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and Wenbin Wei1,8,*

SUMMARY

Bietti crystalline dystrophy (BCD) is an autosomal recessive inherited retinal disease (IRD) and its early pre-
cise diagnosis is much challenging. This study aims to diagnose BCD and classify the clinical stage based on
ultra-wide-field (UWF) color fundus photographs (CFPs) via deep learning (DL). All CFPs were labeled as
BCD, retinitis pigmentosa (RP) or normal, and the BCD patients were further divided into three stages. DL
models ResNeXt,Wide ResNet, and ResNeSt were developed, andmodel performance was evaluated us-
ing accuracy and confusion matrix. Then the diagnostic interpretability was verified by the heatmaps. The
models achieved good classification results. Our study established the largest BCD database of Chinese
population. We developed a quick diagnosing method for BCD and evaluated the potential efficacy of
an automatic diagnosis and grading DL algorithm based on UWF fundus photography in a Chinese cohort
of BCD patients.

INTRODUCTION

Bietti crystalline dystrophy (BCD, OMIM#210370), also known as Bietti crystalline retinopathy (BCR), is an autosomal recessive progressive

retinal degenerative disease. This disease was first described in 1937 by Dr. Bietti.1 The pathogenic gene is CYP4V2 located at 4q35, which

encodes a protease related to lipid metabolism. CYP4V2 is expressed in almost all human tissues, with particularly high levels in the retinal

pigment epithelium (RPE) cells and retina photoreceptors.2 BCD has a worldwide distribution and is especially common in East Asia; for

example, China, Japan, and Korea. In Europe, most reported cases are from Italy and Spain.3 International research suggests that the variant

rate of BCD is approximately 1 in 67,000, and prevalence of 0.005 in China.4 The disease is generally regarded as rare, and is often under-

diagnosed. For example, a study by Mataftsi et al.5 found that nearly 10% of patients diagnosed with retinitis pigmentosa (RP) may also

be diagnosed with BCD.

BCD can be diagnosed by the following clinical features: visual field defects, numerous small flashy yellow-white intraretinal crystals,

different degrees of RPE atrophy, retinal pigment masses, choroidal vascular sclerosis, visual field defects, rod and cone cell dysfunction

showed on electroretinogram (ERG), and punctate hyperreflection on optical coherence tomography (OCT).6 OCT can detect hyperreflective

deposits in the complex of retina pigment epithelium-Bruch’s membrane and disruption of the ellipsoid zone (EZ) in the eye. Intraretinal crys-

tals did not exhibit any effect or any fluorescence and on fundus fluorescein angiography (FFA) or indocyanine green angiography (ICGA). In

FFA, regions of RPE atrophy are linked to hyperfluorescent ‘‘window defects’’ where the choroidal capillaries remainmostly unaffected during

the initial phase of the condition. Nevertheless, regions of decreased fluorescence in the lobules also align with inadequate blood flow in the

choriocapillaris and degeneration of the chorioretinal layer as the disease progresses, with these regions of decreased fluorescence

increasing in size gradually as timepasses. The outcomes of ICGAdiffer based on the disease’s progression. Initially, there were no alterations

in RPE or loss of choriocapillaris; however, in later stages, there was notable chorioretinal atrophy seen as hypocyanescent areas.7 Genetic

testing can be used to confirm CYP4V2 biallelic pathogenic variants if clinical features cannot clearly confirm the diagnosis.6 Yuzawa et al.8

divided BCD into 3 stages by observing the fundus manifestations. In 2020, Xu et al.9 reported the results of gene variant detection in 138

Chinese BCD patients. They described the clinical features of the BCD patients along with various imaging examinations, and divide patients
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into 3 stages based on the level of retinal crystal deposition and the severity of RPE and choroidal capillary degeneration as outlined by Yu-

zawa et al.’s staging criteria.8

At present, there is no effective treatment for BCD patients in clinical practice. BCD was mainly treated according to typical RP and given

supportive therapy such as vasodilators, vitamins, and traditional Chinese medicine. Given the recent success of gene therapy for inherited

retinal diseases (IRDs), early detection of these diseases has become crucial.10 This allows for prompt treatment and management. Due to

their rarity in comparison to other eye conditions, ophthalmologists who have limited clinical experience may not recognize the symptoms

of RP and BCD. Incorrect initial assessments or misinterpretations of fundus examination findings can lead to diagnostic errors. Therefore,

better screening tools need to be developed.

Over the past few years, artificial intelligence (AI) techniques, especially deep learning (DL), have been utilized in analyzing OCT images

and fundus photographs for the identification of retinal diseases such as diabetic retinopathy (DR), choroidal neovascularization (CNV), and

age-relatedmacular degeneration (AMD).11–13 Numerous studies have also already utilized AI onOCT images for categorizing IRDs.14–16 The

Japan Eye Genetics Study (JEGC) Group, based on fundus photography and autofluorescence (FAF) imaging, has accurately forecasted ge-

netic diagnoses for three types of conditions: Stargardt disease (ABCA4), occult macular dystrophy (RP1L1) and EYS gene-related retinitis

pigmentosa.17 Nevertheless, AI has not been utilized for the identification of BCD in fundus images. Because of its wide imaging range,

fast imaging speed and high imaging resolution, ultra-wide-field (UWF) fundus photography plays a very important role in early diagnosis

and intervention of ocular fundus diseases. In this study, we applied DL to develop a model that can automatically identify the clinical stage

of BCD in UWF CFPs.

RESULTS

Characteristics of the patients

A total of 1,262 images from 166 BCD patients were retrospectively collected fromBeijing Tongren Hospital during the period fromMay 2019

to January 2024. After manually excluding poor-quality images caused by halos, blurring, defocusing, etc., 1,138 images from 151 patients

were finally included, with 139 (12.2%) images from 25 patients, 408 (35.9%) images from 53 patients, and 591 (51.9%) images from 73 patients

were stage 1, 2, and 3 (as shown in Figure 1). As controls, we also included 502 fundus images from 76 RP patients and 180 fundus images from

Figure 1. The most representative photos in the current study population were selected as a reference

(A–C) CFPs of typical stage 1, 2, and 3 BCD subjects; (D) normal fundus; (E) CFP of the RP subject.
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57 normal people without fundus disease. During the same period, 59 BCD patients in Peking University Third Hospital were enrolled,

including 16 patients in stage 1, 22 patients in stage 2, and 21 patients in stage 3. Basic demographic information of included subjects is shown

in Table 1. The age and gender distributions in the two datasets were not significantly different.

Performance of the deep learning algorithm

Tables 2 and 3 display the precise testing accuracy. To distinguish between the BCD, RP, and normal fundus, ResNeXt achieved a mean ac-

curacy of 0.9850G 0.0250 (95% confidence intervals [CI] 0.9449–1.000) in the internal cross-validation dataset. Wide ResNet achieved a mean

accuracy of 0.9812G 0.0197 (95%CI 0.9426–1.000), and ResNeSt achieved 0.9837G 0.0150 (95%CI 0.9543–1.000). To distinguish clinical stage

of BCD patients, ResNeXt achieved a mean accuracy of 0.8899 G 0.0873 (95% CI 0.618–0.9609), Wide ResNet achieved a mean accuracy of

0.7873 G 0.0754 (95% CI 0.6394–0.9352), and ResNeSt achieved a mean accuracy of 0.7740 G 0.0876 (95% CI 0.6024–0.9457) in the internal

cross-validation dataset. In the external validation dataset, ResNeXt achieved an accuracy of BCDdiagnosis was 1 (95%CI 0.9437–1.0000), and

the accuracy of clinical staging was 0.5344 (95% CI 0.5011–0.5657). Wide ResNet achieved an accuracy of BCD diagnosis of 0.9924(95% CI

0.9364–1.0000), and the accuracy of clinical staging was 0.4962 (95% CI 0.4650–0.5276). ResNeSt achieved an accuracy of BCD diagnosis of

1 (95% CI 0.9437–1.0000), and the accuracy of clinical staging was 0.6260 (95% CI 0.5880–0.6568).

Table 1. Basic demographic information of enrolled patients

Characteristic

Developmental dataset (Beijing Tongren Hospital)
External dataset (the Third Hospital

of Peking University)BCD

RP Normalstage 1 stage 2 stage 3 stage 1 stage 2 stage 3

Number of

individuals

25 53 73 76 57 16 22 21

Total number of

images

139 408 591 502 180 33 47 51

Sex Male 10 22 47 40 32 9 15 18

Female 15 31 26 36 25 7 7 3

Age (mean, y) 38.8 40.6 48.8 45.7 41.93 39.6 45.7 49.5

Table 2. Prediction accuracy of models

Model Dataset

Accuracy (mean value G standard

deviation) [95% confidence interval]

ResNeXt Internal cross validation (Differential Diagnosis

of RP and BCD)

0.9850 G 0.0250 [0.9449 1.0000]

Internal cross validation (BCD classification) 0.8899 G 0.0873 [0.6188 0.9609]

External validation (Differential Diagnosis of RP

and BCD)

1 [0.9437 1.0000]

External validation (BCD classification) 0.5344 [0.5011 0.5657]

Wide ResNet Internal cross validation (Differential Diagnosis

of RP and BCD)

0.9812 G 0.0197 [0.9426 1.0000]

Internal cross validation (BCD classification) 0.7873 G 0.0754 [0.6394 0.9352]

External validation (Differential Diagnosis of RP

and BCD)

0.9924 [0.9364 1.0000]

External validation (BCD classification) 0.4962 [0.4650 0.5276]

ResNeSt Internal cross validation (Differential Diagnosis

of RP and BCD)

0.9837 G 0.0150 [0.9543 1.0000]

Internal cross validation (BCD classification) 0.7740 G 0.0876 [0.6024 0.9457]

External validation (Differential Diagnosis of RP

and BCD)

1 [0.9437 1.0000]

External validation (BCD classification) 0.6260 [0.5880 0.6568]

Ophthalmologists’ performance was compared with 95% CI of the algorithm
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Confusion matrices of internal and external validation datasets (shown in Figures 2 and 3): each column represents prediction result of the

algorithm; each row represents the expert labeling result; the values in matrix are normalized. Heatmap demonstrating representative fundus

lesions (Figures 4 and 5): BCD fundus imagesmainly focused on yellow-white intraretinal crystal-like substances in the posterior pole, while RP

fundus images focused on wax yellow optic disc and peripheral retinal osteocyte-like pigment deposition. In the late stage of BCD, the intra-

retinal crystals were less and scattered, or almost absent. However, the retina and choroid were atrophic, and the choroidal vessels were

exposed.

DISCUSSION

Recently, due to the characteristics of retinal immune avoidance, gene therapy has become a research hotspot of retinal genetic diseases and

has shown good therapeutic prospects in preclinical animal models. To solve the treatment problem of IRD, early diagnosis and intervention

treatment are crucial. Because the pathogenic gene of BCD is single and there is no genetic heterogeneity, the detection rate of gene variants

in BCD patients is significantly higher than that in other hereditary retinopathy diseases.18CYP4V2 is the only BCD gene identified so far. With

the improvement of gene detection technology, new CYP4V2 gene variant sites have been reported.19 More than 100 variants have been

identified in the CYP4V2 gene to date.20 In 2016, 17 variants of the CYP4V2 gene linked to BCD were discovered through exon sequencing

and Sanger sequencing in 36 Chinese families, involving 68 pairs of alleles. The most prevalent variants in China were c.802-8_810del17b-

pinsGC, c.802-8_810del17bpinsGT, c.992A>C (p.H331P), and c.1091-2A>G, making up 71% of the mutant alleles.2

Marginal crystalline keratopathy in patients with BCD, which is composed of smaller than 15 mmof refringent subepithelial limbal deposits,

can easily bemissed ormaskedby the presence of arcus senilis even by experienced ophthalmologists. Clinically, stage 1 and stage 2 patients

have obvious yellow-white crystalline substances in the fundus, which is easy to make a clear diagnosis. However, for some stage 3 patients,

with the decrease of typical crystalline substances in the fundus, it is relatively difficult tomake a clear diagnosis, and sometimes it is difficult to

Table 3. Prediction accuracy of models

Model Dataset Class Accuracy Sensitivity Specificity

ResNeXt Internal cross validation (Differential Diagnosis

of RP and BCD)

Normal 1 1 1

BCD 1 1 1

RP 1 1 1

Internal cross validation (BCD classification) Stage 1 0.9076 0.7857 0.9238

Stage 2 0.8571 0.7067 0.9264

Stage 3 0.9580 0.9556 0.9612

External validation (BCD classification) Stage 1 1 0 0.7481

Stage 2 0.5344 0.4468 0.5833

Stage 3 0.7863 0.9608 0.6750

Wide ResNet Internal cross validation (Differential Diagnosis

of RP and BCD)

Normal 1 1 1

BCD 1 1 1

RP 1 1 1

Internal cross validation (BCD classification) Stage 1 0.9205 0.6207 0.9524

Stage 2 0.8013 0.7119 0.8587

Stage 3 0.8808 0.8516 0.9116

External validation (BCD classification) Stage 1 0.7634 0.0606 1

Stage 2 0.6641 0.1985 0.9286

Stage 3 0.5802 1 0.3125

ResNeSt Internal cross validation (Differential Diagnosis

of RP and BCD)

Normal 0.9969 1 0.9965

BCD 0.9875 0.9800 1

RP 1 1 1

Internal cross validation (BCD classification) Stage 1 0.8444 0 0.9341

Stage 2 0.5166 0.6186 0.4511

Stage 3 0.5033 0.3677 0.6463

External validation (BCD classification) Stage 1 0.6641 0.1515 0.8365

Stage 2 0.5954 0.1277 0.8541

Stage 3 0.4809 0.6863 0.3500

ll
OPEN ACCESS

4 iScience 27, 110579, September 20, 2024

iScience
Article



distinguish from other diffuse choroidal sclerosis conditions. For such patients, the detection and determination of the corresponding

CYP4V2 gene variant is particularly important.

Next-generation sequencing (NGS), also referred to as high-throughput sequencing, is amethod of DNA sequencing that utilizes PCR and

gene chips. NGS is characterized by high throughput and a slightly higher error rate, which has greatly improved the efficiency of disease

research and provided a more effective means for the research, diagnosis, and treatment of diseases. However, NGS still has some problems

to be solved, including technical limitations, clinical application, high cost, and the current lack of interpretation guidelines for clinicians. The

high cost of testing and long waiting time often discourage patients, and even miss the best opportunity for intervention. With further de-

velopments, AI model may be a diagnostic tool and may give relevant information for future therapeutic approaches.

AI has been leading theway in ophthalmologywhen it comes to retinal disorders. A growing number of research groups around theworld are

focusing on AI, using multiple imaging modalities and a range of AI models to assist in all aspects of patient care, including diagnosis, triage,

grading, and prognosis.21,22 AI has broad prospects in coping with medical staff shortages and improving preventable diseases. To date, there

havebeen fewstudies usingDL toclassify fundus imagesof RPpatients in the literature (Table 4). Todetect RP fromCFPs,Chenet al.23 developed

and evaluated a transfer-learning model. A total of 1,670 CFPs were obtained and analyzed from the Taiwan project on inherited retinal degen-

eration and the National Taiwan University Hospital. The model achieved a peak accuracy of 96.00% and an area under the receiver operating

characteristic (AUROC) of 96.74%. Traditional machine learning algorithms need to extract features from images before learning, while the con-

volutional layer inDL automaticallymines features of imagedata during the learning process. In contrast to conventionalmachine learning,which

relies onmanually designed features basedonhumandomain-specific knowledge, DL techniques have the ability to leverageall the data present

within the image itself, giving thema fundamental edge over traditionalmethods. Since the typical features in the fundus images of BCDpatients

are too small to be labeled, we use this advantage of DL to greatly simplify the difficulty of calculation.

To the best of our knowledge, this study has created the most extensive BCD databases for Chinese individuals, and we plan to store the

code and data in a publicly accessible repository. Our study validated the application value of DL in the diagnosis and clinical staging of BCD

from CFPs. Based on UWF fundus photography, DL methods were tested on a Chinese cohort of BCD patients. We compared the perfor-

mance of several architectures, including ResNeXt,Wide ResNet, and ResNeSt. In the diagnosis of BCD, the automatic classification was high-

ly accurate of all three models. To distinguish clinical stage of BCD patients, ResNeXt achieved a best accuracy of 0.8899 G 0.0873 (95% CI

0.618–0.9609) in the internal cross-validation dataset. ResNeSt achieved a best accuracy of 0.6260 (95% CI 0.5880–0.6568) in the external vali-

dation dataset. Our study illustrates the potential efficacy of an automated diagnosis/grading system for BCD based on fundus photography.

Firstly, early detection can help patients receive further counseling and treatment for BCD, a retinal disease that can result in irreversible blind-

ness. Compared with other eye diseases, BCD is relatively rare and is a hard diagnosed disease for many young and primary

Figure 2. Confusion matrix: differential diagnosis of RP and BCD and the grading of BCD in internal cross validation dataset

Figure 3. Confusion matrix: differential diagnosis of RP and BCD and the grading of BCD in external validation dataset
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ophthalmologists. Based on the study, wemay provide convenience for clinical work and further improve the clinical detection rate of BCD. In

addition, BCD is a genetic disorder, and early awareness of this can also help family planning and reduce the prevalence of BCD.

At the same time, there are still many challenges for AI implements in ophthalmology. In clinical settings, obtaining sufficient high-quality

training data for automated image analysis with DL can be difficult. With little understanding of these genetic conditions, obtaining large

amounts of data in patients with BCD is even more difficult. Therefore, we used a relatively small dataset. In the future, efforts are needed

among domestic and international ophthalmologists to establish a comprehensive image grading consensus for specific diseases. Multi-cen-

ter, international collaborations hold promise for expanding the algorithm performance. Further investigation is required for the application

of AI in eye diseases, including the utilization of multiple types of data to select suitable participants for clinical trials, as well as evaluating

functional limitations using structural measurements in IRD.

Overall, we have found wide-field CFPs to be an effective non-invasive method for diagnosing and grading BCDs. We generate a DL-

based algorithm trained using CFPs that is highly sensitive and specific for identifying BCD patients. In our knowledge, this study is the initial

attempt to assess the capability of DL in automating the detection of BCD using CFPs. The practical feasibility for clinical application of this

algorithm needs to be further studied.

Limitations of the study

There are some limitations in this study. First, compared to other machine learning models, the study sample did not include people from

multiple ethnicities and regions. Then, the control group we included did not have any fundus disease. Follow-up studies may consider

Figure 4. Heatmap visualization of internal dataset
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including some patients with other types of fundus disease that are easily confused with RP/BCD as a control group, for example, Macular

Dystrophy, Stargardt disease, the Best’s Disease, and more. Due to the limitation of image quality,26 only the BCD fundus image data are

available in the external verification dataset, and a more complete external dataset used to test the algorithm may produce more optimistic

results. We once considered the incorporation of autofluorescent images and OCT parameters into AI diagnosis, but this could not be

achieved due to some objective conditions and technical reasons. In addition, the wide-field fundus photographs from two medical centers

included in this study were from different fundus photographic instruments (CLARUS 500, ZEISS, Germany and Panoramic Ophthalmoscope,

Optos, Britain). The two commercial UWF fundus cameras are generated from different theories, thus showed different characteristics, in co-

lor, ratio, etc., which brought classification errors to some extent. The confusion matrix plot shows that the overall classification performance

of the models for the clinical stages of BCD patients is not very good. However, the vast majority of images with incorrect classification results

were classified as advanced grades, which is a low-risk condition for BCDpatients,meaning that ourmodels are unlikely tomiss severe lesions.

The staging of the disease is difficult and subjective, so we think this result is acceptable. It still needsmore insights on the results of this study

to seewhether it is applicable to other fundus cameras.Wewill continue to collectmultimodal image data of BCDpatients to explorewhether

it is effective to improve the accuracy of AI algorithms.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS

B Images quality control and labeling

B Development of deep learning algorithm

B Validation of deep learning algorithm

d QUANTIFICATION AND STATISTICAL ANALYSIS

d ADDITIONAL RESOURCES

Figure 5. Heatmap visualization of external validation dataset
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Table 4. Previous relevant study analysis

Reference

Disease

type (s) Imaging modality Dataset size Sample size AI Problem Algorithm Model (s) Best performance

Camino et al.14 Retinitis

pigmentosa (RP),

chloridemia

Optical coherence

Tomography (OCT)

20 OCT scans 22 RP and 20

chloridemia

subjects

Segmentation CNNs

(convolutional

neural networks)

MatConvNet JSI (Jaccard similarity

index):0.912 G 0.055

Fujinami-Yokokawa

et al.15
RP,

macular

dystrophy

Spectral domain

Optical coherence

Tomography

(SD-OCT)

178 SD-OCT

scans

28 RP, 30

macular

dystrophy,

and 17

healthy subjects

Classification DNNs

(deep neural

networks)

InceptionV3 Accuracy: 1.0

Iadanza et al.24 RP Pupillometer 30 chromatic

pupillometry data

28 RP, and

10 healthy

subjects

Classification Feature

extraction,

SVM (support

vector machine)

Linear SVM,

Gaussian

radialbasis

function (RBF)

Accuracy: 0.846,

Sensitivity: 0.937,

Specificity: 0.786

Miere et al.25 RP,

Best’s disease

(BD),

Stargardt

disease (STGD)

Fundus

autofluorescence

(FAF)

483 images 160 RP,125

BD eyes,125

STGD, and

73 healthy

subjects

Classification CNNs ResNet101 ROC - AUC (Receiver

Operating Characteristic

Curve - Area under the

Curve): 0.999,

PRC-AUC: 0.999

Chen et al.23 RP Fundus

photography

1,670 images 1153 RP,

and 517

healthy eyes

Classification CNNs InceptionV3,

Inception-

ResNetV2,

and Xception

Accuracy: 0.960,

AUROC: 0.9946,

Sensitivity: 0.9571

Specificity: 0.9853

F3: 0.9599
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Data and code availability

� Fundus photographs data reported in this paper will be shared by the lead contact upon request.
� All original code is available in https://github.com/Hugo0512/AI4BCD and https://github.com/MachineLP/PyTorch_image_classifier.

All relevant data and materials have been included in the manuscript.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The fundus images used in this study originated frompatients diagnosedwith BCDor RP at Beijing TongrenHospital between 2019 and 2024,

and external verification images obtained from the Third Hospital of Peking University. All BCD patients were confirmed with CYP4V2 gene

variants by genetic testing. As the control group, the normal subjects with diopter between �3.0D and +3.0D were checked without any

fundus or optic nerve diseases. The study was approved by the Ethics Review Committees of Beijing Tongren Hospital and Peking University

Third Hospital, and participants provided written informed consent.

METHOD DETAILS

Images quality control and labeling

Our study is of the retrospective nature. All UWF fundus photographs were captured with commercial available equipment (CLARUS 500,

ZEISS, Germany; Panoramic Ophthalmoscope, Optos, Britain) and stored in.jpg or.tiff formats in the imaging database. Low-quality photo-

graphs27 resulting from halation, blur, defocus or severe opacity of the refractive stroma were all excluded manually.28 A total of 1138 fundus

photographs of BCD patients, 502 of RP patients, and 180 of normal fundus images were included as developmental set. Multiple fundus

photographs focusing on the nasal and temporal retinas were obtained for each patient in each eye. In addition, there are 131 images of

BCD patients from Peking University Third Hospital were included as external validation dataset. Identical exclusion criteria were applied

to patients in both centers: previous fundus surgery or laser treatment; combined with other ophthalmic diseases, such as macular degen-

eration, diabetic or hypertensive retinopathy, glaucoma, uveitis, retinal detachment, epiretinal membrane, macular hole, macular neovascu-

larization, optic neuropathy, and etc. These conditions often affect the graphic interpretation of fundus images by clinicians or AI algorithms.

All included fundus photographs were classified into three categories: "normal", "BCD" and "RP" according to the patients’ clinical diag-

nosis and genetic test results. Furthermore, the demographic information of the BCD patients was masked and the images were graded by

three ophthalmologists, including two junior ophthalmologists and one senior ophthalmologist. Referring to the staging criteria of Xu et al.,9

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw fundus photographs data This paper N/A

Code for model and network training and analysis This paper https://github.com/Hugo0512/AI4BCD

https://github.com/MachineLP/PyTorch_image_classifier

Software and algorithms

ResNeXt32 3 8d TorchVision Package https://github.com/Hugo0512/AI4BCD

Wide ResNet TorchVision Package https://github.com/Hugo0512/AI4BCD

ResNeSt TorchVision Package https://github.com/MachineLP/PyTorch_image_classifier

PyTorch (version 1.8.1) PyTorch Software Foundation https://pytorch.org/

MATLAB R2016a MATLAB Software Foundation https://ww2.mathworks.cn/
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all included BCD patients were divided into 3 stages. In stage 1, the RPE was slightly atrophied, and fine granular yellow-white crystals were

deposited in the macular area. In stage 2, there was a high concentration of crystals deposited throughout the entire fundus, extending

beyond the macular region, with noticeable atrophy of the RPE and choroidal capillaries in that area. Gradually, stage 3 saw the crystalline

deposits subsided, the number and distribution of crystalline deposits varied among individuals, and obvious atrophy of RPE and choroid

could be observed throughout the fundus. Patients in stages 1–3 may have visual field defects, which are manifested as central, paracentral,

or irregular scotoma. Two junior ophthalmologists labeled each image (HH Zhang and JY Wang). Disagreements were arbitrated by a senior

ophthalmologist (WB Wei).

Development of deep learning algorithm

Fundus photographs from Beijing Tongren Hospital were partitioned randomly into training datasets and internal validation sets using 5-fold

cross-validation to create and assess the effectiveness of the DL model.29,30 Cross-validation is performed in a subject independent way,

ensuring that the images from a single patient are not split into training and validation sets. We initially compared the effectiveness of various

architectures, such as ResNet-101, ResNeXt32 3 8d, InceptionV3, Wide ResNet and ResNeSt,31–37 for automatically differentiating normal

fundus, RP, and BCD, as well as automatically classifying BCD patients. ResNeXt32 3 8d, Wide ResNet and ResNeSt perform better and

was selected to complete the task. UWF images were used as input for the model. The first three classes classification model distinguishes

between normal fundus, RP andBCD. The second three classes classificationmodel distinguishes BCDeyes with different severity.We did not

apply data augmentation to all models, and themodel with the best performance in the internal cross-validation was used for testing with the

external validation dataset.38,39 All models were developed using PyTorch 1.8.1 on a server with two NVIDIA 3090 Graphical Processing

Units.40 Before inputting into the model for training or testing, all images are adjusted to a size of 1024 3 1024 and all pixel values are stan-

dardized to fall within the range of [0,1]. The optimized algorithm was SGD (Stochastic Gradient Descent),41 utilizing the standard hyperpara-

meters in PyTorch 1.8.0, with a batch size of 6. In addition, the class weight was used to weigh the influence of the unbalanced distribution of

different categories.42 As a result of repeated experiments, 10 epochs were used to train the model without underfitting. The model with the

best validation accuracy was saved as the final model for deployment.

Validation of deep learning algorithm

In the first step, using an internal cross-validation dataset, we validated the algorithm’s performance in identifying patients with BCD. Then for

further performance evaluation, 131 fundus photographs of 59 BCD patients from another medical center, the Third Hospital of Peking Uni-

versity, were independently classified regardless of patient demographics and final multidisciplinary management strategy, and their results

were compared with those of our algorithm. Twomodels are used. The first is used to distinguish BCD, RP and normal fundus image, and the

second is used to grade BCD.

QUANTIFICATION AND STATISTICAL ANALYSIS

In order to understand the decision-making process of the model, we utilized Grad-CAM to produce heatmaps.43 Since both of our algo-

rithms are three classes classification problems (multi-classification), row normalized confusion matrix and accuracy are used to evaluate

the performance. The model’s overall performance and the identification of each category were evaluated using accuracy and confusion ma-

trix, respectively. In internal cross-validation datasets, the corresponding CI were calculated using point estimates.44 In external validation

dataset, Wilson confidence interval was used to estimate the confidence interval.45 All statistical analysis was performed using MATLAB

R2016a. Toward each specific class, we evaluate the accuracy, specificity and sensitivity.

ADDITIONAL RESOURCES

This study did not use any type of experimental models. The study was conducted with the approval of the Medical Ethics Committee of Bei-

jing TongrenHospital (reference number: TREC2022-120) and the ThirdHospital of PekingUniversity (reference number: 2022-265-02). During

the retrospective collection process, personal information that could identify individuals was eliminated. The informed consent was signed by

all patients.
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