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Abstract: Automatic breast and fibro-glandular tissue (FGT) segmentation in breast MRI allows for
the efficient and accurate calculation of breast density. The U-Net architecture, either 2D or 3D, has
already been shown to be effective at addressing the segmentation problem in breast MRI. However,
the lack of publicly available datasets for this task has forced several authors to rely on internal
datasets composed of either acquisitions without fat suppression (WOFS) or with fat suppression
(FS), limiting the generalization of the approach. To solve this problem, we propose a data-centric
approach, efficiently using the data available. By collecting a dataset of T1-weighted breast MRI
acquisitions acquired with the use of the Dixon method, we train a network on both T1 WOFS and
FS acquisitions while utilizing the same ground truth segmentation. Using the “plug-and-play”
framework nnUNet, we achieve, on our internal test set, a Dice Similarity Coefficient (DSC) of
0.96 and 0.91 for WOFS breast and FGT segmentation and 0.95 and 0.86 for FS breast and FGT
segmentation, respectively. On an external, publicly available dataset, a panel of breast radiologists
rated the quality of our automatic segmentation with an average of 3.73 on a four-point scale, with an
average percentage agreement of 67.5%.

Keywords: breast; segmentation; deep learning; MRI; data-centric AI

1. Introduction

Breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has higher
sensitivity for breast cancer than digital mammography, particularly for screening, as mul-
tiple studies in the literature have shown [1]. The higher sensitivity of DCE-MRI has led to
the widespread adoption of this imaging tool in the screening of women at very high risk of
developing breast cancer. Breast DCE-MRI is also gaining more attention as an additional
screening tool for women at average or only slightly increased risk due to the mounting
evidence of its effectiveness. One example of women at average risk of developing breast
cancer includes women with extremely dense breasts. The DENSE trial has recently proven
the effectiveness of using breast DCE-MRI as an additional imaging modality to reduce
the incidence of interval cancer in women with extremely dense breasts [2]. Recently,
the European Society of Breast Imaging (EUSOBI) has updated its recommendations for
women with extremely dense breasts by indicating dynamic DCE-MRI as the best tool for
screening in this population [3].

Breast density (BD), defined as the ratio between fat and fibro-glandular tissue (FGT)
in the breast, is a recognized risk factor for the future development of breast cancer. Breast
MRI allows the more accurate quantification of breast density compared to digital mam-
mography, thanks to its higher dimensionality and higher contrast between fat and FGT.
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A robust breast density quantification requires an accurate segmentation of the breast and
the FGT areas. The correct delineation of the boundary between the pectoral muscle and
the breast tissue, especially in dense breast cases, is the main challenge affecting the accu-
racy of breast segmentation, while intensity inhomogeneities make the FGT segmentation
non-trivial. In clinical practice, radiologists still rely on the visual assessment of breast
density using the Breast Imaging Reporting and Data System (BI-RADS) [4], which has
been shown to suffer from strong inter- and intra-reader variability [5]. While automatic
software for breast density estimation is already available for mammography, only limited
attempts have been made at creating a robust breast density calculation tool for breast MRI.

Automatic breast and FGT segmentation in breast MRI has been addressed by sev-
eral authors in the literature, using methods ranging from traditional computer vision
approaches to deep learning methods. Deep learning methods have shown great results at
automating different medical imaging tasks, consistently outperforming traditional meth-
ods. For medical imaging segmentation, in particular, the U-Net architecture [6] has been
the de facto standard. Dalmis et al. [7] used a 2D U-Net to segment breast and FGT in breast
DCE-MRI acquisitions without fat suppression (WOFS), showing better results compared
to an atlas-based approach [8] and a sheetness-based approach [9]. Zhang et al. [10] proved
the robustness of the U-Net architecture over a test set composed of WOFS breast DCE-MRI
acquired from different scanners. More recently, Huo et al. [11] made use of the popular
open-source framework nnUNet [12] to confirm the great potential of deep learning ap-
proaches for the task of breast and FGT segmentation in breast DCE-MRI acquisitions with
fat suppression (FS).

The literature reviewed so far mainly relied on datasets composed of either WOFS
or FS acquisitions. Zhang et al. [13] investigated instead a transfer learning approach to
segment FS acquisitions using a network trained on WOFS acquisitions. Fashandi et al. [14]
looked at the effect of different inputs to the U-Net architecture for the task of breast
segmentation only, concluding that a U-Net architecture trained with both FS and WOFS
acquisitions stacked together on the channel dimension and passed as input to a U-Net
architecture achieves the best performance.

In this work, we present a simple yet efficient means of exploiting the datasets available
in order to make the segmentation network robust to different breast MRI T1 sequences,
without the need of additional annotations or re-training. We follow the approach of
Huo et al. [11], employing the nnUNet framework, and by using a dataset of breast
DCE-MRI acquired via the Dixon method, we train a 3D U-Net on both FS and WOFS
acquisitions with the same ground truth annotations. We found that this approach allows
the network to robustly handle both FS and WOFS acquisitions at inference time, without
explicit information about the type of image, while needing only half the amount of manual
annotation for training. We validated our approach both quantitatively in our internal
test set and by means of a reader study on both the internal test set and an external,
publicly available dataset. Our algorithm is publicly available for personal testing and
visualization of the results on users’ own breast MRI acquisitions (https://grand-challenge.
org/algorithms/breast-and-fibroglandular-tissue-segmentation, accessed on 29 May 2022).

2. Materials and Methods
2.1. Internal Dataset

In this retrospective study, 40 patients were selected from the PACS system of our
institution (Radbodumc, Nijmegen, The Netherlands) based on the availability of breast
DCE-MRI acquisitions acquired with the use of the Dixon method. All the scans were
acquired between November 2015 and February 2017. Patients (mean age 50 ± 21 years,
all females) were all participating in an increased-risk breast cancer screening program
that consisted of annual MRI with or without concurrent mammography, with no previous
history of breast cancer. All breast MRI acquisitions were obtained using a 3T breast MRI
scanner (Siemens Trio, Prisma or Skyra) and at least a 16-channel breast coil. Breast MRI
acquisition protocols have slightly changed over time, but all met the minimal standards

https://grand-challenge.org/algorithms/breast-and-fibroglandular-tissue-segmentation
https://grand-challenge.org/algorithms/breast-and-fibroglandular-tissue-segmentation
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described within the EUSOBI breast MRI guideline. Table 1 shows an overview of the
acquisition parameters. All the acquisitions included in this study were pre-contrast T1-
weighted 3D Dixon-type acquisitions. Only the in-phase and the reconstructed water
acquisitions were used from the four available (in-phase, out-of-phase, reconstructed water
and fat) Dixon outputs. The in-phase and the reconstructed water acquisitions, respectively,
are WOFS (Figure 1a) and FS (Figure 1b) acquisitions. We divided the dataset into training
(n = 31 patients, 62 acquisitions (31 WOFS, 31 FS) and testing (n = 9 patients, 18 acquisitions
(9 WOFS, 9 FS)). The testing set was held out completely from the implementation of the
segmentation network and it was used only for the final validation.

Table 1. Breast DCE-MRI acquisition parameters for internal dataset.

Acquisition Parameter

Repetition Time (ms) 4–5.68
Echo Time (ms) 2–2.46

Flip Angle 15–20
Magnetic Field Strength 3.0

Slice Thickness (mm) 1–2.5
Pixel Spacing (mm2) (0.8 × 0.8)–(0.98 × 0.98)

(a) (b)
Figure 1. Examples of in-phase and reconstructed water Dixon acquisitions from our internal dataset
used to mimic acquisitions without (WOFS) and with (FS) fat suppression. (a) In-phase Dixon
acquisition used as WOFS image. (b) Reconstructed water Dixon acquisition used as FS image.

Ground Truth Annotations

The breast and FGT regions were manually annotated by R.S. under the supervision
of an experienced breast radiologist (with 16 years of experience) using the software
ITKSNAP [15]. The breast fat tissue and FGT regions were manually annotated using the
WOFS image—see Figure 2—and, when in doubt about boundaries for either breast fat
tissue or FGT areas, also the FS image was consulted. The exact same segmentation could
be used for WOFS and FS acquisitions without the need of registration.

Figure 2. Example of manual annotation of fat tissue (green) and FGT (red) in WOFS image.
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2.2. External Dataset

For further validation of the robustness of our approach not only on FS and WOFS
acquisitions but also to different MRI scanner and parameter acquisitions, we used the
Breast DCE-MRI dataset released publicly by Duke University in collaboration with the
Cancer Imaging Archive [16]. This dataset comprises 922 patients with biopsy-confirmed
invasive cancer. The breast MRI acquisitions were acquired with either 1.5 T or 3 T scanners
in prone positions. The acquisitions available for each patient are: a WOFS T1 acquisi-
tion, a FS pre-contrast T1 acquisition and three to four FS post-contrast T1 acquisitions.
For our validation, we used only the WOFS T1 acquisition and the FS pre-contrast T1
acquisition. Of the 922 patients available, we randomly selected 30 patients for our reader
study. The random selection process guaranteed an equal distribution of MRI scanner and
parameter acquisitions so as to be able to analyze the impact of acquisition parameters on
the final segmentation quality. Table 2 shows an overview of the acquisition parameters
and the number of samples used.

Table 2. MRI scanner information from the randomly selected subset of the external valida-
tion dataset.

Manufacturer Magnetic Field Strength (Tesla) Model Total (n = 30)

GE Medical Systems 1.5 Optima MR450w 5
Signa HDx 3
Signa HDxt 2

3.0 Signa HDx 2
Signa HDxt 3

Siemens 1.5 Avanto 5
3.0 Skyra 5

TrioTim 5

2.3. Neural Network Architecture

The automatic segmentation model used in this study is based on the nnUNet frame-
work. The nnUNet or “no new U-Net” framework was created with the idea of having
a standardized backbone to perform medical imaging segmentation based on the well-
established U-Net architecture, first introduced by Ronneberger et al. [6], and subsequently
extended into 3D [17]. The framework has already been validated on a wide range of
medical imaging domains thanks to the success achieved in the Medical Segmentation
Decathlon challenge [18]. The framework follows some pre-defined heuristic strategies to
adapt pre- and post-processing steps (e.g., voxel spacing, normalization, etc.) based on the
dataset at hand, as well as the U-Net configuration (e.g., network layers, batch size, etc.) to
fit the requirements of the computational resources available. In addition, the framework
applies extensive data augmentation (e.g., rotation, cropping) at training time to achieve
better generalization. In this study, we used the patch-based full-resolution 3D U-Net as
the starting point for our experiments. We compared a segmentation network trained
with only WOFS acquisitions with a network trained with both WOFS and FS acquisitions.
For the training with both WOFS and FS acquisitions, we treated each image as a separate
sample but we used the same annotation. The input of the network was always one patch
of size 192 × 192 × 64 and a batch size of 2. Both networks were trained for the pre-defined
number of 1000 epochs, which was chosen from the nnUNet framework as showing the
best results.

2.4. Experiments and Evaluation
2.4.1. Quantitative Evaluation with Ground Truth Annotations

In our first experiment, we compared a network trained with WOFS-only acquisi-
tions and a network trained with WOFS + FS acquisitions. The held-out internal test set
(n = 9 patients, 18 acquisitions (9 FS and 9 WOFS)) was used to quantitatively assess the
quality of the segmentation produced by both networks. We used the Dice Similarity
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Coefficient (DSC) as measure to compare the manual annotation ground truth with the
segmentation generated by the two different networks. Furthermore, we calculated 95%
Confidence Intervals (CI) on DSC for each category using the bootstrapping method with
15,000 repetitions. Subsequently, we used Bland–Altman plots for the best-performing
network to analyze the agreement between the breast density calculated using the ground
truth manual annotation and the automatic segmentation.

2.4.2. Reader Study for Visual Assessment

In our second experiment, we used the best-performing network from the previous
experiment to validate the robustness of the segmentation on an external dataset with
heterogeneous acquisition parameters and scanner types. In order to validate the results
achieved in our internal test set, and due to the lack of externally publicly available datasets
with ground truth annotations, we set up a reader study using the Grand Challenge
platform [19].

We asked two breast radiologists (16 and 5 years of experience) to visually assess
the quality of the breast and FGT segmentation produced by the network trained with
WOFS + FS acquisitions. In Figure 3, an example of the reader study set-up is shown.
For each case included in the reader study, we presented, side-by-side, both the FS and
WOFS breast MRI acquisition with an overlay produced by the segmentation network
for both acquisitions. The participant had the possibility to scroll through the volumes
simultaneously and adjust the segmentation overlay transparency. The radiologist was
asked to rate the quality of the breast and FGT segmentation both in the FS and WOFS
versions of the acquisition for a total of four questions. The rating consisted of a four-point
rating scale (1—Poor, 2—Fair, 3—Good, 4—Excellent). Additionally, the radiologist was
asked to express a preference for the overall segmentation quality between the segmentation
for the FS image and WOFS image, with the option of indicating no significant difference
in quality. The order in which the cases were presented was randomized to account for a
possible learning bias error, for every radiologist participating in the reader study. There
was no restriction of time to finalize the reader study, and the radiologist had the possibility
of partially completing the reader study before resuming from the point at which they
left. Radiologists participating in the reader study had only access to the FS and WOFS
acquisitions for each case, without any other clinical information.

Figure 3. Screenshot of reader study set-up. The Grand Challenge platform allows the set-up of a
web-based reader study with a fully functional medical imaging viewer. In this reader study, we
showed participants the same WOFS and FS case side-by-side, and they were asked to answer the
questions on the left side of the screen, which, in this case, were multiple choice questions.

To statistically evaluate the results of the reader study, we calculated average rating
scores and 95% CIs for each reader using the bootstrapping method with 15,000 repetitions,
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sub-dividing the rating per category (breast or FGT) and per acquisition type (WOFS or
FS). Furthermore, we assessed inter-reader agreement using percentage agreement. Other
methods of inter-reader agreement (e.g., Cohen’s Kappa coefficient) could not be applied
due to the nature of some of our results.

3. Results
3.1. Quantitative Evaluation with Ground Truth Annotations

The quantitative evaluations against the manual annotation for both the network
trained on WOFS-only acquisitions and the network trained with WOFS + FS acquisitions
are shown in Table 3.

The network trained on WOFS only achieved 0.96 and 0.92 DSC, respectively, for
breast and FGT segmentation of WOFS test acquisitions. For FS test acquisitions, however,
the same network failed to generalize, achieving 0.1 and 0.15 DSC on breast and FGT
segmentation, respectively. The network trained with WOFS + FS acquisitions, instead,
performed with a similar DSC score on both types of acquisitions at test time, achieving
0.96 and 0.91 DSC for breast and FGT on WOFS test acquisitions and 0.95 and 0.86 DSC on
FS test acquisitions.

Table 3. Internal test set results (n = 9 patients, 18 acquisitions (9 WOFS, 9 FS)). Breast and FGT
Dice Similarity Coefficients (DSC) and 95% Confidence Intervals (CI) from network trained only
without fat suppression (WOFS only) acquisitions and without and with fat suppression acquisitions
(WOFS + FS).

Network Trained on Test Breast DSC [95% CI] FGT DSC [95% CI]

WOFS only WOFS 0.96 [0.94, 0.97] 0.92 [0.89, 0.95]
FS 0.10 [0.08, 0.12] 0.15 [0.11, 0.19]

WOFS + FS WOFS 0.96 [0.95, 0.97] 0.91 [0.87, 0.94]
FS 0.95 [0.94, 0.96] 0.86 [0.82, 0.91]

Furthermore, we analyzed the difference between manual annotation ground truth
breast density and breast density calculated from the segmentation produced by the net-
work trained with WOFS + FS acquisitions, using a Bland–Altman plot on the internal test
set. On both types of acquisitions, the difference was close to 0 (Figure 4), with a mean of
−0.33 for WOFS acquisitions (Figure 4a) and a mean of −0.2 for FS acquisitions (Figure 4b).

(a) (b)
Figure 4. Bland–Altman plot to compare the breast density (BD) calculated on ground truth manual
annotation and BD calculated from breast and FGT segmentations generated by the network trained
with WOFS + FS acquisitions. (a) Bland–Altman plot for WOFS test cases. (b) Bland–Altman plot for
FS test cases.

3.2. Reader Study for Visual Assessment

For the internal dataset, both breast and FGT segmentations were consistently scored
as having excellent quality by both breast radiologists. Figure 5 confirms the quantitative
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evaluation from Table 3 for the network trained with WOFS + FS acquisitions. The analysis
of the average rating for individual readers in Table 4 and the percentage agreement
between readers in Table 5 further validate the quality of the segmentations for the internal
test set, reporting both high average ratings and almost perfect agreement between readers.
The visual evaluation results for the external dataset are reported in Figure 6. Overall,
the segmentation quality for both breast and FGT was considered of high quality by both
breast radiologists. The highest loss in quality could be noticed for the FGT segmentation in
the FS acquisitions. As for the internal test set, we analyzed the average rating for individual
readers with 95% CIs, reported in Table 6, and the percentage agreement between readers,
reported in Table 7. From Table 6, we can see a difference in average ratings between
the two readers, with one of the readers consistently rating the acquisitions of higher
quality. The consistently higher scoring from one of the readers has a direct influence on
the percentage agreement, which remains overall substantial between the two readers, with
the strongest disagreement on the ratings for the breast segmentation in FS acquisitions.
Figure 7 shows some examples of the FGT segmentations that were rated as either fair or
poor by the radiologists.

Figure 5. Internal test set results (n = 9 patients, 18 acquisitions (9 WOFS, 9 FS)). Reader study confu-
sion matrix comparing the ratings (1—Poor, 2—Fair, 3—Good, 4—Excellent) from the two readers.
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Table 4. Internal test set results (n = 9 patients, 18 acquisitions (9 WOFS, 9 FS)). Reader study average
rating (1—Poor, 2—Fair, 3—Good, 4—Excellent) and 95% Confidence Intervals (CI) per reader.

Breast FGT

Acquisitions Type Avg. Rating 95% CI Avg. Rating 95% CI

Reader 1 WOFS 3.89 [3.67, 4.0] 3.89 [3.67, 4.0]
FS 3.89 [3.67, 4.0] 3.78 [3.44, 4.0]

Reader 2 WOFS 4.0 [4.0, 4.0] 4.0 [4.0, 4.0]
FS 4.0 [4.0, 4.0] 4.0 [4.0, 4.0]

Table 5. Internal test set results (n = 9 patients, 18 acquisitions (9 WOFS, 9 FS)). Reader study overall
average rating (1—Poor, 2—Fair, 3—Good, 4—Excellent) and percentage agreement between readers.

Breast FGT

Acquisitions Type Avg. Rating % Agreement Avg. Rating % Agreement

WOFS 3.94 89% 3.94 89%
FS 3.94 78% 3.88 89%

Figure 6. External test set results (n = 30 patients, 60 acquisitions (30 WOFS, 30 FS)). Reader study con-
fusion matrix comparing the ratings (1—Poor, 2—Fair, 3—Good, 4—Excellent) from the two readers.
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Table 6. External test set results (n = 30 patients, 60 acquisitions (30 WOFS, 30 FS)). Reader study av-
erage rating (1—Poor, 2—Fair, 3—Good, 4—Excellent) and 95% Confidence Intervals (CI) per reader.

Breast FGT

Acquisitions Type Avg. Rating 95% CI Avg. Rating 95% CI

Reader 1 WOFS 3.7 [3.53, 3.87] 3.77 [3.6, 3.9]
FS 3.53 [3.33, 3.73] 3.43 [3.17, 3.67]

Reader 2 WOFS 4.0 [4.0, 4.0] 3.93 [3.83, 4.0]
FS 4.0 [4.0, 4.0] 3.5 [3.23, 3.73]

Table 7. External test set results (n = 30 patients, 60 acquisitions (30 WOFS, 30 FS)). Reader study
overall average rating (1—Poor, 2—Fair, 3—Good, 4—Excellent) and percentage agreement be-
tween readers.

Breast FGT

Acquisitions Type Avg. Rating % Agreement Avg. Rating % Agreement

WOFS 3.85 70% 3.85 70%
FS 3.77 57% 3.47 73%

Example 1 Example 2 Example 3

M
R
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Figure 7. Example slices of FGT segmentations from external test set acquisitions rated either poor or
fair during the reader study assessment.

4. Discussion

Using a simple data-centric approach, we were able to build a segmentation network
robust to both breast MRI T1 WOFS and FS acquisitions, without the need of double
annotations for both types of acquisitions. Our results are in line with what was partially
found by Fashandi et al. [14] for the task of breast segmentation only. Compared to [14],
our choice of a dataset with Dixon acquisitions allowed us to skip the registration of
the WOFS and FS acquisitions and still use the same annotation, and we expanded their
findings by showing robustness also on the more challenging task of FGT segmentation.
Furthermore, we did not stack WOFS and FS acquisitions on two channels as input, to
allow the network to be used in situations where either the FS or WOFS acquisitions are
not available. This choice of single-channel input might have sacrificed some performance
for better generalizability. Our reader study has further validated the robustness of the
network on an external dataset with different acquisition parameters.
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Compared to Huo et al. [11], we are using a one-stage approach with three classes:
background, breast and FGT. The advantage of this approach compared to a two-stage
approach is the faster inference and the fine-tuning of a single network if re-training is
needed. Adding a penalty term to the loss function when FGT segmentation is predicted
outside the breast contour might eliminate the need of a two-stage approach completely.
We did not explore this option, but it might be an useful direction for further research.

We did not report quantitative comparisons with other approaches for breast and
FGT segmentation because DSC might potentially be biased towards the way in which the
annotation process was performed. The manual annotation of breast and FGT can have
great inter- and intra-reader variability because there are no clearly defined boundaries
to perform this task. In general, we believe that a reader study with a panel of expert
breast radiologists is a better means of validating the quality of the segmentation for
this particular problem. The conducted reader study aimed at assessing the general
quality of the segmentation according to radiologists and gives a better look at the final
clinical application of the approach. Because the segmentations were consistently rated of
good quality, we presume that radiologists will also be more willing to use the automatic
software in clinical practice and accept the results of this otherwise tedious task. The
study presented here has several limitations. The first limitation is the relatively small
size of the internal dataset used for training/validation and testing. The purpose of this
study was not to achieve the highest possible performance in terms of DSC or other
quantitative segmentation metrics, but it was to show the robustness of the approach on
both FS and WOFS acquisitions while retaining reasonable performance. For this reason,
and by following general guidelines found in the literature for the optimal size of the
training samples [7,14], we decided to use a relatively small dataset. A second limitation
of our approach is the way in which the annotations were created for the internal dataset.
All manual annotations were performed by a single person and reviewed by one breast
radiologist, but using an average of multiple expert annotations for the same volumes may
result in a better estimate of the real ground truth annotation. A future direction of research
might also be to investigate whether it is possible to use partial pixel annotation for the
training of the segmentation network, which would allow the relatively fast extension of
an annotated dataset, which might also be more reproducible. As the internal dataset was
from a single center and mostly acquired with the same parameters from a similar type of
scanner, a larger, multi-center, multi-vendor dataset, using the same strategy as presented
in this manuscript, may yield an even more robust segmentation network. Finally, further
external validation may be valuable. However, there are not a lot of publicly available
breast MRI datasets with both WOFS and FS acquisitions.

5. Conclusions

In conclusion, we created a stable segmentation algorithm that can be used to estimate
breast density from any of the most common types of T1-weighted breast MRI acquisitions.
Based upon a reader study, the algorithm provided excellent results in an internal test set
and also performed well in an external validation. Further extension of the training sets
may further improve the quality of the segmentations.
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