment, and publish the build artifacts to
their respective public repositories if all tests pass. Together, the
artifacts are published to three repositories, namely, NPM [23]
for the JavaScript library, PyPI [24] for the Python package, and
Docker Hub for the Docker images [25]. To further simplify the
deployment of Fractalis, we made use of the Docker Compose
technology, which manages the service setup and network, in-
cluding Redis, RabbitMQ, Nginx [26], Gunicorn [27], the Fractalis
web service, and the Fractalis worker. In fact, the setup has be-
come so simple that we encourage readers to follow the instruc-
tions in the Supplementary Materials and deploy Fractalis them-
selves.

Validation by example
We extensively discussed the technological aspects of the ser-
vice presented in this manuscript, but so far have not mentioned

a specific translational research use case. To demonstrate the
usefulness of the tools described here, we selected a publication
(Bu et al. 2015, [28]) with several plots that are based on analy-
ses of the TCGA—COAD [29] dataset. In particular, we will focus
on the miRNA quantification data and clinical data. All TCGA
datasets are public and can be downloaded without registration
from their repositories. The plots listed below can be found in
[28] Fig. 1a, 1b, 1c, and 1e.

(i) a volcano plot based on a differential expression analysis
of the microRNA quantification data,

(ii) an MA plot based on the same data,
(iii) a box plot with a group test for the difference between

early- and late-stage expression of a certain microRNA, and
(iv) a survival analysis based on the same microRNA between

high and low read count of the same microRNA.
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Figure 3: Fractalis pipeline demonstration. Shown are four Fractalis charts that show statistics based on the The Cancer Genome Atlas (TCGA)—colon adenocarcinoma
(COAD) dataset. From left to right, top to bottom: a volcano plot using results of the R package DESeq2; an MA plot using results of the R package DESeq2; box plots
and a one-way ANOVA group test; and a survival plot using the Kaplan-Meier estimator. The first three plots compare early-stage cancer with late-stage cancer. The

last plot compares high read count of has-mir-1269a with low read count of has-mir-1269a.

In the same order as above, the purpose of these analyses
are:

(i) the discovery of up- or downregulated microRNA with high
significance,

(ii) making sure that microRNAs of potential interest are
present in sufficiently abundance,

(iii) testing whether there is a significant difference between
early- and late-stage cancer for a certain microRNA, and

(iv) testing whether the number of reads for a certain microRNA
is correlated with the survival time of the patient.

To validate our analyses pipelines, we created every chart
with Fractalis and checked if we came to conclusions that were
similar to those of the publications’ authors. It should be noted
at this point that the TCGA—COAD dataset substantially grew
(now 465 samples) since the article was published. Additionally,
the authors did not describe their methods in detail, making a
perfect reproduction very difficult, if not impossible. Neverthe-
less, the analyses results should be similar enough to make a
valid comparison. Figure 3 shows the result of this comparison.
We recorded a video of the process of creating these charts (Sup-
plementary Materials) and included the dataset in the Docker
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image, so that interested readers can try to create the charts on
their own. In the following, we describe our observations in de-
tail.

First, we created the volcano plot (Supplementary Fig. S3a)
by plotting the log2 fold change against the negative log10 fold
change. These statistics where obtained by using the R DESeq2
package. We selected the sector within the chart with P ≤ 0.01
and log2 (fold change) ≥ 1.0, which revealed three microRNAs,
namely, has-mir-1269a (P = 0.00055, log2(FC) = 1.4), has-mir-
187 (P = 1.7e-7, log2(FC) = 2.1), and has-mir-934 (P = 0.0035,
log2(FC) = 1.7). Subsequently, we created a MA plot (Supple-
mentary Fig. S3b) using the same results, but this time plot-
ting log10(baseMean) against log2(FC) and selected the sector
within the chart with baseMean ≥ 10 and log2(FC) ≥ 1.0. This
revealed has-mir-105-1 (baseMean = 17, log2(FC) = 1.1) and has-
mir-1269a (baseMean = 2.2e+2, log2(FC) = 1.4). Intersecting this
result with the previous one leaves has-mir-1269a as the only
microRNA with sufficient abundance, significance, and notewor-
thy fold change between early- and late-stage cancer. So far, our
results are in alignment with the findings reported by the au-
thors. We singled out the has-mir-1269a row from the data ma-
trix and compared the two groups within a box plot chart (Sup-
plementary Fig. S3c) with log10 transformed data. The one-way
ANOVA reported F = 7.410 with P = 0.0069. Our box plots are
almost identical to the reported ones, but our group test has a
slightly better P value, likely due to the additional samples in
the dataset. Finally, we compared samples with high has-mir-
1269a read count (reads >1,500) with low has-mir-1269a read
count (reads <1,500) by performing a survival analysis with a
Kaplan-Meier estimator. We only included patients with an ob-
served death event in both groups, but our results are in rough
agreement with the observations of Bu et al., who likely con-
sidered the entire cohort. It should be noted here that the group
with high read has-mir-1269a count is very small, which is high-
lighted by the very large confidence intervals. All charts that
are shown can be generated in a matter of seconds or minutes
(differential expression analysis is computationally expensive)
within Fractalis.

Latency benchmarks

The Fractalis back-end can be horizontally scaled by using a dis-
tributed worker architecture. As mentioned above, this partic-
ular point also allows for federated analysis, which is why it is
of particular interest how well this architecture performs when
there is a large physical distance between the central and re-
mote nodes. For this purpose, we used Google Cloud to deploy
worker nodes in the United Kingdom and the United States, with
a central node in Germany and the actual user interface in Lux-
embourg. To get a baseline, we deployed the same setup in our
intranet so we can approximate the introduced latency. To avoid
a potential bias due to different hardware specifications, we lim-
ited this test to the execution of a simple correlation analysis
with linear regression between two variables within the TCGA—
COAD dataset from above. In this way, only the network latency
between the different services would be measured, not how well
the central processing unit and random access memory per-
form. It should also be noted that the current front-end is polling
in intervals for the result, so the measured latency will be higher
than the actual latency. Table 1 lists the outcome of the three
different setups. Unsurprisingly, the intranet deployment is the
fastest, with an average of 88 ms between submitting an anal-
ysis and receiving the results. This is the most common form
of deployment and will be sufficient for any potential use case

targeted by Fractalis. Moving the central component to a server
in Frankfurt, Germany, and the worker to a server in London,
UK, resulted in an expected increase in the latency. With 207 ms
on average, this latency is hardly noticeable, making a large dis-
tributed network within Europe more than feasible. Moving the
worker to a server in South Carolina, USA introduced a notice-
able lag of, on average, 792 ms. While this is a 9-fold increase
in comparison to our intranet baseline, the delay is still in the
subsecond range. Most explorative analyses with a moderately
sized dataset will run for several seconds, making a subsecond
delay in most cases negligible.

Discussion and outlook

Here, we presented a framework for explorative visual analy-
sis of biomedical data. Major features include easy integration
into almost all existing translational research platforms and the
heavily distributed architecture that permits high scalability and
enables analysis federation functionality. For platforms with lit-
tle or no explorative data analysis, Fractalis is a real alternative
to developing an individual solution and can save development
resources and give researchers access to many useful tools for
hypothesis generation. Furthermore, individual visualizations
and analyses can easily be shared with other researchers, even
if the underlying data warehouse platform is different.

We demonstrated the hypothesis-generation capabilities by
quickly generating several charts and comparing them with an
existing publication and recorded the work for educational pur-
pose.

A few standard analyses have been included in Fractalis to
showcase the software and gather an initial user base. Some ex-
amples are survival analyses, box plots, scatter plots with cor-
relation analysis and linear regression, volcano plots and heat
maps with differential expression analysis performed by the R
packages limma and DESeq2, and principle component analy-
ses.

New developments will take user feedback into account and
prioritize the implementation of much needed analyses and fea-
tures. In a similar fashion, support for new platforms in the form
of new MicroETLs will follow. At the time of writing, Fractalis is
being integrated into the following three platforms:

1. tranSMART 17.1 including the new data model, API, and UI;
2. Ada [manuscript in preparation], an internally developed

data integration service; and
3. i2b2-tranSMART [manuscript in preparation], a platform

developed by the recently merged i2b2 Foundation and
tranSMART Foundation. Note: This platform is very differ-
ent from 1.

Future developments might include a stand-alone version of
Fractalis, which runs on the computer of the researcher to per-
mit uploading and analyzing local files via the user interface in-
stead of extracting it from an external service.

Availability and requirements

Project name: Fractalis
RRID:SCR 016362
Project home page: https://fractalis.lcsb.uni.lu/
Operating systems: All Docker supported operating systems
(e.g., most Linux distributions, MacOS, MS Windows)
Programming languages: Python, JavaScript
Requirements: Python 3.6 or higher, a recent version of Chrome,
Firefox, or Safari

https://scicrunch.org/resolver/RRID:SCR_016362
https://fractalis.lcsb.uni.lu/
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Table 1: Fractalis distributed pipeline benchmark

Worker location Ping, ms 1st meas., ms 2nd meas., ms 3rd meas., ms Avg., ms

Intranet <1 92 84 88 88
London, UK (Google Cloud) 20 222 200 199 207
South Carolina, USA (Google
Cloud)

102 794 794 789 792

The table shows the time past between submitting an analysis and receiving the results. All results include the time needed to prepare the data for analysis, the

computation of the correlation statistics, the sending of the results, and the latency/overhead introduced by the communication between the service components.
The Ping column shows the base latency by pinging the server from our location in Luxembourg.

License: Apache 2.0

Availability of supporting data

The dataset supporting the results presented here is available at
https://portal.gdc.cancer.gov/repository. Snapshots of the code
and other supporting data are also openly available in the Giga-
Science repository, GigaDB [30].

Additional files

Supplementary Material.docx
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ANOVA: analysis of variance; API: Application Programming In-
terface; COAD: colon adenocarcinoma; ETL: extract transform
load; TCGA: The Cancer Genome Atlas; UI: user interface.
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