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Mirror neurons are neurons whose responses to the observation of a motor act
resemble responses measured during production of that act. Computationally, mirror
neurons have been viewed as evidence for the existence of internal inverse models.
Such models, rooted within control theory, map-desired sensory targets onto the motor
commands required to generate those targets. To jointly explore both the formation of
mirrored responses and their functional contribution to inverse models, we develop a
correlation-based theory of interactions between a sensory and a motor area. We show
that a simple eligibility-weighted Hebbian learning rule, operating within a sensorimotor
loop during motor explorations and stabilized by heterosynaptic competition, naturally
gives rise to mirror neurons as well as control theoretic inverse models encoded in the
synaptic weights from sensory to motor neurons. Crucially, we find that the correlational
structure or stereotypy of the neural code underlying motor explorations determines the
nature of the learned inverse model: random motor codes lead to causal inverses that
map sensory activity patterns to their motor causes; such inverses are maximally useful,
by allowing the imitation of arbitrary sensory target sequences. By contrast, stereotyped
motor codes lead to less useful predictive inverses that map sensory activity to future
motor actions. Our theory generalizes previous work on inverse models by showing that
such models can be learned in a simple Hebbian framework without the need for error
signals or backpropagation, and it makes new conceptual connections between the causal
nature of inverse models, the statistical structure of motor variability, and the time-lag
between sensory and motor responses of mirror neurons. Applied to bird song learning,
our theory can account for puzzling aspects of the song system, including necessity of
sensorimotor gating and selectivity of auditory responses to bird’s own song (BOS) stimuli.
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INTRODUCTION
Complex vertebrate motor behaviors are generated by dedicated
cortical circuits. The organization of these circuits and the plastic-
ity rules that lead to their development and that guarantee their
maintenance are functionally related to neural activity in single
units and across larger populations (Gallese et al., 1996; Rizzolatti
et al., 1996; Rizzolatti and Craighero, 2004; Harvey et al., 2012).
For example, neural activity often strongly co-varies with motor
behavior, allowing for estimation of detailed limb movement
parameters from mere single-neuron recordings (Georgopoulos
et al., 1986; Schwartz et al., 1988) and facilitating neural pros-
thesis (Santhanam et al., 2006; Ethier et al., 2012). However, in
other cases, the amount of firing variability in single neurons can
be dramatically dissociated from behavioral variability. For exam-
ple, in songbirds, two distinct premotor areas are responsible for
the generation of different aspects of the same vocal behavior.
On the one hand, the cortical area HVC is involved in generating
stereotyped adult song; lesions of HVC lead to degradation of typ-
ical adult song toward more unstructured subsong typical of very

young birds (Nottebohm et al., 1976; Aronov et al., 2008). On the
other hand, its counterpart, the lateral magnocellular nucleus of
the anterior nidopallium (LMAN) in very young birds is involved
in subsong production and in adults it is involved in the produc-
tion of very subtle song variability that is barely noticeable to the
human ear (Aronov et al., 2008). Lesions of LMAN in juveniles
abolish song learning (Bottjer et al., 1984), and lesions in adults
reduce the already small variability of adult undirected songs (the
songs not direct toward another bird), manifest for example by
reduced fluctuations of sound pitch (Kao et al., 2005; Stepanek
and Doupe, 2010).

These lesion studies ascribing differential roles of HVC and
LMAN to song production, are paralleled by findings from elec-
trophysiology. In HVC of singing birds, single principal neurons
fire highly stereotyped spiking patterns associated with a given
song syllable, with precision of individual action potentials in
the sub millisecond range (Hahnloser et al., 2002; Kozhevnikov
and Fee, 2007). By contrast, in LMAN of birds singing undi-
rected songs, neurons fire very variable spike patterns, patterns
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that fluctuate on a trial-to-trial basis between loosely timed
high-frequency bursts of action potentials and no spiking at all
(Olveczky et al., 2005; Kao et al., 2008). Thus, stereotyped adult
song is subserved by precise firing in HVC whereas subtle vari-
ability of adult song is subserved by large firing variability in
LMAN, Figure 1. The diverse neural codes in LMAN and HVC
are integrated in a dedicated nucleus that mediates both differ-
ential influences from these stereotypy and variability generators.
Both HVC and LMAN project to the robust nucleus of the arco-
pallium (RA), which is the cortical output nucleus that directly
innervates syringeal and respiratory motor neurons.

Whether stereotyped or variable, internal motor patterns
responsible for generating behavior cannot be fully understood
without considering the sensory input reaching the motor system.

FIGURE 1 | Spiking activity in single neurons of singing zebra finches,

illustrating (A) a variable premotor code in LMAN and (B) a

stereotyped code in HVC. (A) Spike raster plot of LMAN projection neuron
aligned to 41 renditions of the stereotyped song motif. Three exemplary
sound oscillograms of the motif are shown on top. The neuron produces
single spikes and spike bursts at different times in each rendition of the
motif. The motif-averaged firing rate is shown at the bottom. (B) Spike
raster plot of HVC projection neuron aligned to 22 renditions of the
stereotyped song motif (in a different bird), three exemplary motif
oscillograms are shown on top. In each rendition of the motif the neuron
produces a brief burst of spikes at precisely the same time.

Indeed, the very development of motor systems as well as the
formation of motor plans are profoundly shaped by sensory
inputs. For example, the development of the mirror neuron sys-
tem depends on sensorimotor experience (Catmur, 2012) and,
the successful development of birdsong depends on intact HVC
and LMAN activity during sensory exposure (Basham et al., 1996;
Roberts et al., 2012).

We have learned much about the integration of sensory
inputs into motor systems from single neuron studies examining
responses during motor production and during matched sensory
states. Among the key findings are mirror neurons that fire sim-
ilarly when an animal executes a motor act and when it sees or
hears another animal perform that same act. For example, mir-
ror neurons in F5 of monkey premotor cortex fire both when the
monkey touches an object and sees another subject touch that
object (Rizzolatti et al., 1996; Rizzolatti and Craighero, 2004).
Mirror neurons also exist in HVC of songbirds; these neurons
fire at a precise time in the song, both when the bird sings the
song and when it hears a similar song produced by another bird
(Prather et al., 2008).

Mirror neurons establish a link between the observation of
an act in another and self-generation of that same act. Such
a remarkable correspondence between sensory and motor roles
in single neurons has led to numerous suggestions about the
function of mirror neurons in communication, imitation learn-
ing, cultural learning, and language development (Rizzolatti and
Craighero, 2004; Oztop et al., 2012). Most importantly, mir-
rored responses have been proposed to be causally related to
streams of motor and sensory activity (Oztop et al., 2006, 2012).
A recent proposal is to tie properties of the mirror neuron system
to correlative learning rules (Cooper et al., 2012). Accordingly,
sensory responses in mirror neurons could develop from the con-
tingency of motor-related firing and its sensory consequences
feeding back to motor areas. Here we develop this idea and pro-
pose a simple mathematical theory of mirror neuron formation
from correlational learning rules. To examine the critical role of
motor variability, we study, based on earlier work (Hahnloser and
Ganguli, 2013), mirror neuron formation for both motor codes
with strongly correlated firing patterns among neurons, as in
HVC, as well as for motor codes with uncorrelated firing patterns
among neurons, as in LMAN.

We are particularly interested in relating mirror neuron prop-
erties to their computational role in control theoretic inverse
models. Mirror neurons have previously been recognized as direct
evidence of inverse models, which are models that transform
desired sensory states into motor commands that can achieve
those states and may be used for action generation (Oztop et al.,
2012). From the control-theoretic perspective, internal inverse
models give rise to mirrored responses because of the precise
correspondence between a desired sensory target, the motor
commands for producing that target, and the resulting sensory
feedback. We pursue this idea and elucidate the conditions under
which inverse models can arise from correlational learning during
sensory feedback-dependent motor explorations.

We assume inverse models form in a context without prior
knowledge of structure of either the motor apparatus or the
delayed sensory feedback. We design an eligibility-weighted
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correlational learning rule that allows for the formation of both
inverse models and mirror neurons. In the rule we propose,
synaptic strengthening depends on contiguous co-activation
of pre-and postsynaptic neurons, whereas synaptic weakening
depends on heterosynaptic competition between sensory affer-
ents innervating the same motor neuron. We argue that from
a synaptic perspective, this rule is considerably simpler and
more plausible than previously proposed rules and computa-
tional approaches toward systems-level inverse models based
on error backpropagation (Jordan and Rumelhart, 1992). Our
rule is most closely related to direct inverse model approaches
(Miller, 1987; Slotine, 1987), in which, however, the possibility
of unknown feedback delays has not been adequately addressed.
Most importantly, we find that whether the formed mirror neu-
ron system and inverse model is suitable for action imitation
depends on the correlational structure of the neural code asso-
ciated with motor production. Whereas a variable (explorative)
motor code leads to causal inverse models and is suitable for
mirror-neuron dependent action imitation, a stereotyped (repet-
itive) motor code leads to predictive inverse models and is not
suitable for action imitation. Thus, our work provides an inter-
esting link between the correlational structure of motor behavior,
its underlying neural code, and fine-grained temporal properties
of mirror neuron responses and their suitability for flexible action
imitation.

Furthermore, these conceptual connections suggest a set of
natural experiments designed to probe for the existence, and char-
acterize the causal nature of, inverse models by measuring the fine
grained temporal properties of the sensory and motor responses
of mirror neurons. As we discuss below, when applied to the
bird song system, these experiments make a specific, testable pre-
diction about the existence and temporal properties of mirror
neurons in the variable motor circuit LMAN, as well as explain
the origin of previously observed temporal properties of mirror
neurons in the stereotyped motor circuit HVC.

RESULTS
A LINEAR FRAMEWORK
We develop our theory in a simple linear framework in which the
sensory response a(t) in a sensory brain area at time t is a vector
of firing rates that is linearly related to the motor cause m(t − τ)

at an earlier time t − τ , where m(t − τ) is a vector of firing rates
in a motor area such as HVC or LMAN. The time delay of sen-
sory feedback τ = τm + τa is the sum of the time τm needed to
translate motor activity into behavioral (vocal) output and the
time τa it takes for a vocalization to elicit a sensory response. We
assume a linear motor-sensory mapping modeled by the matrix
Q, allowing us to specify the form of delayed sensory feedback as
a(t) = Qm(t − τ), Figure 2.

Note that for simplicity we assume linearity of the motor-
sensory mapping Q. However, the simple linearity assumption
inherent in Q need not be inconsistent with the existence of non-
linearities between motor neuron activity and behavioral output
(for example, song) and also with non-linearities between behav-
ioral output and sensory responses. While it is the case that each
of these transformations is highly non-linear, the dimensional-
ity of motor behavior patterns realizable by muscle activity, or

FIGURE 2 | Delayed feedback and inverse model, illustrated by vocal

production in birds. In our model of delayed sensory feedback the
auditory response a(t) in a sensory area at time t depends linearly on
motor activity m(t − τ) in a motor brain area at an earlier time t − τ

according to a(t) = Qm(t − τ), where Q is the unknown motor-sensory
mapping and τ the unknown delay of auditory feedback. An inverse V is a
mapping from sensory neurons back onto motor neurons that inverts the
action of Q: V = Q−1.

recorded by early sensory responses, is much smaller than the
dimensionality of sensory or motor activity patterns deep within
the cortex, by virtue of the fact that cortical motor and sen-
sory neurons largely outnumber the few muscles and sensory
receptors involved in the composite motor to sensory feedback
loop. So for example, within the bird song system, it is thus
probable that the low dimensional, composite non-linear trans-
formation from cortical motor patterns, to muscle activity in the
syrinx, to song, to cochlear response, back to cortical sensory
feedback, could be well-approximated by a direct high dimen-
sional linear map from the cortical motor area back to the cortical
sensory area. This is in exact analogy to the theory of support vec-
tor regression approaches from machine learning, in which low
dimensional non-linear maps can be well-approximated by high
dimensional linear maps (Smola and Schölkopf, 2004). Thus, for
our purposes, all we assume is that there exists at least one high
dimensional linear map from cortical motor patterns to cortical
sensory feedback patterns that approximates the composite feed-
back pathway implemented through the non-linear processes of
motor generation and perception.

Now, an inverse model in this context is a mapping V = Q−1

expressed in the synaptic weights V from sensory onto motor
neurons. Such a mapping allows sensory neurons to postdict the
possible motor cause ma of a sensory target (vector) a (either
driven externally, recalled from memory, or resulting from a plan-
ning strategy) according to ma = Va. Such a postdiction ability of
inverse models can be used in feedforward motor control in which
the appropriate stream of motor commands ma(t) can be com-
puted for a given desired sensory target sequence a(t) according
to ma(t) = Va(t).
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The goals of our theory are to outline a biologically plausible,
local mechanism for learning of the synaptic mapping V and to
characterize the associated emergence of mirror neurons in this
process.

ELIGIBILITY-WEIGHTED HEBBIAN LEARNING
We designed a simple learning rule in which potentiation of
sensory-to-motor synaptic connections V arises from correlated
firing in pairs of sensory and motor neurons. Because sensory
feedback is delayed, synapses must be able to detect correlated
firing within some non-zero time window, which we achieve by
introducing an eligibility trace e(s) that establishes a link between
activity at time t in a motor neuron and activity in a sensory neu-
ron at a later time t + s (see also Figures 3A,C). The eligibility
trace modulates the change in synaptic strength associated with
correlated pre- and postsynaptic firing—it is a biophysical pro-
cess that resides on the postsynaptic side of V synapses and is
triggered by activity (i.e., spikes) in the postsynaptic (motor) neu-
ron. Intuitively, we imagine that the spiking of a motor neuron,
elicited for example from an internal source of motor variation
that generates exploratory motor behavior, triggers the eligibility
trace that in turn makes all synapses from sensory neurons onto

that motor neuron eligible for future modification. Thus, if the
delayed sensory feedback arrives to the sensory area within the
window of eligibility, sensory to motor synapses can potentially
learn to postdict the motor cause by correlating the current sen-
sory feedback with past motor activity that might have generated
it. We further assume that the eligibility is monotonically decay-
ing in time, implying that sensory inputs preferentially connect
onto motor neurons that were recently and reliably activated
rather than motor neurons that were activated a long time ago.
Necessarily, the decay of the eligibility trace must be slow enough
to be able to attribute significant eligibility to sensory inputs with
motor-to-sensory delays τ , which we subsume in the condition
e(τ) � 0.

The full correlational learning rule describing changes in
synaptic strength Vij from auditory neuron j onto motor neuron
i reads:

δVij =
∫ ∞

0
ds
[
e(s)mi(t − s)aj(t)

]− m̂i(t)aj(t), (1)

where m̂i(t) =∑k Vikak(t) is the (silently) postdicted motor
activity, corresponding to the summed auditory input to neuron

FIGURE 3 | Cross-correlation functions for variable and stereotyped

motor codes. (A) In a variable motor code m(t) (shaded area). Activity
bursts m1 (black) and m2 (blue) of width t0 in two example motor neurons
occur at diverse time lags relative to each other across renditions of the
song motif. Auditory tuning in the shown sensory neuron is such that it
responds a1 to bursts m1 after a time lag τ . Repeated co-activation
m1 → a1 and non-zero eligibility e(τ) (red bar) at time lag τ leads to
increased synaptic weight V11 (red arrow) and to a causal inverse. Lack of
correlation between m2 and a1, as well as heterosynaptic competition,
prevents V21 from similarly increasing (blue thin arrow). (B) The
cross-correlation function Cij (t) for variable codes is flat except the

auto-correlation peak at zero time lag (motor activity is uncorrelated among
neuron pairs). Note: based on square activity pulses in motor neurons in
(A) the true cross-correlation shape is triangular (blue dotted line) which we
approximate by a square pulse of width t0 � 10 ms. The auto-correlation
peak height is C0. (C) In a stereotyped motor code m(t) (shaded area),
bursts m1 (black) and m2 (blue) occur at a fixed time lag relative to each
other across renditions of the song motif (traveling pulse of activity).
Repeated co-activation m2 → a1 at higher eligibility (red bar) than the
eligibility of m1 → a1 leads to strengthening of synapse V21 (red arrow)
and to a predictive inverse. (D) The cross-correlation function Cij (t) for
stereotyped codes peaks also at non-zero time lags.
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i at time t. The subtractive term m̂iaj provides an equal time
heterosynaptic depression (Lynch et al., 1977; Chistiakova and
Volgushev, 2009) among all sensory afferent synapses onto a
motor neuron. The strength of this depression depends on the
amount of presynaptic activity but does not depend directly on
postsynaptic activation. The utility of such depression is not
only to stabilize activity but also to force synaptic connections
towards inverse mappings as we will see. Note that we assume V
synapses are “silently” correlating pre- and postsynaptic activity
in Equation 1, i.e., V synapses do not contribute either to post-
synaptic depolarization or to postsynaptic hyperpolarization. In
other words, while the inverse model is being learned, the motor
activity mi(t) is entirely driven by some other source than the
afferent auditory input. Thus, from the perspective of extracel-
lular physiology, it would appear that sensory feedback arriving
to the motor area through the inverse model, is gated out of
the motor area while that motor area is engaged in internally
generated motor explorations.

In the following we examine the outcome of this learning
rule in response to various forms of motor codes, with the goal
of computing the synaptic weight matrix V at a steady-state of
the learning rule, d

dt 〈V〉 = 0, where 〈〉 denotes averaging over
time (e.g., over different renditions of the song). To simplify
the calculations, we assume motor codes with narrow spike-
train cross-correlation functions, i.e., the width t0 of spike-train
cross-correlation functions is much smaller than the character-
istic decay time of the eligibility trace. Although such functions
have not been extensively studied due to the difficulty of simul-
taneously recording from several neurons during singing, narrow
cross-correlation is plausible for RA and HVC neurons because
pseudo simultaneous recordings can be constructed from serial
recordings thanks to high firing stereotypy in these cells, yield-
ing cross-correlation widths on the order of 10 ms (Leonardo
and Fee, 2005). Note that in LMAN, because of high firing vari-
ability, similar estimation of cross-correlation width is virtually
impossible.

We model motor codes with diverse inherent levels of ran-
domness. We model stereotyped motor codes by assuming that
spike-train cross correlations extend over large time lags, in agree-
ment with a traveling pulse of activity (Hahnloser et al., 2002;
Harvey et al., 2012). We model variable motor codes by assum-
ing that cross-correlations vanish except in a peak at zero time lag
(white noise assumption), Figure 3B.

A VARIABLE NEURAL CODE YIELDS CAUSAL INVERSES
If motor activity is uncorrelated among different neuron pairs,
the resulting sensory to motor map V = e(τ)t0Q−1 equals the
inverse of Q weighted by the eligibility at time lag τ (Equation A5,
for the derivation see Appendix A3). Hence, V is a causal inverse
that maps sensory representations onto their motor causes (in
Figure 3A, auditory neurons map onto those motor neurons
whose firing correlates most strongly with their own).

For example, during singing the motor cause m1(t − τ) (say a
neuron that generates a 4 kHz tone) will frequently be followed
by auditory response a1(t) (a 4 kHz detector neuron), leading
to strengthening of synapse V11. By contrast, due to high vari-
ability of the motor code, associations between m2(t − τ) (say

a neuron that generates a 3 kHz tone) and a1(t) are much less
frequent (because the bird randomizes the production of 3 and
4 kHz tones). Hence, synapse V21 from the 4 kHz detector onto
the 3 kHz generator will lose to synapse V11 due to heterosynaptic
competition (Figure 3A).

A STEREOTYPED NEURAL CODE YIELDS PREDICTIVE INVERSES
If the motor code is stereotyped and different motor neuron
pairs are correlated at even very large time lags (extending over
the full range of the eligibility trace and possibly beyond), then
V � e(0)t0Hτ Q−1 is approximately a concatenation of the inverse
of Q and a shifter matrix Hτ that maps motor activity at one
time onto motor activity at a time lag τ later, i.e., V is a pre-
dictive inverse of Q (Equation A10). Under a predictive inverse
V, a sensory neuron maps onto those motor neurons that were
most recently active (and reliably follow in activation other motor
neurons that give rise to the sensory neuron’s response).

For example, during singing, the motor cause m1(t − τ) of a
4 kHz tone will frequently occur before the cause m2(t) of a 3 kHz
tone (because the bird produces stereotyped downsweep sylla-
bles). Hence, the 4 kHz auditory detector response a1(t) will find
much higher eligibility in motor neuron 2, leading to strengthen-
ing of V21 at the expense of V11, i.e., the 4 kHz detector neuron
connects onto the 3 kHz generator neuron (Figure 3C).

LACK OF RESPONSE TO PERTURBED AUDITORY FEEDBACK AND
SELECTIVITY FOR THE BOS
During Hebbian learning of V in Equation 1 we required that
synapses V are not able to drive spike responses in motor neurons
during singing (V synapses learn silently). The main intuitive rea-
son for the necessity of silent learning is that the learning goal of
the inverse model synapses are to silently correlate the motor and
sensory streams, without perturbing the motor stream that would
result if sensory feedback were to pass through and drive spikes
in the motor area. If the inverse model synapses allowed sensory
feedback to significantly drive motor spikes, then the incoming
sensory signals would serve to drive motor activity resulting in
cyclic motor output with cycle time approximately equal to τ ,
i.e., birds would unavoidably produce repetitive motor output
(stuttering).

Interestingly, there is much evidence for the gating out of sen-
sory information in song motor nuclei. Principal motor neurons
in LMAN and HVC do not respond to playback of white noise
stimuli during singing (Leonardo, 2004; Kozhevnikov and Fee,
2007) and during states of high arousal (Cardin and Schmidt,
2003), though there are reports of distorted feedback responses
in HVC interneurons in Bengalese finches (Sakata and Brainard,
2008). Lack of feedback sensitivity in principal motor neurons is
usually ascribed to a form of gating caused by specific thalamic
or neuromodulatory mechanisms (Dave et al., 1998; Schmidt and
Konishi, 1998; Shea and Margoliash, 2003; Cardin and Schmidt,
2004; Coleman et al., 2007; Hahnloser et al., 2008), see also the
Discussion.

By contrast, LMAN (Doupe and Konishi, 1991; Doupe, 1997;
Solis and Doupe, 1999; Roy and Mooney, 2007) and HVC neu-
rons (Katz and Gurney, 1981; Margoliash, 1983, 1986; Williams
and Nottebohm, 1985) respond to auditory stimulation while
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birds are anesthetized or asleep, which we model as gating on
of V synapses, i.e., we assume that auditory responses in motor
neurons are driven via the learned inverse models.

The puzzling observation of the gating out of sensory inputs
to motor areas during motor exploration, is naturally accounted
for in our theory by necessity of correlating the current presy-
naptic sensory stream with past postsynaptic motor streams,
to learn an unbiased inverse model (of unperturbed motor
stream).

Also, interestingly, in both HVC and LMAN sensory responses
are strongest for bird’s own song (BOS) stimuli compared to
other stimuli including the tutor song or the BOS played back
in reverse time (McCasland and Konishi, 1981; Margoliash, 1986;
Lewicki, 1996; Solis and Doupe, 1999). Such selectivity follows
naturally from our model assumptions: for both stereotyped and
variable motor codes, the mappings, whether causal or predic-
tive, can only invert sensory responses that lie in the image of
Q and cannot invert the full space of responses orthogonal to
the image of Q. Such a restriction arises because only sensations
that could arise through combinations of previously experienced
sensory feedback during singing can actually be inverted into
appropriate motor commands. In other words, the inverse model
synapses map prior sensory feedback generated by the bird’s own
previous song into appropriate motor commands, but necessar-
ily fails to map sensory activity patterns that are very different
from the BOS into coherent motor patterns. Thus, assuming
HVC and LMAN can be thought of as downstream of the out-
put of an inverse model, our Hebbian learning rule generating
inverse models can naturally account for the preference of sensory
responses in HVC and LMAN for BOS; sounds very different from
BOS are not appropriately inverted, and therefore presumably
do not lead to coherent activation of motor patterns via sensory
inputs propagating through the inverse model synapses.

INVERSE MODELS AND SENSORIMOTOR MIRRORING
The Hebbian learning rule in Section Eligibility-Weighted
Hebbian Learning determines the wiring of sensory afferents
into motor areas based on sensorimotor experience. How could
one experimentally test for the existence of such wiring with-
out painstaking, detailed inspection of anatomical connections
and characterization of the sensorimotor mapping Q? Here we
outline the design of experiments to probe for the existence
of either causal or predictive inverse models. We propose to
record from single neurons both in sensory and motor states and
to compare motor activity and sensory-evoked responses using
cross-correlation functions: as we will show, the time lag of peak
cross correlation provides evidence for either predictive or causal
inverses.

In such mirroring experiments that we propose, a single neu-
ron is first recorded during singing and then during playback
of the just recorded songs while the bird is asleep in the dark
(during which the auditory gate is open and motor neurons
become responsive to auditory stimuli, presumably through an
inverse model from an upstream sensory area). In our model,
sensory responses ma

i (t) = m̂i(t) =∑k Vij aj(t) during playback
are driven via synaptic weights V (assumed to be at a steady-
state of Equation 1, d

dt 〈V〉 = 0). Computing the cross-correlation

functions Corr(s) of the sensory response ma
i (t) with motor activ-

ity mi(t) (as a function of time lag s) yields that (see Figure 4):

1. For variable neural codes we have that ma
i (t) = e(τ)t0mi

(t − τ) and the cross-correlation function Corr(s) is 0 except
at time lags s ∈ [τ − t0

2 , τ + t0
2

]
thus the peak correlation is

near the sensorimotor time lag τ . In other words, for causal
inverses the cross-correlation function between motor activity
and sensory-evoked response peaks near time lag τ . That is,
causal inverses are associated with large mirroring offsets equal
to the loop delay τ . The reason is that the auditory response
ma

1(t) ∝ m1(t − τ) to song playback lags the song generating
motor activity by a time lag τ . Intuitively, in a causal inverse
model, if a motor neuron’s activity is time locked to a partic-
ular song feature, it must fire before that feature in the motor
production state, but after that feature in the sensory response
state. This yields a temporal lag, or mirroring offset between
the two (song-aligned) spike trains of a neuron recorded
during motor production and during sensory exposure.

2. For stereotyped neural codes we have that ma
i (t) � e(0)t0mi(t)

and the cross-correlation function Corr(s) as a function of
the time lag s is proportional to the eligibility trace e(s).
Thus, assuming a monotonic decay of eligibility, Corr(s)
peaks at time lag s = 0. In other words, for predictive inverses
the cross-correlation function peaks near zero time lag
and predictive inverses are associated with close to zero
mirroring offsets. The reason is that the auditory response
ma

1(t) ∝ m1(t) to song playback shows no lag with respect to
the song generating motor activity. Intuitively, in a predictive
inverse model, sensory feedback from a past motor action
maps to concurrent motor activity in a stereotyped motor
stream, which necessarily occurs after the motor activity that
caused the sensory feedback. Thus, the past song elicits the
firing of a motor neuron that generates future song. This
implies that for any neuron there is no lag between its sensory
and motor responses; the motor and sensory-evoked spikes
of a motor neuron downstream of a predictive inverse model
occur at the same time relative to song.

For derivations and model assumptions see Appendices A2–A4.
In particular, here we assumed no synaptic delay between audi-
tory and motor neuron, though this assumption can be relaxed.
In summary, for both stereotyped and variable motor codes, sen-
sory responses mirror motor activity. The amount of randomness
in the motor code dictates the time lag of peak cross-correlation
between motor activity and sensory-evoked responses, which we
refer to as the mirroring offset. The mirroring offset thus serves
as an important experimental observable that provides a window
into fundamental differences in the types of inverse models that
are computed by Hebbian learning, Figure 4.

Note that variable motor codes are associated with weaker mir-
roring than stereotyped codes, i.e., the cross-correlation functions
for variable codes exhibit lower peak amplitudes than cross-
correlation functions associated with stereotyped codes: In our
model, the ratio of peak cross correlation is given by the eligibility
at time lag τ divided by the eligibility at time lag zero (Equation
A12 derived in the Appendices A3, A4). Thus, the steeper the

Frontiers in Neural Circuits www.frontiersin.org June 2013 | Volume 7 | Article 106 | 6

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Hanuschkin et al. Inverse models and mirroring offsets

FIGURE 4 | The mirroring offset is determined in recordings of neural

activity across (A) singing and (B) auditory stimulation by song

playback; the offset (red) is large for causal inverses (middle column) and

close to zero for predictive inverses (right column). (A) During singing, a
motor-neuron burst m1 drives a song feature (green notes) after a time
delay τm. (B) Playback of that song feature leads to auditory response a1 after
a time delay τa. And, auditory response a1 leads to motor neuron response
ma

1 in case of a causal inverse (middle column) and to motor neuron response
ma

2 in case of a predictive inverse (right column) after an additional time lag τs

(spike propagation time from auditory to motor area) that is assumed to be 0

for simplicity. Thus, after alignment of motor activity and sensory response
with song (green arrows), in the case of a causal inverse, the mirroring offset
�t defined as the time lag between motor activity and playback response
(red bar with extension set by red dashed lines) is equal to the sensory
feedback delay τ = τm + τa, whereas in the case of a predictive inverse the
mirroring offset �t is close to 0. The reason for the 0 offset associated with a
predictive inverse is that the auditory burst a1 driving the playback response
ma

2 is selective to the sound feature that during singing was generated by the
much earlier burst m1 in a different neuron (black burst in (A), right panel), but
not the feature generated by m2 (blue burst in (A), right panel).

eligibility trace, the weaker the mirrored response in case of vari-
able motor codes. By contrast, the shape of the eligibility trace is
expected to have almost no influence in case of stereotyped codes.

Note that the auditory response ma
i (t) =∑k Vik ak(t) in a

motor neuron to song playback is mathematically identical
to the (silently) postdicted motor activity m̂i(t) =∑k Vik ak(t)
defined after Equation 1, and used in learning the inverse model.
Nevertheless, we use different symbols for these quantities to
disentangle their meaning, i.e., the former being a superthresh-
old sensory response elicited in a quiet non-singing state of the
bird, the latter being a subthreshold subtractive term that sta-
bilizes synaptic learning during singing. The biophysical under-
pinnings of these two terms might largely be identical, with the
silent nature of the posticted activity arising from some form of
response gating (see also the Discussion).

GRADIENT DESCENT
We note that the learning rule in Equation 1 corresponds to
gradient descent on the following error function:

E(t) = 1

2

∑
i

∫ ∞

0

[
mi(t − s) −

∑
k

Vikak(t)

]2

e(s)ds (2)

For a derivation, see Appendix A1. Thus, synaptic weights V con-
verge such as to yield optimal postdiction m̂i(t) =∑k Vik ak(t)

of motor activity from sensory feedback. The origin of our
eligibility-weighted Hebbian learning rule with heterosynaptic
competition, from gradient descent of an energy function, confers
a degree of robustness to the learning, as well as suggests general-
izations to situations in which the synaptic transformation from
sensory to motor areas is non-linear.

PROBABILISTIC MODELS
More realistic neuron models are non-linear and contain spikes
that are potentially probabilistic and certainly binary events. Also,
more realistically, we may want to explicitly model intrinsic noise
in motor and sensory-related responses rather than deal with
motor variability only through their effects on cross correlations.
As a first step to dealing with such realism, we have derived two
probabilistic neuron models in which inverse models and mir-
roring can be studied in similar manners as in the linear model,
outlined in the following.

In one of these models we calculate the influence of prob-
abilistic (binary) responses on the strength of mirroring. We
consider a random motor area that at any time can only be
in one of two possible states M = 1 and M = 0 with prior
probability p(M = 1) = 1

2 . Assume analogously that the sen-
sory area is such that a particular sensory feature is either
detected (S = 1) or not detected (S = 0). We then model the
relationship between motor activity and sensory consequence in
terms of conditional dependencies between these two random
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variables. We assess the strength of mirroring in this model in
terms of the cross-correlation coefficient between the two ran-
dom variables (as derived in Appendix A5) and find the following
result:

(A) For perfect auditory tuning (sensory neurons exhibit no
noise to repeated sensory stimulation) the cross-correlation
coefficient is given by the difference between the proba-
bilities that the detected sensory feature is driven by the
motor area vs. not driven by it. In other words, mirrored
responses are proportional to the strength with which a
single motor neuron contributes toward generation of the
detected feature.

(B) In case of equal intrinsic noise in motor and sensory systems
we find that the correlation coefficient is positive and pro-
portional to the squared difference between the probabilities
that the detected sensory feature is driven by the motor area
vs. not driven by it.

Thus, the simple probabilistic model shows that the strength of
mirroring may also be strongly reduced by the amount of intrinsic
noise present in sensory and motor systems.

DISCUSSION
We have presented a simple model for the development of
mirror neuron systems that is mathematically tractable, allow-
ing us to relate mirror neuron properties such as the correl-
ative strengths and the time lag of peak mirrored responses
to the stereotypy (the correlation structure) of motor-related
firing. Mirroring properties depend on the variability of the
neural motor code which may be dissociated from apparent
variability of the motor behavior as is the case in LMAN neu-
rons that fire highly variable spike patterns despite high song
stereotypy in adults. Our conclusions are valid for arbitrary
sensory systems, provided they are able to signal sensory feed-
back from motor actions with sufficient sensitivity matched to
the behavioral richness generated by the motor system (and of
course provided that sensory afferents are subject to correla-
tive Hebbian learning). In our derivation we have assumed that
cross-correlation functions among motor neuron pairs are nar-
row, which was a simplifying assumption that allowed us to
derive simple analytical forms of the sensory-to-motor mapping
V and of mirroring properties. Approximate inverses should also
result for motor codes with more complex time dependence,
because by construction, the learning rule we considered corre-
sponds to a gradient-descent rule that achieves minimal inversion
error.

Although inverse models are attractive as models for vocal
learning (Guenther et al., 2006; Hahnloser and Ganguli, 2013),
they have previously been judged to be inappropriate for vocal
learning in songbirds because of mainly two reasons: (1) young
birds require many song repetitions with auditory feedback (Doya
and Sejnowski, 2000), and (2) the learning schemes proposed
either used a biologically implausible algorithm (Jordan and
Rumelhart, 1992) or assumed the preexistence of an approxi-
mate inverse model (Kawato, 1990). Here we suggested a res-
olution to both of these issues and shown that in contrary to

previous beliefs, inverse models constitute a potentially plausible
framework for vocal learning in birds, too: the many song
explorations used by young birds could be required to actu-
ally learn the high dimensional inverse model; and, the cor-
relational learning we proposed is quite plausible and simple
(but non-trivial nevertheless). This suggests potentially open-
ing up the hypothesis space for learning rules operating within
cortico-basal ganglia circuits, in both mammalian and bird song
systems, to include models spanning the range from pure rein-
forcement learning (RL) to pure inverse model learning. Of
particular interest would be intermediate learning rules that
synergistically incorporate both dopamine-dependent plasticity
thought to underlie RL as well, as Hebbian based plasticity shown
here to mediate inverse model learning, in order to implement
sophisticated model-based RL strategies. For example, a simple
proposal would be that dopamine delivered to striatal synapses
from the ventral tegmental area (VTA) might not be released
purely nonspecifically, but instead might be delivered by an
inverse model that can partially map errors in sensory coordi-
nates to errors in motor coordinates, thereby guiding learning
in ways more sophisticated than pure RL (O’Reilly and Frank,
2006).

The key to learning causal inverse models is motor variabil-
ity. In motor areas such as HVC that fire stereotyped patterns,
auditory afferents cannot disentangle cause-and-effect, leading to
preferential formation of predictive inverses rather than causal
ones. Predictive inverses have limited usefulness for action imita-
tion from action observation, because under a predictive inverse,
observation of a particular motor gesture will lead to imitation of
the subsequent gesture in the imitator’s motor repertoire, which
may not be part of the actions to be imitated. For example, if
a bird repeatedly sings ABCD during formation of the inverse
and wants to later imitate repetitions of ABDB, then its predictive
inverse will constrain it to produce repetitions of BCDA because
perception of A maps to production of B, perception of B maps to
production of C, etc.

Small temporal delays between motor activity and activity
evoked by playback of BOS or BOS-resembling sounds have been
reported previously. Prather et al. (2008) showed there is a small
mirroring offsets of just a few milliseconds in HVCX neurons of
awake swamp sparrows and report similar (not quantified) results
in Bengalese finches. Furthermore, Dave and Margoliash (2000)
observed a small time lag of auditory-evoked activity also in RA
neurons of sleeping zebra finches. Both these experimental find-
ings reflect a predictive inverse. While predictive inverses have
limited usefulness for action imitation they might provide stabil-
ity in sequential vocalization. Indeed Sakata and Brainard report
that perturbation of auditory feedback can change song syntax in
Bengalese finches (Sakata and Brainard, 2006, 2008; Hanuschkin
et al., 2011). By contrast, a causal inverse revealing itself by a large
mirroring offset is maximally useful for song imitation. Indeed,
preliminary results indicated a large non-zero mirroring offsets
in LMAN (Giret et al., 2012).

An important element of our theory is the eligibility trace. To
endow Hebbian learning with such a trace is necessary in real-
istic situations in which effects (sensory feedback) follow their
cause (motor command) with some non-zero time lag arising
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from signal propagation delays, from twitch times of muscles,
and from sensory and synaptic receptor latencies. In humans
such a lag could span up to several hundreds of milliseconds,
whereas in birds it may be as short as several tens of millisec-
onds. Eligibility traces also appear in RL theories (Seung, 2003;
Fiete et al., 2007) and seem to be a general prerequisite for learn-
ing in the context of delayed feedback or delayed reward. We can
imagine that neurons and synapses may hold decaying eligibility
traces in terms of dedicated molecules such as calcium. Action
potential generation is associated with rapid calcium entry that
decays over the time course from several hundreds of millisec-
onds to a few seconds (McGeown et al., 1996; Wallace et al., 2008).
The monotonic decay of intracellular calcium is well-suited to
modeling a monotonically decaying eligibility trace. However,
a monotonic decay of eligibility harbors both advantages and
disadvantages. The disadvantage, as discussed, is the problem
associated with stereotyped motor generators that can only hold
predictive inverse models; to make inverse models causal, motor
variability is required. Another way to guarantee causal inverse
models—even under stereotyped motor explorations—would be
to consider eligibility traces that do not monotonically decay
but that peak at precisely the time delay inherent in closed sen-
sorimotor feedback loops. The main caveat of such eligibility
traces is that it may be questionable whether different muscles
recruited for the same behavior must necessarily be associated
with the same sensorimotor delay—and it is presently unclear
how such variable delays could be matched to variable eligibil-
ity traces across synapses in a way that would ensure the learning
of a causal inverse model. Moreover, phenomena such as speech
co-articulation make it unlikely that there exists a constant sen-
sorimotor delay across a large range of premotor neurons. The
advantage, on the other hand, of a decaying eligibility trace is that
sensorimotor contingencies and inverses can be learned regardless
of sensorimotor latencies, providing robustness of sensorimotor
learning.

Convergence of the sensory to motor synaptic weights toward
inverses depends on details of the heterosynaptic competitive

term. Heterosynaptic competitive terms have a certain appeal
because of the useful normalization they provide (Fiete et al.,
2010). In the context of this work, such terms imply locally avail-
able information at a single synapse about sensory inputs to
other synapses. Though this information need not be provided
instantaneously, we can only speculate about possible mecha-
nisms for sharing such information among different synapses
onto the same postsynaptic neuron. One possibility is that some
form of intracellular signaling conveys this information. Another
possibility to be explored is whether there exists an entire class
of such competitive terms with a similar effect. For example,
provided that motor and sensory codes are sufficiently sparse,
it is conceivable that very simple subtractive terms might suf-
fice for inverse formation. Whether other (even simpler) com-
petitive terms result in approximate inverses needs to be fur-
ther explored. We would like to point out preliminary evidence
that inverses can be learned with Hebbian rules that include
no heterosynaptic competitive terms (Senn and Pawelzik, pers.
communication).

Our Hebbian learning theory has been analyzed so far in linear
circuits, but we have indicated ways to overcome linearity by pin-
pointing extensions of our work to include nonlinear mappings
and probabilistic neuron models. Further work will be required
to test whether our correlative learning approach is suitable also
for inverse model learning employing detailed biophysical models
of the avian syrinx.
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APPENDICES
A1. GRADIENT DESCENT DERIVATION OF ELIGIBILITY-WEIGHTED

HEBBIAN LEARNING
We can derive the learning rule in Equation 1 by gradient (steep-
est) descent on an error function E. The differential change δV in
synaptic weight is proportional to the gradient and we can write:

δV = − dE

dV
. (A1)

The error function Ei(t) for neuron i we define as the square dif-
ference between motor activity mi(t − s) and postdicted motor
activity m̂i(t) =∑k Vik ak(t), weighted by the eligibility associ-
ated with the time lag s.

Ei(t) = 1

2

∫ ∞

0
ds

[
mi(t − s) −

∑
k

Vik ak(t)

]2

e(s)

The total error is simply the sum of errors over all neurons
E =∑i Ei.

By taking the gradient with respect to the i, j th weight only we
find

dEi

dVij
= −

∫ ∞

0
ds

[
mi(t − s) −

∑
k

Vik ak(t)

]
e(s)aj(t)

= −
∫ ∞

0
ds

[
e(s)mi(t − s) aj(t) +

∑
k

Vikak(t) aj(t)e(s)

]
.

Assume a normalized eligibility trace
(∫∞

0 e(s)ds = 1
)
:

dEi

dVij
= −

∫ ∞

0
ds e(s)mi(t − s) aj(t) +

∑
k

Vik ak(t) aj(t).

⇒ δVij =
∫ ∞

0
ds e(s)mi(t − s) aj(t) −

∑
k

Vik ak(t) aj(t) (A2)

A1.1. Extension to non-linear network
Note that our linear approach can be extended by introducing
a nonlinear function f in the auditory to motor mapping in
Equation 2:

E = 1

2

∑
i

∫ ∞

0
ds

[
mi(t − s) − f

(∑
k

Vik ak(t)

)]2

e(s)

⇒ δVij =
∫ ∞

0
ds
[
mi(t − s) − fi

]
f

′
i ak(t)e(s),

=
∫ ∞

0
ds mi(t − s)f

′
i (t) ak(t)e(s) − fi(t)f

′
i(t) ak(t)

Where fi = f
(∑

k Vik ak(t)
)

and f
′
i = df

(∑
k Vik ak(t)

)
/dVij.

A1.2. Probabilistic derivation of Hebbian learning rule
We derive a version of the Hebbian learning rule in Equation 1
that is based on the following probabilistic Boltzmann neuron

model. For simplicity, we do not include the time dependence in
the derivation (τ = 0). The auditory feedback response a given a
motor activation m is given by the conditional probability

PQ(a|m) = eaT Qm

ZQ(m)
,

parameterized by the matrix Q, which is the motor-sensory
mapping (as before) and where

ZQ(m) =
∑

a

eaT Qm

is the partition function. The posterior probability of m is
given by

PQ(m|a) = PQ(a|m)P(m)

P(a)
.

In a sensory state, auditory responses in motor neurons are driven
via synapses V according to the probabilistic model:

PV(m|a) = emT Va

ZV(a)

with partition function

ZV(a) =
∑

m

emT Va.

The error function in Equation 2 is replaced by the Kullbach-
Leibler (KL) divergence between PQ(m|a) and PV(m|a):

DKL
(
PQ(m|a), PV(m|a)

) =
∑

m

PQ(m|a)ln

(
PQ(m|a)

PV(m|a)

)

=
∑

m

PQ(m|a)
[
ln
(
PQ(m|a)

)
− ln (PV(m|a))

]
=
∑

m

PQ(m|a)
[
ln
(
PQ(m|a)

)

+ ln (ZV(a)) − mTVa
]

(A3)

Before taking the derivative of DKL we compute the derivative of
the partition function:

∂

∂Vij
ZV(a) =

∑
m

emT Va ∂

∂Vij
mTVa =

∑
m

emT Vami aj

= ZV(a)aj

∑
m

PV(m|a)mi

= ZV(a)aj〈mi|a〉m,

based on which it follows that

∂

∂Vij
ln(ZV(a)) = 1

ZV (a)

∂

∂Vij
ZV(a) = aj〈mi|a〉m.
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Using this relationship and Equation A3 we can calculate the
derivative of the KL-divergence with respect to Vij:

∂

∂Vij
DKL

(
PQ(m|a), PV(m|a)

)

= ∂

∂Vij

∑
m

PQ(m|a)
[

ln
(
PQ(m|a)

)+ ln (ZV(a)) − mTVa
]

=
∑

m

PQ(m|a)

(
∂

∂Vij

(
ln
(
ZV(a)

))− mi aj

)

=
∑

m

PQ(a|m)P(m)

P(a)

(
∂

∂Vij

(
ln
(
ZV(a)

))− mi aj

)

⇒
〈
− ∂

∂Vij
DKL

(
PQ(m|a),PV(m|a)

)〉
a

=
∑
a,m

PQ(a|m)P(m)

(
mi aj − ∂

∂Vij

(
ln
(
ZV(a)

)))

Thus, the gradient decent leads to

⇒ δVij = mi aj − ∂

∂Vij

(
ln
(
ZV(a)

)) = [mi − 〈mi|a〉m

]
aj

This is the probabilistic analog of Equation A2, in which the silent
postdictive motor activity m̂i is replaced by the conditional expec-
tation 〈mi|a〉m of activity in motor neuron i given the sensory
response a.

A2. CORRELATION OF MOTOR ACTIVITY DETERMINES AVERAGE
SYNAPTIC CHANGE

The average synaptic change under learning rule Equation A2
satisfies

〈
δVij
〉 = ∫ ∞

0

〈
mi(t − s)aj(t)

〉
e(s)ds −

〈∑
k

Vik ak(t)aj(t)

〉

=
∫ ∞

0

〈∑
k

mi
(
t′
)

Qjk mk
(
t′ + s − τ

)
e(s)

〉
ds

−
〈∑

kml

Vik Qkl Qjm mm(t − τ) ml(t − τ)

〉
,

where we have substituted t′ = t − s. We can write this
equation as

〈δV〉 =
[∫ ∞

0
e(s)C(s − τ)ds − VQC(0)

]
QT, (A4)

where Cij(s) = 〈mi (t) mj(t + s)
〉

is the cross-correlation matrix of
motor activity at time lag s. In the following we assume with-
out loss of generality that the delay τs of synaptic transmission
between auditory and motor neurons is negligibly small.

A3. VARIABLE MOTOR CODE
A3.1. V is a causal inverse
We assume a motor code with a narrow correlation function that
is non-zero only for small t0.

C(s) =
{

1C0 for |s| < t0/2
0 otherwise

Where 1 is the unity matrix and C0 is a positive constant. The
steady state solution 〈δV〉 = 0 of Equation A4 leads to

∫ ∞

0
e(s)C(s − τ)ds − VQC(0) = 0.

Assuming that the eligibility trace is constant over short time
intervals of duration t0 (over which the correlation function is
non-zero) yields

⇒ e (τ) t01C0 − VQ1C0 = 0

⇐⇒ VQ = e(τ)t01

This implies that the auditory to motor mapping V is propor-
tional to the inverse of Q weighted by the eligibility at time
lag τ :

V = e(τ)t0Q−1 (A5)

Thus, V is a causal inverse, at least when restricted to the
image of Q.

A3.2. Variable motor codes are associated with large mirroring
offsets

We simulate a mirroring experiment in which we cross correlate
in a given neuron the motor activity mi(t) and the activity ma

i (t)
that results from observation of the motor act (achieved in birds
by song playback though a loudspeaker).

The auditory response in motor neuron i is given by

ma
i (t) =

∑
j

Vijaj(t)

=
∑

j

(VQ)ij mj(t − τ)

= e(τ)t0

∑
j

δi,j mj(t − τ).

= e(τ)t0 mi(t − τ),

Where δi,j is the Kronecker-Delta, (δi,j = 1 for i = j and δi,j = 0
otherwise). Note that relative to song (either produced by the bird
or played through the loudspeaker) the playback-evoked activity
ma

i (t) is shifted with respect to the motor activity mi(t − τ) by
a time shift τ (as illustrated in Figure 4). The cross correlation
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Corr(s) between sensory-evoked and motor generated activity is
defined as,

Corr(s) = 1

T ′

∫ T
′

0
mi(t)ma

i (t + s)dt = 〈mi(t)ma
i (t + s)

〉
(A6)

Where T ′ is the duration of the motor behavior (e.g., the song
motif or song). Inserting the expression for the motor activity
evoked by the auditory response into Equation A6 yields,

Corr(s) = 〈mi(t)e(τ)t0 mi(t − τ + s)〉

=
{

e(τ)t0C0 for |s − τ | < t0/2
0 otherwise

(A7)

Thus, the cross correlation is nonzero in a small time cen-
tered around τ . The peak cross-correlation value is given by the
eligibility trace at time lag τ .

CorrPeak = t0C0e(τ)

Note that our calculations are valid in principle for mean-
subtracted mi(t). In case of non-mean subtracted mi we should
replace the cross correlation in Equation A6 by the cross covari-
ance to obtain the same findings. However, in practice, mean sub-
traction is not necessary because the peak location (the mirroring
offset) is independent of the mean.

A4. STEREOTYPED MOTOR CODES
A4.1. V is a predictive inverse
We describe the motor activity by a traveling pulse mi(t) =
η
(

i
ω

− t
)

with speed ω, where

η(t) =
{

1 for |t| < t0/2
0 otherwise

and t0 = 1/ω. The cross-correlation matrix for such a travel-
ing pulse is a triangular pulse of height t0/T and width 2t0

which we approximate by a square pulse of width t0, Cij(s) �
t0
T η
(

i − j
ω

+ s
)

in the following (illustrated in Figure 3D). To facil-

itate comparison of inverses associated with stereotyped and
variable motor codes, we assume their peak correlations are
identical, i.e.,

C0 = t0

T
.

At a steady state 〈δV〉 = 0, Equation A4 yields

∫ ∞

0
e (s)C(s − τ)ds − VQC(0) = 0.

Assuming again that the eligibility trace is constant over short
time intervals of width t0, we find

⇒ e

(
τ − i − j

ω

)
t0 = VQ.

Given sensory input aj(t) and the inverse map V, the auditory-
evoked activity ma

j (t) is proportional to the eligibility trace:

ma
i (t) =

∑
j

Vij aj(t)

=
∑

j

(VQ)ij mj(t − τ)

= e

(
t− i

ω

)
t0, (A8)

defined for t ≥ i
ω

.
By approximating the eligibility trace only by its maximum

value e
(

t − i
ω

)
= e(0)η

(
t − i

ω

)
we have that approximately

ma
i (t) � e(0)t0 mi(t), (A9)

and so the playback-evoked activity ma
i (t) is roughly identical to

motor activity mi(t) (as illustrated in Figure 4).
To compute the matrix V we use the same approximation for

the eligibility trace to obtain

1

t0
(VQ)ij � e(0)η(i − j − τ) = e(0)Hτ

ij,

where we have set ω = 1, and where H is a shifter matrix (also
called cyclic permutation or circulant matrix), e.g., for n = 4:

H =

⎛
⎜⎜⎝

0 1
0 0

0 0
1 0

0 0
1 0

0 1
0 0

⎞
⎟⎟⎠.

With this approximation we find that the synaptic mapping

V � e(0)t0Hτ Q−1 (A10)

is the inverse of the motor map shifted in time by τ , i.e., V maps
sensory activity evoked by motor activity at time t onto motor
activity at time t + τ . In other words, the sensory lag is compen-
sated and sensory-evoked motor activity at time t predicts motor
activity at time t. Hence, V is a predictive inverse.

A4.2. Stereotyped motor codes are associated with small mirroring
offsets

Based on the sensory-evoked activity ma
i (t) derived in Equation

A8 we find for the cross-correlation function Corr (s) between
motor activity mi(t) and sensory-evoked activity ma

i (t):

Corr (s) = 1

T

∫ T

0
mi(t)ma

i (t + s)dt

= t0

T

∫ T

0
η

(
i

ω
− t

)
e

(
t − i

ω
+ s

)
dt

= t2
0

T
e(s) = t0C0e(s). (A11)
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Thus, the cross-correlation function is proportional to the eligi-
bility trace. If the eligibility trace is monotonically decaying we
find that the peak of Corr(s) occurs at s = 0 and is given by

CorrPeak = t0C0e(s).

In other words, stereotyped neural codes are associated with zero
mirroring offsets.

The ratio of peak cross correlation for variable (A6) and
stereotyped (A10) motor codes is given by

r = e(τ)

e(0)
, (A12)

implying that the more stereotyped a neural code, the stronger is
the observed mirroring effect.

A5. MIRRORED RESPONSE STRENGTH IN A PROBABILISTIC MODEL
In the following we define a probabilistic model of a motor neu-
ron that allows us to compute the mirroring strength, i.e., the
correlation between motor activity and sensory-evoked activity.
We assume a minimal model in which a neuron has only two
states R = 1 (active) and R = 0 (inactive). In addition, we assume
two behavioral states B = 1 (behavioral feature present), and
B = 0 (behavioral feature absent). During motor production, the
degeneracy of the motor code quantified by the conditional prob-
ability of neural activity given that the feature of interest is present
during the behavior (e.g., the finger is extended or the song pitch
is high) is

PM(R = 1|B = 1) = p1

and the probability that the neuron is active while the behavioral
feature is absent (intrinsic noise) is

PM(R = 1|B = 0) = p2.

Hence, the average motor response [for prior P(B = 1) = 1/2] is
given by

〈R〉motor =
∑

i

1 × PM(R = 1|B = i)P(B = i) = 1

2

(
p1 + p2

) = p.

In the sensory state (during observation of the behavior), the reli-
ability of a response quantified by the conditional probability of
triggering a sensory response given presence of the behavioral
feature in the stimulus is given by,

PS(R = 1|B = 1) = q1

and the probability of a sensory response without the behavioral
feature (intrinsic noise) is:

PS(R = 1|B = 0) = q2.

The parameters p1, p2, q1, and q2 can be freely chosen in this min-
imal model, for example q2 = p2 if intrinsic noise in sensory and
motor states are assumed to be equal.

The average response in the sensory state is given by

〈R〉sensory = 1

2

(
q1 + q2

) = q.

The correlation between sensory and motor responses in this
cell is

〈
RmotorRsensory

〉 = ∑
i

1 × PM(R = 1|B = i)PS(R = 1|B = i)

× P(B = i) = 1

2

(
p1q1 + p2q2

)
.

And, the correlation coefficient between motor- and sensory-
evoked response is

CorrCoeff =
〈
RmotorRsensory

〉− 〈Rmotor
〉〈

Rsensory
〉

√〈
RsensoryRsensory

〉〈
RmotorRmotor

〉

=
1
2

(
p1q1 + p2q2

)− pq√
p(1 − p)q(1 − q)

.

We can discuss the following special cases:

• perfect sensory tuning (q1 = 1, q2 = 0, no instrinsic noise in
sensory state):

CorrCoeff = p1 − p2

2
√

p(1 − p)

• same tuning and same intrinsic noise in motor and in sensory
states (q1 = p1, q2 = p2):

CorrCoeff =
(
p1 − p2

)2
4p
(
1 − p

)
In summary, the strength of mirrored responses scales linearly
or quadratically with the contrastive probability that neural
responses are locked to the behavioral feature vs. spontaneously
driven.
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