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Abstract

PET attenuation correction (AC) on systems lacking CT/transmission scanning, such as

dedicated brain PET scanners and hybrid PET/MRI, is challenging. Direct AC in image-

space, wherein PET images corrected for attenuation and scatter are synthesized

from nonattenuation corrected PET (PET-nonAC) images in an end-to-end fashion

using deep learning approaches (DLAC) is evaluated for various radiotracers used in

molecular neuroimaging studies. One hundred eighty brain PET scans acquired using
18F-FDG, 18F-DOPA, 18F-Flortaucipir (targeting tau pathology), and 18F-Flutemetamol

(targeting amyloid pathology) radiotracers (40 + 5, training/validation + external test,

subjects for each radiotracer) were included. The PET data were reconstructed using

CT-based AC (CTAC) to generate reference PET-CTAC and without AC to produce

PET-nonAC images. A deep convolutional neural network was trained to generate

PET attenuation corrected images (PET-DLAC) from PET-nonAC. The quantitative

accuracy of this approach was investigated separately for each radiotracer considering

the values obtained from PET-CTAC images as reference. A segmented AC map (PET-

SegAC) containing soft-tissue and background air was also included in the evaluation.

Quantitative analysis of PET images demonstrated superior performance of the DLAC

approach compared to SegAC technique for all tracers. Despite the relatively low

quantitative bias observed when using the DLAC approach, this approach appears vul-

nerable to outliers, resulting in noticeable local pseudo uptake and false cold regions.

Direct AC in image-space using deep learning demonstrated quantitatively acceptable

performance with less than 9% absolute SUV bias for the four different investigated

neuroimaging radiotracers. However, this approach is vulnerable to outliers which

result in large local quantitative bias.
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1 | INTRODUCTION

Positron emission tomography (PET) plays a key role in noninvasive

assessment of brain function and understating biochemical dynamics. In

particular, PET imaging is utilized for the diagnosis of neurodegenerative

diseases, such as dementia of Alzheimer type and Parkinson disease. In

clinical practice, 18F-fluorodeoxyglucose (FDG) is the most commonly

used radiotracer in brain imaging. However, brain imaging using more

specific radiotracers, such as 18F-labeled amino acid L-tyrosine (18F-FET),
18F-Flutemetamol (Vizamyl™), 18F–fluoro-dihydroxyphenylalanine

(18F-DOPA), and 18F-Flortaucipir agents is an active and growing area.
18F-Flutemetamol diagnostic agent is used in adult patients to esti-

mate the density of beta-amyloid neurotic plaque to investigate

Alzheimer's disease pathology in subjects with cognitive decline (Chiotis

et al., 2017; Hammers et al., 2017). PET scanning using 18F-DOPA

enables measuring the uptake of dopamine precursors in Parkinson dis-

ease, which has been demonstrated to reflect the monoaminergic

degenerative process (Pavese & Brooks, 2009). 18F-Flortaucipir is per-

formed to investigate tau pathology, mainly in Alzheimer's disease, and

with lower affinity in other neurodegenerative disorders, such as pro-

gressive supranuclrear palsy and corticobasal degeneration (Leuzy

et al., 2019; Noirot et al., 2018).

PET neuroimaging has witnessed steady growth over the years

with the introduction of novel specific radiotracers, which triggered

the development of dedicated brain PET systems, allowing for signifi-

cantly higher spatial resolution compared to conventional whole-body

PET scanners (Melroy et al., 2017; Tashima et al., 2016; Zaidi &

Montandon, 2006). Despite the expanding demand for functional

brain imaging, dedicated brain PET scanners face the challenge of

attenuation and scatter correction since they are not always equipped

with concurrent computed tomography (CT) scanning that readily pro-

vides information about attenuating medium. Likewise, PET scanners

coupled with magnetic resonance imaging (MRI) require accurate and

robust attenuation correction (AC) since MR intensity in structural

images is not correlated with the attenuation coefficients of biologic

tissues (Mehranian, Arabi, & Zaidi, 2016b).

Scatter and ACs are critical for both reliable qualitative interpreta-

tion and accurate quantification of PET images (Zaidi & Koral, 2004;

Zaidi, Montandon, & Meikle, 2007). In the absence of transmission

imaging to derive attenuation maps, current strategies used to generate

AC maps, either with or without the use of structural MR images, could

be categorized into three generic approaches (Mehranian et al., 2016b):

(a) Bulk segmentation-based methods attempt to discriminate the

different tissue classes from MRI, including the use of dedicated MR

sequences to depict bony structures as a separate tissue class

(Keereman et al., 2010), to assign predefined tissue-specific attenuation

coefficients (Arabi et al., 2015; Martinez-Moller et al., 2009); (b) Atlas-

based and machine learning methods rely on coregistered pairs of

MR/CT images to generate substitute CT image using a mapping

function between MR and CT images (Arabi, Koutsouvelis, Rouzaud,

Miralbell, & Zaidi, 2016; Arabi & Zaidi, 2016b; Wollenweber et al., 2013)

or a nonlinear training process to predict synthetic CT from MR images

(Arabi & Zaidi, 2016a); (c) Joint activity/attenuation map estimation from

PET emission data taking advantage of the availability of time-of-flight

(TOF) information (Defrise, Rezaei, & Nuyts, 2012). Exploitation of MRI

information has been shown to enhance the accuracy of the joint activ-

ity/attenuation reconstruction (Mehranian, Arabi, & Zaidi, 2016a;

Mehranian, Zaidi, & Reader, 2017). A multicentric comparison of

11 MRI-guided AC techniques in brain PET imaging demonstrated the

superior performance of methods relying on atlas prior information or

dedicated MR sequences capable of bone detection to segmentation-

based and joint activity/attenuation reconstruction approaches

(Ladefoged et al., 2017). Yet, this study did not include any machine

learning-guided approaches, such as random forest (Huynh et al., 2016)

convolutional neural network (Han, 2017; Liu, Jang, Kijowski,

Bradshaw, & McMillan, 2017) and generative adversarial network tech-

niques (Arabi, Zeng, Zheng, & Zaidi, 2019), which have shown promising

performance in synthetic CT generation directly from MR images pro-

vided a sufficient MRI/CT pairs dataset is available for training.

Recently, deep learning algorithms have been widely utilized

in various medical image analysis problems owing to the promising

results achieved in image segmentation, regression, denoising, and

radiomics analysis (Arabi et al., 2018; Litjens et al., 2017). Most of the

studies addressing PET AC focused on the generation of synthetic CT

images from a single or multiple MR sequences (Emami, Dong, Nejad-

Davarani, & Glide-Hurst, 2018; Han, 2017; Liu et al., 2018). The primary

objective of these studies is to improve MRI-guided CT synthesis in the

head (Arabi et al., 2019; Dinkla et al., 2018) and pelvis (Leynes

et al., 2018) regions for use in PET/MR quantitative imaging or MRI-only

treatment planning.

In addition to MRI-guided CT synthesis, owing to the outstanding

versatility of deep learning approaches, attenuation, and scatter cor-

rection directly in the image domain without using the anatomical

information has been reported (Shiri et al., 2019; Yang, Park,

Gullberg, & Seo, 2019). In this regard, a deep convolutional neural net-

work was trained to learn the end-to-end conversion between non-

attenuation corrected (PET-nonAC) and CT-based attenuation and

scatter corrected PET images (PET-CTAC) in image-space. So far, this

approach has been evaluated only on brain 18F-FDG PET images (Yang

et al., 2019). To the best of our knowledge this approach has not been

evaluated for other clinically relevant radiotracers used in neuroimag-

ing, such as 18F-Flortaucipir, 18F-DOPA, and 18F-Flutemetamol.

The aim of this work is to carry out a comprehensive assessment

of direct attenuation and scatter correction in image-space using deep

learning algorithms for various PET neuroimaging radiotracers. Even

though other MRI-guided AC approaches (e.g., atlas-based) achieved

uptake bias of less than 5% (Ladefoged et al., 2017), direct attenuation

and scatter correction in image-space is of special interest as it does not

require anatomical imaging. To this end, 180 PET/CT brain scans (160 in

a fivefold cross-validation and 20 as external test dataset) using four dif-

ferent neuroimaging radiotracers (forty patients for each radiotracer),

namely 18F-FDG, 18F-DOPA, 18F-Flutemetamol, and 18F-Flortaucipir,

were used to evaluate the performance of the approach. PET-CTAC

images were considered as reference for evaluation, whereas a

segmentation-based attenuation map (SegAC—containing background

air and soft-tissue) derived from a two-class segmentation of the
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PET-nonAC was included in the evaluation as a proxy for segmentation-

based AC used on commercial PET/MR scanners (Zaidi et al., 2011). In

addition to quantitative assessment of this approach for different PET

neuroimaging radiotracers, we particularly focused on outliers and large

bias which might occur when using deep learning algorithms, in general,

and when direct attenuation and scatter correction is performed in

image-space, in particular.

2 | MATERIALS AND METHODS

2.1 | PET/CT data acquisition

Time-of-flight (TOF) brain PET/CT scans of 180 patients were retrospec-

tively employed for the quantitative evaluation of the attenuation and

scatter correction technique in the image domain using a deep learning

algorithm. The evaluation was performed separately for four different

PET radiotracers, namely, 18F-FDG, 18F-DOPA, 18F-Flutemetamol, and
18F-Flortaucipir (45 patients for each radiotracer). The study protocol

was approved by the ethics committee of Geneva University Hospitals

and all patients gave informed consent. All patients underwent a PET/CT

on the Biograph mCT scanner (Siemens Healthcare, Erlangen, Germany).

A low-dose CT scan was performed prior to radiotracer injection for PET

AC using the following parameters: 20 mAs, 0.3 s/rotation, 120 kVp,

and a voxel size of 0.9 × 0.9 × 2.5 mm3. For 18F-FDG scanning protocol,

PET data acquisition started 32 ± 6 min after injection of 208 ± 14 MBq
18F-FDG in a single bed position for 20 min. PET scans using the
18F-Flortaucipir agent lasted 30 min after injection of 205 ± 10 MBq.

The acquisition stared 76 ± 8 min after injection. 18F-Flutemetamol PET

scans started 91 ± 6 min after injection of 199 ± 11 MBq for an acquisi-

tion time of 20 min. 18F-DOPA PET data acquisition started at the time

of injection of 185 ± 12 MBq for a total acquisition time of 90 min.

Patient's demographic and clinical characteristics pertinent to each radio-

tracer are summarized in Table 1.

Siemens e7 tool was used to reconstruct the PET raw data using

an ordinary Poisson ordered subsets-expectation maximization with

TOF information (TOF OP-OSEM) adopting default parameters used

in the clinic (5 iteration, 21 subsets). Scatter correction was performed

using the single scatter simulation (SSS) algorithm with tail fitting for

scaling. PET image reconstruction was repeated without attenuation

and scatter correction to generate PET-nonAC images. PET images

were reconstructed in a 200 × 200 × 109 matrix (voxel size of

2 × 2× 2 mm) followed by Gaussian filtering with 2 mm FWHM.

In addition, 20 patients (five subjects for each radiotracer) were

later added as external test dataset to further assess the generalizabil-

ity of this approach.

2.2 | Deep learning algorithm

The Niftynet, an open-source convolutional neural network pipeline,

was employed to implement attenuation and scatter correction in

the image-space. The Niftynet infrastructure provides a modular

deep-learning platform for common medical imaging applications and

computer-assisted intervention (Gibson et al., 2018). The Niftynet

platform, built on TensorFlow (version 1.12) in Python (version 3.6),

enables researchers to rapidly implement deep learning solutions

based on state-of-the-art convolutional neural network architectures.

The application of deep learning-based image regression was used to

predict PET attenuation and scatter corrected (PET-DLAC) from PET-

nonAC images in an end-to-end fashion. To this end, a neural network

was trained using the net_regress application. This application calls on

a state-of-the-art compact so-called highresnet convolutional neural

network, developed originally for volumetric image segmentation

(Li et al., 2017). Since this residual network takes features at multiple

levels (scales) into account, it maintains the spatial resolution of the

input images throughout the network, which enables direct fusion of

features from different levels or scales. Our preliminary experiments

showed the superior performance of this network to the well-

established U-net and encoder–decoder structures and its slightly bet-

ter performance over generative adversarial networks.

This network consists of 20 convolutional layers wherein in the first

seven layers, a convolution kernel of 3 × 3 × 3-voxel is applied. The first

seven layers are designed to encode low-level features (such as edges

and corners) from the input image. In the subsequent seven and six con-

volutional layers, the kernel is dilated by a factor of two and four,

respectively, to capture medium and high-level features. Every two con-

volutional layers are linked by a residual connection. Convolutional

layers within the residual blocks are connected to a batch normalization

layer and an element-wise rectified linear unit (ReLU) Figure S1.

2.2.1 | Implementation details

For each of the four neuroimaging tracers, pairs of PET-CTAC and

PET-nonAC images were utilized as input/output for the training and

TABLE 1 Clinical characteristics and patient demographics of the clinical brain PET studies

18F-Flortaucipir 18F-FDG 18F-Flutemetamol 18F-DOPA

Age (mean, range) 66.5 (58–78) 62.2 (51–81) 63.1 (45–77) 25.4 (20–40)

Gender 19F/26M 27F/18M 23F/22M 18F/27M

Indication/diagnosis Cognitive symptoms of possible neurodegenerative etiology 11 healthy controls

25 patients with a cannabis use disorder

8 patients with an internet gaming disorder

1 patient with neuroendocrine tumor
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evaluation of the direct attenuation and scatter correction technique.

In the first step, the voxel values of PET-CTAC and PET-nonAC

images were converted to standard uptake value (SUV) scale. There-

after, the intensities of PET images were scaled down using a fixed

normalization factor separately for each dataset to reduce the

dynamic range of the image values. For 18F-FDG radiotracer, PET-

CTAC and PET-nonAC images were normalized by factors of 10 and

2.1, respectively. 18F-DOPA PET-CTAC and PET-nonAC were normal-

ized by factors 3 and 1, respectively. Normalization factors of 1.5 and

0.3 were utilized for 18F-Flutemetamol PET-CTAC and PET-nonAC

images, respectively. 18F-Flortaucipir PET-CTAC and PET-nonAC

images were normalized by factors of 1.8 and 0.7, respectively. There-

after, PET images were cropped to 128 × 128 × 105 voxels to cutoff

background air as much as possible in an effort to reduce the compu-

tational burden.

The highresnet model, implemented in the Niftynet infrastructure,

was trained using a spatial window = 128 × 128, learning rate = 0.002,

optimizer = Adam, loss function = L2norm, decay = 0.0001, batch

TABLE 2 Quantitative accuracy of SUV estimation using DLAC and SegAC approaches using CTAC as reference for assessment together
with RMSE, SSIM and PSNR calculated over 40 patients within the entire head region for 18F-Flortaucipir, 18F-Flutemetamol, 18F-FDG, and
18F-DOPA brain PET studies

18F-Flortaucipir ME (SUV) MAE (SUV) RE (%) RMSE (SUV) PSNR (dB) SSIM

PET-DLAC −0.02 ± 0.01 0.08 ± 0.02 3.6 ± 4.9 0.09 ± 0.02 34.7 ± 3.8 0.96 ± 0.02

PET-SegAC −0.30 ± 0.06 0.41 ± 0.08 −6.2 ± 4.0 0.45 ± 0.08 31.9 ± 3.7 0.92 ± 0.02

18F-Flutemetamol

PET-DLAC −0.01 ± 0.01 0.05 ± 0.01 2.1 ± 3.3 0.07 ± 0.02 36.0 ± 3.6 0.97 ± 0.02

PET-SegAC −0.26 ± 0.05 0.36 ± 0.07 −6.0 ± 3.9 0.42 ± 0.07 32.7 ± 3.5 0.93 ± 0.02

18F-FDG

PET-DLAC 0.12 ± 0.75 0.18 ± 0.46 3.1 ± 6.9 0.20 ± 0.38 34.2 ± 3.3 0.94 ± 0.02

PET-SegAC −0.40 ± 0.35 0.42 ± 0.30 −6.4 ± 5.8 0.51 ± 0.29 32.1 ± 3.2 0.90 ± 0.03

18F-DOPA

PET-DLAC −0.11 ± 0.68 0.17 ± 0.39 3.9 ± 6.9 0.20 ± 0.37 34.9 ± 3.1 0.94 ± 0.02

PET-SegAC −0.37 ± 0.32 0.40 ± 0.28 −7.1 ± 6.1 0.49 ± 0.27 32.3 ± 3.0 0.91 ± 0.03

TABLE 3 PET quantification bias calculated within soft-tissue, air cavities and bone regions for 18F-Flortaucipir, 18F-Flutemetamol, 18F-FDG,
and 18F-DOPA PET images for DLAC and SegAC AC approaches

18F-Flortaucipir 18F-Flutemetamol

Soft-tissue ME (SUV) MAE (SUV) RE (%) ME (SUV) MAE (SUV) RE (%)

PET-DLAC −0.02 ± 0.01 0.05 ± 0.02 2.0 ± 4.2 −0.01 ± 0.01 0.07 ± 0.02 2.2 ± 3.7

PET-SegAC 0.08 ± 0.05 0.16 ± 0.07 3.3 ± 3.9 0.07 ± 0.04 0.15 ± 0.06 3.5 ± 3.9

Bone

PET-DLAC −0.03 ± 0.02 0.06 ± 0.03 −1.9 ± 6.2 −0.03 ± 0.03 0.07 ± 0.07 −2.0 ± 6.4

PET-SegAC −0.18 ± 0.05 0.20 ± 0.05 −7.0 ± 6.7 −0.17 ± 0.06 0.22 ± 0.06 −7.1 ± 6.8

Air cavity

PET-DLAC 0.02 ± 0.11 0.03 ± 0.10 4.0 ± 6.5 0.03 ± 0.12 0.04 ± 0.11 4.2 ± 6.6

PET-SegAC 0.11 ± 0.21 0.12 ± 0.19 24.2 ± 8.4 0.13 ± 0.23 0.15 ± 0.19 26.3 ± 9.0

18F-FDG 18F-DOPA

Soft-tissue ME (SUV) MAE (SUV) RE (%) ME (SUV) MAE (SUV) RE (%)

PET-DLAC 0.11 ± 0.69 0.17 ± 0.45 1.9 ± 5.7 −0.09 ± 0.61 0.15 ± 0.39 −2.8 ± 5.9

PET-SegAC −0.39 ± 0.33 0.41 ± 0.30 −4.1 ± 6.7 −0.31 ± 0.29 0.39 ± 0.27 −4.9 ± 6.0

Bone

PET-DLAC 0.08 ± 0.52 0.10 ± 0.47 1.8 ± 7.1 −0.07 ± 0.48 0.09 ± 0.42 −1.9 ± 6.4

PET-SegAC −0.29 ± 0.26 0.30 ± 0.26 −14.0 ± 6.6 −0.26 ± 0.25 0.29 ± 0.24 −13.1 ± 5.8

Air cavity

PET-DLAC 0.02 ± 0.12 0.03 ± 0.11 4.2 ± 6.8 0.02 ± 0.10 0.03 ± 0.11 4.4 ± 6.5

PET-SegAC 0.12 ± 0.21 0.13 ± 0.20 37.2 ± 8.9 0.11 ± 0.20 0.13 ± 0.19 38.4 ± 9.0
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size = 120, sample per volume = 1 and queue length = 480. It should

be noted that training was performed in two-dimensional (2D) and

three-dimensional (3D)modes using a spatial window= 128 × 128× 32

for the 3D mode. However, visual inspection and quantitative analysis

revealed slightly better performance of 2D training. For each radio-

tracer dataset, considering a batch size of 120, the training of the

model took about �22 hr using an Intel(R) Xeon 2.30 GHz 7i CPU and

64 GB RAM computer. The loss function of the model reached a pla-

teau after 8 epochs. The synthesis of PET images, in the inference

step, took 5 s for each patient (whole brain study). The training of the

model was repeated five times for each of radiotracer following a five-

fold cross-validation scheme (32 images for training and 8 images for

test datasets). No pretrained model or transfer learning were used for

the training of these models owing to the fact that transfer learning

(for instance using the trained model by the 18F-FDG datasets to initi-

ate the training of the 18F-DOPA datasets) did not improve the out-

comes of the models. Overall, 20 independent models were trained

and tested. As such, the quantitative analysis was performed on all

40 patients as well as the five external subjects for each neuroimaging

radiotracer. For the training of the models, single-slice (in 2D training

mode) and batches of 32 slices (in 3D training mode) samples were

taken randomly from the 3D input subjects. These samples were

taken uniformly from the whole field-of-view of the brain PET scan.

Since no significant improvement was observed, data augmentation

was not implemented in the training process.

2.3 | Quantitative evaluation

The performance of direct attenuation and scatter correction was

evaluated against CT-based AC serving as reference. Moreover, as a

bottom line of clinically tolerable errors, a segmented attenuation map

(SegAC), as a proxy for the commercially implemented MRI-guided

AC, was included in the evaluation. SegAC attenuation maps were

derived from 2-class segmentation of TOF reconstructed PET-nonAC

images. The contour of the head was delineated using thresholding

followed by the assignment of attenuation coefficients of 0.1 cm−1

(≈ 0 HU) and 0.0 cm−1 (≈ −1,000 HU) to voxels located inside and

outside the head contour, respectively.

Considering PET-CTAC as reference, difference SUV images and

bias maps were calculated separately within different tissue types,

namely, bone, soft-tissue, and air cavities, for each of four the PET

neuroimaging radiotracers. To this end, the following intensity thresh-

old levels were used to segment bone (>160 HU), air cavities (< −400

HU within the head contour), and soft-tissue (> −400 and <160 HU)

from CT images. The mean error (ME), absolute mean error (MAE),

root mean square (RMSE) error, and SUV bias (relative error [RE(%)])

were calculated between reference PET-CTAC and PET-DLAC and

PET-SegAC images using Equations (1)–(4), respectively.

ME =
1
v

Xv
i=1

PETtest ið Þ−PETref ið Þð Þ ð1Þ

MAE =
1
v

Xv
i=1

PETtest ið Þ−PETref ið Þj j ð2Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v

Xv
i=1

PETtest ið Þ−PETref ið Þð Þ2
vuut ð3Þ

RE %ð Þ= 1
v

Xv
i=1

PETtestð Þi− PETrefð Þi
PETrefð Þi

� �
×100% ð4Þ

where PETtest stands for PET images attenuation corrected using

either the deep learning-based or SegAC technique. i and v variables

indicate the voxel index and the total number of voxels, respectively.

Moreover, peak signal-to-noise ratio (PSNR) and structural simi-

larity index (SSIM) metrics were computed to assess the similarity and

accuracy of the generated PET images using Equations (5) and (6),

respectively.

F IGURE 1 Comparison of PET images corrected for attenuation
using CT-based, SegAC and DLAC approaches along with the
reference CT image for the four different radiotracers. Difference
SUV error maps are also shown for DLAC and SegAC approaches
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PSNR dBð Þ= 10log10
Mv2

MSE

 !
ð5Þ

SSIM=
2MnrefMntest +K1ð Þ 2δref,test +K2ð Þ

Mn2ref +Mn2test +K1

� �
δ2ref + δ

2
test +K2

� � ð6Þ

In Equation (5), Mv indicates the maximum intensity value of

PETref or PETtest whereas MSE stands for the mean squared error. In

Equation (6), Mnref and Mntest represent the mean value of PETref and

PETtest images, respectively. δref and δtest are the variances of PETref

and PETtest images where their covariance is denoted δref,test. To avoid

a division by a very small value, K1 and K2 constant parameters

(K1 = 0.01 and K2 = 0.02) were inserted in Equation (6).

The abovementioned quantitative metrics were also calculated

for the 20 subjects belonging to the external test dataset to investi-

gate the potential performance discrepancies between the different

training/validation folds as well as repeatability of this approach.

In addition, a joint histogram analysis was performed to display

the voxel-wise distribution of radiotracer activity correlation between

PET-DLAC/PET-SegAC and reference PET-CTAC for the different

PET neuroimaging radiotracers.

For 18F-FDG PET images, the quantitative evaluation of activity

concentration was performed in 63 brain regions. To this end, the

Hermes BRASS analysis tool (Hermes Medical Solutions AB, Sweden)

was employed to define 63 brain regions on PET images that were

used to calculate the relative mean error (RE(%)) and absolute mean

error (ARE(%)) using Equations (7) and (8), respectively. Similarly,
18F-Flortaucipir and 18F-Flutemetamol PET images were spatially nor-

malized to the Montreal Neurological Institute (MNI) reference space

(Evans et al., 1993) using in-house developed tracer-dependent

templates. Briefly, these templates were obtained by averaging PET

images of the 40 subjects included in this study following normaliza-

tion in MNI space by deriving the deformation maps from the individ-

ual MRI. Mean and absolute mean relative errors were calculated for

70 brain regions using Equations (7) and (8), respectively. The MNI

template provides 136 distinct brain regions, but the left and right

regions were merged in this work, thus reducing the total number of

brain regions to 70. 18F-DOPA PET images were also spatially normal-

ized to MNI reference space using a publicly available 18F-DOPA-PET

F IGURE 2 Mean absolute relative bias (%) and mean bias (%) of tracer uptake of PET-DLAC and PET-SegAC with respect to reference PET-
CTAC for 18F-Flortaucipir calculated for 70 brain regions
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template (Gómez, Huertas, Ramírez, & Solís, 2018) to calculate relative

mean and absolute mean errors in seven brain regions including poste-

rior, frontal, cerebellum, right and left caudate, right and left putamen.

REregion %ð Þ= PETtestð Þregion− PETrefð Þregion
PETrefð Þregion

×100% ð7Þ

AREregion %ð Þ= PETtestð Þregion− PETrefð Þregion
PETrefð Þregion

					
					×100% ð8Þ

In addition to quantitative analysis using the above metrics, the

180 PET-DLAC images were visually inspected to spot any pseudo

uptakes, gross errors, and image artifacts. Special attention was paid

to this task as deep learning algorithms, in general, and attenuation

and scatter correction in image-space, in particular, are prone to

unpredictable errors. Image artifacts and gross errors observed across

the 180 patients were separately reported.

Paired t-test analysis was employed to prove statistical signifi-

cance of the differences between the calculated metrics where a

p-value less than .05 was considered statistically significant.

3 | RESULTS

For the sake of standardization, the tracer uptake in neuroimaging

studies involving 18F-Flortaucipir, 18F-Flutemetamol, and 18F-DOPA is

usually reported in terms of SUV ratio (SUVR) obtained from normaliz-

ing to mean tracer uptake in the cerebellum or pons as these regions

are commonly not affected until late during disease progression

(Vemuri et al., 2017). In the present work, the accuracy of the differ-

ent AC approaches was investigated by comparing the absolute SUVs

since normalization to a reference region (SUVR) tends to undermine

the assessment by hiding the actual underestimation/overestimation

of tracer uptake. The evaluation of the different AC methods using

the SUVR metric would complicate the interpretation of the results

(e.g., overestimation in the target region and underestimation in the

reference region would be confounded) and might lead to skewed

conclusions as depicted in Figure S2. The SUV profile obtained from

PET-SegAC image exhibits noticeable underestimation of tracer

uptake. Yet, after normalization to the mean SUV in the cerebellum

(which was similarly underestimated), the SUVR profile drawn on

PET-SegAC agrees closely with PET-CTAC.

F IGURE 3 Mean absolute relative bias (%) and mean bias (%) of tracer uptake of PET-DLAC and PET-SegAC with respect to reference PET-
CTAC for 18F-Flutemetamol calculated for 70 brain regions
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It should be noted that the training of the algorithm was performed

in both 2D and 3D modes. Since 2D training mode exhibited slightly

better performance, only the results associated with 2D implementa-

tion are reported in this section. Table 2 summarizes the quantitative

analysis of PET-DLAC and PET-SegAC AC techniques for the entire

head region reported separately for 18F-Flortaucipir, 18F-Flutemetamol,
18F-DOPA, and 18F-FDG radiotracers. The p-values calculated between

DLAC and SegAC results were statistically significant (p < .04) for all

metrics. Likewise, Table 3 presents ME, MAE and RE results for DLAC

and SegAC approaches calculated within soft-tissue, air cavities, and

bone regions for the four tracers. The DLAC approach resulted in

improved activity recovery within both the entire head region and for

each specific tissue type compared to SegAC. Except ME in soft-tissue

for 18F-Flutemetamol (p = .06), the remaining results reported in

Table 2 were all statistically significant (p < .05). Representative coronal

views of PET images corrected for attenuation using the corresponding

CT images, SegAC, and DLAC approaches are shown in Figure 1 for the

different radiotracers. Figures S3–S6 illustrate transaxial, coronal, and

sagittal views of the patients shown in Figure 1 for 18F-Flortaucipir,
18F-Flutemetamol, 18F-DOPA, and 18F-FDG radiotracers, respectively.

The corresponding difference images (PET-DLAC/PET-SegAC—PET-

CTAC) are also shown beneath PET-DLAC and PET-SegAC images,

which depict the voxel-wise under- and over-estimation of radiotracer

uptake.

No remarkable differences were observed between the conver-

gence of the different training folds for the entire dataset. The training

and validation loss convergence of the 18F-FDG dataset is shown in

Figure S7. Similar trends of training and validation loss were observed

for the other three radiotracers. Moreover, Table S1 summarizes the

quantitative analysis of PET-DLAC and PET-SegAC AC techniques for

the head region (similar to Table 2) whereas Table S2 presents the

ME, MAE, and RE results for DLAC and SegAC approaches calculated

within soft-tissue, air cavities, and bone regions (similar to Table 3) for

the five patients belonging to the external test dataset. The evaluation

F IGURE 4 Mean absolute relative bias (%) and mean bias (%) of tracer uptake of PET-DLAC and PET-SegAC with respect to reference PET-
CTAC for 18F-FDG calculated for 63 brain regions
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on the external test dataset did not reveal noticeable differences with

respect to the results obtained from the 160 subjects of the training/

validation dataset (Tables 2 and 3). In addition, consistent performance

was observed across the different training folds when evaluated on

the external test dataset.

The quantitative accuracy of DLAC and SegAC approaches was

further assessed using region-wise analysis of PET images mapped to

a common coordinate space separately for each radiotracer. Figure 2

depicts the mean relative (RE) and mean absolute relative (ARE) bias of

SegAC and DLAC approaches for 18F-Flortaucipir in 70 brain regions

(according to MNI template) across 40 subjects. Likewise, Figure 3

depicts the RE and ARE calculated in 70 brain regions for
18F-Flutemetamol. The ARE of the DLAC approach for 18F-Flortaucipir

and 18F-Flutemetamol radiotracers barely reached 8% while SegAC

led to ARE of up to 17%. The differences reported in Figures 2 and 3

between DLAC and SegAC methods were statistically significant

(p < .04), except for Cerebellum exterior (p = .09), inferior temporal

gyrus (p = .08), and medial superior frontal gyrus (p = .08) in Figure 2.

Similarly, Figure 4 depicts the region-wise quantitative evaluation

of 18F-FDG PET images for DLAC and SegAC approaches in 63 brain

regions (according to the BRASS template). Slightly smaller bias was

observed in 18F-FDG PET images compared to 18F-Flortaucipir and
18F-Flutemetamol PET images. Yet, the DLAC approach led to an ARE

of less than 7%, thus outperforming SegAC (ARE of up to 15%). The

differences between the DLAC and SegAC approaches reported in

Figure 4 were statistically significant (p < .04) except for the L G.

orbitalis (p = .05).

Figure 5 presents the results of quantitative analysis of DLAC

and SegAC approaches for 18F-DOPA PET images within seven brain

regions. In agreement with the above results, the DLAC approach out-

performed SegAC, leading to less than 8% absolute quantitative bias

(p < .03). Moreover, Figure 6 illustrates the results of the joint histo-

gram analysis of PET-DLAC and PET-SegAC versus the reference PET-

CTAC images performed over the 40 subjects for each radiotracer. The

DLAC approach exhibited superior performance over SegAC resulting

in significantly higher SUV correlation with the reference PET-CTAC

images for all four neuroimaging radiotracers.

In addition to the quantitative evaluation, the present study focused

particularly on the vulnerability of the DLAC approach to outliers. To

this end, the entire dataset (containing 180 subjects) was carefully eval-

uated with respect to the occurrence of gross errors and outliers. We

document these cases separately for each radiotracer. Figure 7 shows

the single outlier observed for 18F-Flortaucipir, wherein remarkable

overestimation of tracer uptake is observed in the posterior region. This

is the only outlier that would interfere with clinical interpretation since

the other manifestations for the other radiotracers were mainly extra-

cerebral. The intensity profiles plotted over the affected region clearly

display the overestimation of tracer uptake in the PET-DLAC image

compared to reference PET-CTAC and PET-SegAC images.

Figure S8 shows local SUV underestimation observed in a single
18F-Flutemetamol study where the DLAC algorithm failed to recover

the activity uptake within the soft-tissue region surrounded by bony

structures. Two similar cases were observed in 18F-FDG PET-DLAC

images, one of them is shown in Figure S9, wherein the DLAC approach

led to a local SUV underestimation within a region consisting of soft-

tissue and bone.

Two outliers were observed in 18F-DOPA PET-DLAC images

where the DLAC approach Figure S10 shows one of these cases.

F IGURE 5 Mean absolute
relative bias (%) and mean bias (%)
of tracer uptake of PET-DLAC
and PET-SegAC with respect to
reference PET-CTAC for 18F-
DOPA calculated for seven brain
regions
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4 | DISCUSSION

One of the main objectives of the present work was the quantitative

assessment of the joint attenuation and scatter correction of brain PET

images in image-space through the use of deep learning algorithms.

This approach enjoys straightforward training and data synthesis

procedure, wherein PET images corrected for attenuation and scatter

are estimated in an end-to-end fashion from PET-nonAC images with-

out the need for anatomical imaging (CT or MRI). As such, this

approach is appealing and easily applicable to dedicated brain PET

scanners which lack concurrent structural imaging and hybrid PET/MRI

scanners.

Previous studies using this approach have shown promising results,

at least when compared with other MRI-guided or CT synthesis-based

AC methods (Shiri et al., 2019; Yang et al., 2019). These works focused

solely on 18F-FDG brain PET imaging through quantitative analysis of

SUV bias and radiomic features. In the present work, we extended

the evaluation of this approach to other PET neuroimaging tracers and

comparison to segmentation-based technique as a bottom line for

clinically relevant performance evaluation. The quantitative analysis of

PET images showed reduced bias when using the DLAC approach

compared to SegAC. The superior performance of the DLAC approach

over SegAC was equally observed in PET images acquired with the dif-

ferent neuroimaging radiotracers, wherein an SUV bias of less than 8%

was achieved with the DLAC approach compared to over 16%

achieved by SegAC. Similar magnitude of SUV bias was observed in

PET-DLAC images for all radiotracers, though a slightly smaller bias was

observed in 18F-FDG PET images, indicating consistent performance of

this approach independent of the specific radio-tracer distribution and

uptake patterns). The slightly reduced bias observed in 18F-FDG PET-

DLAC images was mostly due to the higher uptake of 18F-FDG in

the brain which rendered the relative errors less sensitive to small

fluctuations. Considering the results obtained from the evaluation of
18F-FDG PET images, the magnitude of SUV bias in the present study

are in agreement with the two previously published works reporting

on a deep learning-based algorithm for PET AC in image-space. A

mean SUV bias of −0.1 ± 2.14% (ranging from −9.5 to 10.0%) calcu-

lated over 18 patients was reported by Shiri et al. (2019) whereas a

mean SUV bias of 0.2 ± 0.92 over 10 patients was reported in (Yang

et al. (2019).

The quantitative evaluation of joint attenuation and scatter cor-

rection in image-space using deep learning was one of the major objec-

tives of this work. Yet, particular attention was focused on potential

susceptibility of this approach to outliers associated with the different

neuroimaging radiotracers. Despite promising overall performance

achieved by deep learning algorithms used in previous works, specific

cases of failure leading to gross errors were reported highlighting

potential clinical impact (Arabi et al., 2018; Arabi et al., 2019). In the

study, conducted by Yang et al., deep learning-based AC in image-

space failed in one case out of 10 subjects, where 18F-FDG uptake

was overestimated by about 50% (absolute SUV difference of 5) in the

brain (Yang et al., 2019). In the present study, 6 outliers out of 180 sub-

jects were observed, with four representative cases reported in

Figure 7 and Supplemental Figures 8–10, in addition to 8 minor cases

with similar patterns but with limited impact in terms of affected

region and SUV bias. The incidence of outliers was independent of the

radiotracer used as no evident connection was observed or could be

established between the outliers and a specific radiotracer. Likewise,

the performance of the DLAC approach was almost similar for the

F IGURE 6 Joint histogram analysis depicting the correlation
between activity concentration of PET-DLAC and PET-SegAC images
versus reference PET-CTAC images for the four neuroimaging
radiotracers
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different radiotracers, wherein no specific range of bias or signal loss/

distortion was observed for any radiotracers. Yet, slight differences in

the quantification bias and errors were observed between the different

radiotracers owing to the variable uptake patterns of the radiotracers

as well as signal intensities or activity concentrations. The incidence of

outliers when using deep learning-based solutions depends on the

nature and complexity of the problem. In this regard, direct attenuation

and scatter correction in the image domain is intrinsically an ill-posed

problem, which would challenge/complicate the training of deep learn-

ing models. This is likely one of the reasons for the occurrence of out-

liers in this study. In this regard, an increased size of the training

dataset providing a wide range of patients with a variety of anatomies/

metabolisms, is a determining factor enabling machine learning algo-

rithms to achieve higher accuracy and fewer incidence of outliers.

The architecture of the network and the training procedure, such as

hyperparameters setting, would also impact the incidence of outliers.

Assessment of the robustness of different deep learning architectures

to outliers is one of the major challenges facing the adoption of these

approaches in the clinic.

The outlier reported in Figure 7 was due to technical failure of

the algorithm since no peculiar anatomical variation or uptake pattern

was seen in this subject. As mentioned earlier, the training of the algo-

rithm was performed in both 2D and 3D modes. This artifact did not

occur on the 18F-Flortaucipir PET-DLAC images obtained from 3D

training. However, 3D training resulted in other similar types of arti-

facts in other patients (and in general slightly inferior quantitative

accuracy); and as such, we attributed the artifact in Figure 7 to a tech-

nical failure of the deep learning approach.

The other artifacts reported in Figures S8–S10 are associated

with anatomical regions wherein air or bone is adjacent to soft-tissue.

In this regard, the deep learning algorithm failed to recover the actual

activity concentration mostly around the center of the head region,

though many regions present with even more complicated anatomical

structures (such as nasal cavities with neighboring air and bone). PET-

nonAC images contain weak information about anatomical structures.

This challenges the deep learning algorithm to effectively recover the

actual activity concentration. Inclusion of structural images, in particu-

lar MRI, would not only enhance the accuracy of this approach, but

also reduce the frequency and severity of the artifacts.

PET images used in this work were acquired using a clinical

PET/CT scanner following standard acquisition and reconstruction

protocols adopted for each of the four radiotracers. Hence, these PET

images bear virtually similar image quality and noise levels. In this

light, the trained models are particularly optimized for a specific noise

level and image quality. Hence, these models may perform sub-

optimally when input images are acquired with different noise charac-

teristics or image quality. The models may result in larger quantitative

errors and higher likelihood of outliers. This issue would be more

F IGURE 7 Outlier report:
The DLAC approach resulted in
considerable pseudo-uptake in
the posterior of a single
18F-Flortaucipir PET study.
Sagittal views of PET-CTAC,
PET-SegAC, and PET-DLAC
together with their corresponding
SUV bias maps along with the

reference CT image are
presented. The plot shows SUV
profiles through the three PET
images
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serious for low-dose PET imaging, wherein PET images contain high

noise levels, which may lead to noise-induced outliers. To achieve sat-

isfactory results, the training of the models should be repeated if the

quality or noise levels of the input images are substantially different.

Though joint attenuation and scatter correction in image-space

exhibited promising performance, special attention should be paid to

potential failure of this approach, which might skew the diagnosis and

clinical interpretation of the resulting PET images.

5 | CONCLUSION

Deep learning-based joint PET attenuation and scatter correction in

image-space (DLAC) was quantitatively evaluated for four different

PET radiotracers used in clinical neuroimaging studies. Quantitative

analysis demonstrated superior performance of this approach over

the segmentation-based (SegAC) method used in the clinic. The DLAC

approach exhibited a very good and consistent performance regard-

less of the radiotracer used resulting in less than 8% absolute SUV

bias compared to the SegAC method which resulted in more than

16% bias. Nevertheless, the DLAC approach is susceptible to outliers,

leading to image artifacts and large quantification errors. Caution and

particular attention should be paid to potential failures of the DLAC

approach, which might skew the diagnosis and clinical interpretation

of the resulting PET images.
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