
 International Journal of 

Molecular Sciences

Review

Neural Stem Cell-Based Therapies and Glioblastoma
Management: Current Evidence and Clinical Challenges

Amira Yasmine Benmelouka 1, Malak Munir 2, Ahmed Sayed 2, Mohamed Salah Attia 3, Mohamad M. Ali 4,
Ahmed Negida 5,6, Badrah S. Alghamdi 7,8, Mohammad Amjad Kamal 9,10,11, George E. Barreto 12,13,* ,
Ghulam Md Ashraf 8,14 , Mostafa Meshref 15 and Eshak I. Bahbah 4

����������
�������

Citation: Benmelouka, A.Y.; Munir,

M.; Sayed, A.; Attia, M.S.; Ali, M.M.;

Negida, A.; Alghamdi, B.S.; Kamal,

M.A.; Barreto, G.E.; Ashraf, G.M.;

et al. Neural Stem Cell-Based

Therapies and Glioblastoma

Management: Current Evidence and

Clinical Challenges. Int. J. Mol. Sci.

2021, 22, 2258. https://doi.org/

10.3390/ijms22052258

Academic Editor: Arianna Scuteri

Received: 21 December 2020

Accepted: 17 February 2021

Published: 24 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Medicine, University of Algiers, Algiers 16000, Algeria; amira.yasmine.benmelouka@gmail.com
2 Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt; malakmounir@gmail.com (M.M.);

ahmedsayed8991@gmail.com (A.S.)
3 Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;

mosalahnabet@gmail.com
4 Faculty of Medicine, Al-Azhar University, Damietta 34511, Egypt;

Mohamed.Ali@domazhermedicine.edu.eg (M.M.A.); isaacbahbah@gmail.com (E.I.B.)
5 School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2UP, UK;

ahmed.said.negida@gmail.com
6 Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
7 Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University,

Jeddah 21589, Saudi Arabia; basalghamdi@kau.edu.sa
8 Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University,

Jeddah 21589, Saudi Arabia; ashraf.gm@gmail.com or gashraf@kau.edu.sa
9 West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-Related

Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China;
prof.ma.kamal@gmail.com

10 King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
11 Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
12 Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland
13 Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 32310, Chile
14 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz

University, Jeddah 21589, Saudi Arabia
15 MSc Neurology, Al-Azhar University, Cairo 11651, Egypt; mostafameshref1988@gmail.com
* Correspondence: George.Barreto@ul.ie

Abstract: Gliomas, which account for nearly a quarter of all primary CNS tumors, present signif-
icant contemporary therapeutic challenges, particularly the highest-grade variant (glioblastoma
multiforme), which has an especially poor prognosis. These difficulties are due to the tumor’s
aggressiveness and the adverse effects of radio/chemotherapy on the brain. Stem cell therapy is
an exciting area of research being explored for several medical issues. Neural stem cells, normally
present in the subventricular zone and the hippocampus, preferentially migrate to tumor masses.
Thus, they have two main advantages: They can minimize the side effects associated with systemic
radio/chemotherapy while simultaneously maximizing drug delivery to the tumor site. Another
feature of stem cell therapy is the variety of treatment approaches it allows. Stem cells can be geneti-
cally engineered into expressing a wide variety of immunomodulatory substances that can inhibit
tumor growth. They can also be used as delivery vehicles for oncolytic viral vectors, which can then
be used to combat the tumorous mass. An alternative approach would be to combine stem cells with
prodrugs, which can subsequently convert them into the active form upon migration to the tumor
mass. As with any therapeutic modality still in its infancy, much of the research regarding their use
is primarily based upon knowledge gained from animal studies, and a number of ongoing clinical
trials are currently investigating their effectiveness in humans. The aim of this review is to highlight
the current state of stem cell therapy in the treatment of gliomas, exploring the different mechanistic
approaches, clinical applicability, and the existing limitations .
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1. Introduction

Gliomas are a group of primary tumors of the central nervous system (CNS) originat-
ing from glial cells [1]. According to the Central Brain Tumor Registry of the United States
(CBTRUS), gliomas account for around 25% of all primary brain tumors, with glioblastoma
being the most common glioma, as well as the most common malignant CNS tumor [2]. His-
tologically, gliomas originate from three types of glial cells: Oligodendrocytes, ependymal
cells, and astrocytes. The most common histological variant of glioma is astrocytic tumors
accounting for over 70% of all gliomas [2]. The most recent World Health Organization
(WHO) classification of gliomas is based on both histological—according to their cell of
origin (e.g., astrocytoma, ependymoma)—and molecular—according to specific acquired
mutations (e.g., diffuse astrocytoma, IDH-mutant)—characteristics [3]. Tumors are also
graded on a scale from one to four, with grade IV glioblastomas being the most invasive
and lethal [3]. In contrast to low-grade gliomas, in which concomitant chemotherapy is not
always required [4,5], the infiltrative and diffuse nature of high-grade “malignant” gliomas
mandates the use of chemotherapy [6].

The management of malignant gliomas poses several challenges, in part due to the
heterogeneous and resistant nature of neoplasm, as well as the obstacles faced when ad-
ministering high-dose radiation and chemotherapy in tissue as vulnerable as that of the
CNS. Limitations to therapy also include the unfavorable pharmacokinetics of chemother-
apeutic drugs, which prevent them from efficiently penetrating the blood–brain barrier,
and frequent relapses due to the metastatic seeding associated with glioblastoma [7,8].
Shortcomings in the current treatment options for malignant gliomas have sparked an
interest in the search for novel techniques such as direct receptor antagonists, immune
therapy, and stem cell therapy.

Stem cells (SCs) are precursor cells that retain the capacity to differentiate into various
types of tissues. Stem cells are classified according to their origin; however, adult stem
cells, such as mesenchymal stem cells (MSCs), are the most commonly used therapeutically.
MSCs are multipotent stem cells that can differentiate into all cells of a mesenchymal
lineage [9,10] and are isolated from the bone marrow, adipose tissue, umbilical cord, and
dental pulp. Neural stem cells (NSC) are specific types of adult stem cells found in the
subependymal zone and the dentate gyrus, and are responsible for the regeneration of
neurons, astrocytes, and oligodendrocytes [11].

Stem cell therapy involves either the administration of exogenous stem cells or the
mobilization of endogenous stem cells. Stem cell mobilization is an important approach
in the management of degenerative disorders, whereas the administration of exogenous
stem cells is more pertinent in the management of malignant gliomas. Several studies have
demonstrated the ability of stem cells to target brain pathologies, such as areas of demyeli-
nation, ischemia, and neoplasms [7,12,13]. Both MSCs and NSCs were found to have high
tropism to malignant gliomas due to the overexpression of cell surface markers, as well as
the secretion of molecular signals in the tumor’s microenvironment [14,15]. Factors such as
cytokines (e.g., tumor necrosis factor alpha “TNF-α,” interkelukin-8 “IL-8,” and stromal
cell-derived factor alpha “SDF-α”) [14,16–18], hypoxia-inducible factor-1a, hepatocyte
growth factor, and vascular endothelial growth factor have all been implicated in stem cell
migration toward neoplasms [19,20], as well as tumor extracellular matrix components
such as tenascin-C, laminin, and inhibitor of matrix metalloproteinase-1 [19,21].

This intrinsic property of stem cells has prodded interest in their ability to serve as
drug delivery systems, which could potentially circumvent the blood–brain barrier. In vivo
animal studies have shown that the modification of stem cells can directly target neoplasms
through various mechanisms, decrease the tumor burden, and thus prolong survival.
Molecularly engineered stem cells can be modified to (1) prevent angiogenesis, (2) deliver
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inflammatory cytokines and mediate immune response, (3) initiate ligand-activated anti-
tumor pathways, (4) compete for certain pro-proliferative ligands and thus inhibit tumor
growth, (5) release anti-tumor toxins, (6) induce “cell suicide” through well-established
enzyme-prodrug systems, (7) deliver nanoparticles and oncogenic viral particles, and
finally, (8) release vesicles containing anti-tumor microRNA (miRNA) (Figure 1) [7].
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In this review, we aim to provide an overview of the current state of stem cell therapy
in the treatment of gliomas. The articles chosen for inclusion in this review were those
investigating the effects of stem cell therapy in both human and animal trials, as well as
additional articles outlining the mechanisms of action of the various trialed modalities
through experimentation. We will explore the intrinsic properties of stem cells that make
an attractive treatment option, as well as the various mechanisms that have been experi-
mentally explored. In addition, we aim to provide a brief synopsis of the applicability of
this approach in humans, as well as the limitations thereof.

2. Tropism, Migration, and Tumor Homing Properties of Neural Stem Cells

NSCs are mainly detected in the hippocampus and the subventricular zone situ-
ated in the dentate gyrus of the brain [22,23]. Thanks to their tropic properties, they can
serve as delivery vehicles of a variety of elements such as antitumor drugs and suicide
genes in a selective way to the tumoral mass [24]. Therefore, NSCs have been exten-
sively investigated in drug and oncolytic viruses delivery in brain malignancies, especially
medulloblastomas [25] and gliomas [26–28]. This tropism was explored in rodent brains
through the simultaneous NSCs and glioblastoma cells implementation [29]. NSCs have
the ability to migrate toward malignant brain masses of glial origin and tumors of other
origins such as medulloblastoma and metastatic cancers such as melanoma and breast
neoplasms [25,30,31].

The migratory movement of NSCs starts about 50 min after their transplantation, and
the number of stem cells in the tumor site increases slowly up to 5 days in the region, with
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a significant expansion up to 15 days later [32]. This migration of NCSs to the malignant
mass may progress in a dose-dependent manner [33], and it is under the influence of the
tumoral microenvironment components [34]. Furthermore, the killing capacity may also be
influenced by the distance between the delivery site and the tumor. A recent report showed
that direct injection of the potent stem cells into the tumor foci led to a rapid decrease in
tumor growth with a reduction in the mass volume to sub-detection levels after ten days
post-NCSs delivery, whereas implementation at a distance of two millimeters far from the
mass was associated with a significant attenuation of tumor proliferation by day 14 and a
reduction in the mass to sub-detection level by day 21 after NSC delivery [34].

The migratory capacity of NCSs is dependent on chemotactic factors. Accordingly, the
presence of multifocal masses may reduce the killing capacities of NSC therapies due to
the decrease in the amount of NSCs reaching each mass, as each focus releases chemotactic
factors and thus may dilute the NSC dose per tumor mass [34]. The exact mechanistic
pathways that guide NSCs homing to gliomas are still unknown. Microglia and astrocytes
secrete a variety of angiogenic and inflammatory agents that play a role in NSC homing [35].
These homing properties can also be triggered by hypoxia via the secretion of a key element
called the Transcription Factor Hypoxia-Inducible Factor-1α (HIF-1α). HIF-1α can promote
the upregulation of chemoattractant substances, including various chemokines and other
molecules acting as growth factors like insulin-like growth factor 1 (IGF1), stromal cell-
derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), monocyte chemotactic
protein 1 (MCP1), and fibroblast growth factor 2 (FGF2) [36]. The down-regulation of
HIF-1α in glioblastoma cells leads to the decline of SDF-1 and the expression of VEGF with
NSC tumor tropism suppression [37]. Finally, as conventional cancer therapies, namely
radiation and chemotherapy, are associated with the hypoxia-induced upregulation of
chemokines by malignant cells, the use of these therapies concomitantly with NSC delivery
may enhance the chemotactic pathways and signals that potentiate stem cell migration and
thus allow improved overall therapeutic efficacy [38] (Figure 2).
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3. Neuroprotective and Neurotrophic Functions of Neural Stem Cells Therapy

Endogenous subventricular stem cells have the ability to divide and to migrate to the
injured site in stroke and other CNS injuries. They can also undergo a process of differenti-
ation resulting in mature cells that can participate in the recovery [39–42]. The application
of NSCs is a promising research avenue due to their potential in improving the outcome of
CNS injury and neurodegeneration [43]. The multipotency and self-regenerative attributes
of NSCs are crucial for nervous tissue repair [44]. NSCs are thus considered as an ideal
source to continuously produce glial cells and neurons to repair neural networks in the
damaged nervous system [45]. NSCs can enhance the recovery from brain injury through
their migration and cell replacement properties, in addition to the enhancement of nutri-
tional and trophic supplementation effects using paracrine processes [46,47]. They can
also control inflammation in the brain and provide some neuroprotective activities [48–50].
Moreover, NSC therapies can also positively influence intracranial blood perfusion via pro-
moting angiogenesis as they can increase angiogenic factors expression in the brain [51,52].
In addition to their numerous advantages, in vivo studies have shown that intravenously
administered NSCs can cross the blood–brain barrier [53,54] and exert their activities
without producing toxicity in the normal components of the brain [55]. Furthermore, the
ability of NSCs to cross the blood–brain barrier has been closely linked to the expression
of certain cell surface adhesion molecules such as CD44, VLA-4 [56], as well as the in-
flammatory state of the CNS. In an in vivo study by Pluchio et al., tagged NSCs injected
intravenously were detected in the CNS in mice pre-treated with lipopolysaccharide or
tumor necrosis factor and interleukin 1β—inflammatory mediators used to mimic an
inflammatory-like state [56]. More specifically, in an in vivo model of gliomas, the expres-
sion of VEGF, HGF, and zonulin—factors that increase the permeability of the blood–brain
barrier—induced transmigration of the NSCs to the CNS after being injected into the sys-
temic circulation [57]. In addition, data from recent reports showed that the systemic stem
cells’ administration efficiency was much higher in animals with neurodegeneration than
wild-type animals [56,58]. The in vivo-tracking of NSCs homing to glioblastoma using
immuno-histochemical studies revealed that the systemically administrated progenitor
cells can cross the barrier and localize in glioblastoma foci [54,59]. The quantitative optical
analysis showed that, when the intravenous route is used, about 1.4% of NSCs co-localized
with the tumor while the intraventricular delivery resulted in the localization of more than
4% of NSCs [54]. Politi et al. monitored the accumulation of intravenously administered
NPCs in a model of autoimmune encephalomyelitis using a human magnetic resonance
scanner. They could detect the transplanted cells in about 80% of the brain lesions 24 h
after the injection. The continued assessment showed the presence of NPCs 20 days after
the injection. The neuropathological study of the brains showed that the transplanted stem
cells were exclusively in inflammatory regions of neurodegeneration and not in normal
tissue, suggesting their potential role in the reversal of the inflammatory process [60].
Finally, the implementation of exogenous human NSCs into the dentate gyrus can also
activate the production of endogenous NSCs [58].

4. Effects of Neural Stem Cells in Glioma

The subcutaneous injection of normal NSCs and human glioma (U251) cell lines
in nude mice led to the promotion of the animals’ survival [59]. This observation was
concomitant with a decline in mutant p53 production and phosphorylation of protein
kinase B (AKT) and extracellular-regulated kinase (ERK1/2). A significant increase in an
important apoptotic molecule called caspase-3 was also noted, suggesting that normal
NSCs may exert direct effects against malignant glioma [59]. In another report, cultures
containing U87 stem-like cells in contact with an NSC-conditioned medium showed low
viability and multiplication of U87 cells without significant modulation of their astrocytic
differentiation capacity. Moreover, the invasive and migratory functions of U87 stem-like
cells were also reduced [60].
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It was also established that endogenous normal stem cells belonging to the subven-
tricular zone can also target glioma-proliferating cells and attenuate the mass growth with
a potential impact on survival [61]. Vitamin K-dependent factor protein S, released by the
tumoral environment, can trigger this specific tropism via the modulation of the tyrosine
kinase receptor (Tyro3) action [62].

5. Immunomodulation

As previously mentioned, genetic alteration of an NSC can induce the production
of anti-neoplastic compounds near the tumor; one such class is immunomodulators. For
instance, investigators have programmed NSCs to express IL-4 and IL-12 in separate
experiments [63,64]. Both approaches have succeeded in reducing tumor burden, as well as
prolonging survival in mice. IL-12 is a known stimulator of T-cells that not only activates
natural killer cells, but also induces differentiation of T-cells to the Th1 subtype of CD4+
T-cells [65]. Accordingly, Ehtesham et al. showed that the improved survival seen upon
injecting IL-12-secreting NSCs was associated with a greater degree of tumor infiltration by
CD4+ and CD8+ T-cells [64]. IL-4 has been shown to enhance the recruitment of precursor
T-cells, thus enhancing the immune response against the tumor [66]. Using IL-4, Benedetti
et al. demonstrated the efficacy of IL-4 as a tumor-combating cytokine, and also showed
that delivering it specifically via NSCs led to improved survival durations compared to
introducing IL-4 using other methods, such as retroviral transfer. While retroviral transfer
of IL-4 did prolong mice survival compared to the control group, it was still significantly
less beneficial than introducing the same cytokine using NSCs, suggesting that the intrinsic
anti-tumor activity of NSCs may, in part, be responsible for the improvements [63]. In
addition, other immunomodulators, including different interleukins (IL-23 and 24), as well
as interferon-β, have also been used [64,67–70]. IL-23 has been shown to stimulate the
lymphocytic response against gliomas—mainly by inducing CD8+-cells—but also partially
through inducing CD4+ and NK cells. There is some evidence that this response may be
mediated through increased IFN-γ expression, as its mRNA was found to be upregulated
in the related experiment [69]. IL-24, on the other hand, induces a pro-apoptotic effect by
suppressing the translation of anti-apoptotic proteins such as BCL-XL, as well as promoting
the transcription of certain pro-apoptotic proteins, such as GADD34 [71]. Interferon-β,
through its differential effects on the expression of certain genes, induces an apoptotic and
immune response in addition to the inhibition of angiogenesis [72].

Another promising molecule is the TNF-related apoptosis-inducing ligand (TRAIL),
which by binding death receptors (DR) 4 and 5, can induce apoptosis in malignant cells [73].
By binding DR4/5, TRAIL induces them to recruit Fas-associated protein with death
domain (FADD), which then binds to caspases 8/10 [74,75]. Caspase 8/10 are both well-
known initiators of apoptosis (known as “initiator” caspases) that induce cell death [76,77].
Animal studies have documented an inhibition of tumor growth, as well as increased
rates of apoptosis, as a result of NSCs that are genetically altered to express TRAIL in
combination with other synergistic substances discussed below [78–80].

The use of a secretory form (denoted S-TRAIL), in combination with complementary
anti-tumor substances, can further enhance its ability to combat tumors. For instance, by
using short hairpin RNA (shRNA), we can silence the genetic expression of Bcl2, a known
anti-apoptotic protein [79]. Alternatively, we can inhibit microRNA 21, which is known
to promote Bcl2 expression [81]. Either of the two approaches can further potentiate the
pro-apoptotic effect of TRAIL, and thereby increase efficacy.

An alternative method involves hyper-sensitizing the tumor cells to S-TRAIL such that
it exerts maximal apoptotic effects. Combining TRAIL with proteasome inhibitors leads to
the upregulation of DR5 expression—the target receptor of TRAIL. Proteasome inhibitors
generate reactive oxygen species (ROS), which trigger p53 binding to regulatory introns of
the DR5 gene and increase its expressions levels [82]. Furthermore, inhibitors of nuclear
factor kappa-beta (NF-κB) were decreased, and similar to p53, binding of NF-κB to the
intron gene of DR5 upregulates its expression. Increased DR5 production potentiates the
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proapoptotic effect of S-TRAIL and thus allows greater therapeutic potential. Accordingly,
it is unsurprising that experiments in which S-TRAIL is combined with a proteasomal
inhibitor, such as bortezomib, show improved survival in models with bortezomib added
on top of TRAIL [80].

One particularly interesting observation in the study by Balyasnikova et al. is that
the membrane-bound version (denoted mTRAIL) was more efficacious than the soluble
variant, as glioma cells were more susceptible to apoptosis after co-culture with the lat-
ter [80]. In discussing their results, the authors hypothesized that this may have been
due to the membrane-bound version (mTRAIL) being more difficult to internalize within
the target cell than the soluble version (S-TRAIL). Interestingly, Krohlhaas et al. had
demonstrated that receptor-mediated endocytosis of TRAIL actually weakens—rather than
strengthens—TRAIL’s apoptotic signal; therefore, the increased effectiveness of mTRAIL
may be attributable to decreased internalization and thus greater efficacy [83].

Investigators have also trialed a number of additional combinations. For instance, by
combining S-TRAIL with temozolomide, a DNA alkylating agent, researchers were able to
reduce tumor progression in TRAIL-resistant cell lines [78]. Another combination includes
the usage of lipoxygenase inhibitors in addition to TRAIL-secreting mesenchymal stem
cells. Lipoxygenase is an enzyme catalyzing the formation of leukotrienes, which are well
known contributors to tumor growth [84]. By inhibiting their activity using a lipoxygenase
inhibitor (MK886), investigators were able to demonstrate enhanced levels of apoptosis in
both TRAIL-resistant and TRAIL-sensitive cell lines [85].

6. Enzyme-Prodrug System

An alternative therapeutic approach involving NSCs is to reprogram them such that
they express the enzymes required for the activation of specific prodrugs. These specific
prodrugs, once they reach the tumor—as a result of NSC migration—will then be activated
by these enzymes at the particular location of the tumor, thereby allowing us to selectively
release the toxic drug metabolites precisely where they are needed [53,86,87].

One prodrug is ganciclovir, a guanosine analog that inhibits DNA polymerase. This
drug, traditionally used as an antiviral, is activated by phosphorylation via the enzyme
thymidine kinase. By genetically altering NSCs such that they express thymidine kinase,
we can ensure the activation of ganciclovir near the tumor [87]. Another promising prodrug
is flucytosine, which requires cytosine deaminase in order to form fluorouracil, the active
compound. Fluorouracil can then inhibit DNA polymerase activity. Animal studies have
shown that both these prodrugs result in prolonged mice survival in addition to a reduced
tumor burden [53,86].

7. Viral Vectors

An intriguing novel approach involves the use of SCs as delivery vehicles carrying
viruses that can replicate in, and subsequently kill, tumor cells. Injecting replication-
competent adenoviruses allows us to make use of this tumor-toxic effect and thus theoreti-
cally alleviate the tumor burden. However, one major downside to this approach is that a
simple injection of viral particles does not allow a satisfactory degree of tumor penetration.
Thus, there is enormous potential in combining stem cells, which can hone in on the target
lesion, and toxic adenoviruses that can then kill said targets. Indeed, using mesenchymal
stem cells (MSCs), Sonabend et al. were able to deliver a 46-times-higher dose than by sim-
ply injecting the viral particle alone [88]. Yong et al. were able to demonstrate significantly
improved survival for mice injected with adenovirus-infected mesenchymal stem cells,
with the median survival increasing from 42 days in the control group to 75.5 days in the
treatment group [89]. Comparing MSCs to NSCs, Ahmed et al.’s results demonstrate the
superiority of NSCs [90]. The authors showed that, despite both cells being well-capable
of acting as viral vehicles, NSC-treated mice exhibited significantly longer survival than
the MSC-treated group (68.5 vs. 44 days, respectively). In addition, MSCs showed greater
degrees of migration to negative controls, indicating that NSCs may have a more specific



Int. J. Mol. Sci. 2021, 22, 2258 8 of 15

affinity. Based on these results, it is clear that NSCs are, overall, more effective vehicles of
oncolytic adenoviridae in gliomas.

Other viral candidates include the herpes simplex virus (HSV), which has been trialed
in several studies. Several mutant variants have been described. By mutating certain
pathogenic genes in HSV, we can ensure its safety and limit its pathogenicity in humans.
One such key gene is Gamma 34.5, which is highly important for the virus’ pathogenic
effect. This gene allows HSV to prevent interferons from shutting off protein synthesis.
As the ability of interferons to halt protein synthesis is a key mechanism by which our
immune system combats viruses, this gene plays a vital role in HSV’s damaging effect. By
deleting it, we lessen the risk of adverse effects [91,92]. However, this comes at the cost
of limiting HSV’s replication capacity, thereby limiting its therapeutic effect. This type of
oncolytic HSV (oHSV) is named HSV1716 [93].

Further developments have led to the development of the G207 type of HSV, which
carries an additional mutation in the UL39 gene. This mutation impairs the activity of viral
ribonucleotide reductase (RR). RR is highly active in tumor cells; therefore, G207 oHSV,
which lacks its own viral RR, can make use of tumor cell RR. As such, this mutation serves
to enhance the selectivity of oHSV for tumor cells and, at the same time, attenuate its
pathogenicity to the host [94]. More recently, G47 oHSV, which carries an ICP47 deletion,
has been trialed. This deletion allows increased MHC1 activity and therefore increases
lymphocytic tumor infiltration [95].

A different prodrug/enzyme modality is based on the transplantation of allogeneic
human NSCs that can express the enzyme carboxylesterase (CE) for glioblastoma manage-
ment. This method is used along with parenteral treatment with irinotecan (also called
CPT-11), which is a prodrug converted by CE to SN-38 (a topoisomerase I inhibitor) [27].

8. Other Potential Approaches and Considerations

Loading NSC with mesoporous nanoparticles that contain a chemotherapeutic drug
named doxorubicin can be used to treat malignant glial cells’ uncontrolled proliferation [96].
It is thought that the death of NSCs leads to the excretion of these nanoparticles into
glioma [96]. Other particles were also used with promising results such as NSC-loaded
gold nanorods [97].

Pseudomonas exotoxin (PE) has the potency of arresting the synthesis of cellular
proteins via the modulation of the elongation factor-2 (EF-2). This exotoxin can trigger
antitumor properties in both hematologic cancers including Hodgkin’s lymphoma, and
leukemia, as well as nonhematologic tumors [98–100]. Engineered NSC that can secrete
PE-cytotoxins can be used as an immunotoxin delivery method to inhibit GBM growth and
recurrence [101].

Engineered NSCs can deliver antiangiogenic thrombospondin (TSP-1) in these regions
and consequently attenuate angiogenesis and diminish glioma progression, leading to
better survival [102]. Furthermore, oligonucleotide therapeutics (ONTs) can be used in the
modulation of gene expression to manage brain malignancies [103]. Exosomes secreted by
NSCs may influence the transfer of synthetic ONTs, leading to their rapid internalization
and retention by NSCs. This delivery technique is being explored in glioma cells [104].

Finally, it is likely that if NSC-based therapy is to gain clinical utility, it may be in
combination with, rather than as a replacement of, other modes of therapy currently
forming the cornerstone of glioma treatment, such as radiation and chemotherapy; to that
end, Tobias et al. have shown a 46% increase in the median survival of mice treated with
the combination of NSCs carrying oncolytic adenoviruses and temozolomide/radiation,
with the greatest efficacy being reported in cases where the stem cells are injected before,
not after, chemoradiotherapy application [105].

9. Clinical Trials and Administration of Therapy

There is a paucity of clinical studies investigating the role of stem cells in the man-
agement of gliomas. Portnow et al. conducted the first human study in 15 patients with
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recurrent high-grade gliomas; the authors of the study report no significant difference
in progression-free or overall survival [106]. However, it is important to note that the
primary aim of the study was to establish the safety of a single stem cell injection and prove
the ability of neural stem cells to mediate an appropriate enzyme-prodrug system rather
than measure the effect of the treatment on patient outcomes; hence, the findings of this
study serve merely as a proof of concept in supporting the idea that genetically modified
stem cells, when injected intracerebrally, are effective in distributing the targeted therapy
and are relatively safe [106]. A search of the NIH clinical trials database revealed four
active/completed phase I clinical studies. The first investigated neural stem cells that have
been genetically modified to release E. coli deaminase, an example of an enzyme-prodrug
system in which the deaminase converts the prodrug flucytosine into 5-fluorouracil—an
antimetabolite that induces cell suicide [107]. The second phase I trial is currently active
and investigating the same enzyme-prodrug system in combination with Leucovorin [108].
Furthermore, there are two registered trials exploring the response of high-grade gliomas
to stem cells loaded with an oncolytic virus; the first [109] was recently completed with
no results posted, while the second [110] is still in the recruitment phase. Results of these
clinical trials are highly anticipated as they could potentially revolutionize the current
approach to personalized therapy.

The most commonly discussed methods of stem cell delivery include: Intracerebral,
or intraventricular administration. The aforementioned clinical studies use intracerebral
(IC) administration; however, there is growing evidence that favors the intraventricular
route (IVN). Intracerebral injection has the advantage of providing a direct and tumor-
specific distribution [111]; however, it is associated with several limitations. According to
Gutova et al., intraventricular administration can overcome the four limitations of intracere-
bral injection that include: (1) Restrictions on the volume that can be injected, (2) decreased
NSC viability due to the lack of a supportive environment—compared to IVN delivery
where the CSF provides a less hostile environment, (3) scar formation around the intra-
tumoral catheter—which subsequently restricts NSC migration, and (4) limitations due
to lack of technical skill for intracerebral catheter placement—as compared to Ommaya
reservoir placement [112]; findings by Panciani et al. also support the IVN route as being
more optimal [113]. Table 1 summarizes active clinical trials evaluating NSC-based therapy
in glioma patients.

Table 1. Active clinical trials evaluating NSC-based therapy in glioma patients.

Registration
Number Stem Cell Type Approach Phase Anti-tumor

Agent
Route of Ad-
ministration Study Status

NCT01172964 NSC Enzyme-
prodrug Phase I 5-fluorouracil Intracerebral Completed

NCT02015819 NSC Enzyme-
prodrug Phase I 5-fluorouracil Intracerebral Active, not

recruiting

NCT03072134 NSC Oncolytic virus Phase I Oncolytic
Adenovirus Intracerebral Active, not

recruiting

NCT03896568 NSC Oncolytic virus Phase I
Oncolytic

Adenovirus
Ad5-DNX-2401

Intracerebral Recruiting

Data were obtained from NIH. U.S. National Library of Medicine (https://www.clinicaltrials.gov/).

10. Limitations of Therapy

First, one must note that the effects of stem cells, particularly MSCs, have not been
completely uniform in the variety of experimental settings in which they have been trialed.
These discrepancies were deeply analyzed by Klopp et al. [114], who have illustrated a
number of contradictory results in the literature. The reviewers conclude that some of these
differences may be due to the heterogeneity of MSCs used, the difference between fetal and

https://www.clinicaltrials.gov/
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adult MSCs (with the latter showing a greater tumor-promoting effect) [114], as well as the
timing of MSC injection, as most studies reporting a growth-promoting effect employed
simultaneous injection of MSCs and tumor cells, whereas most of those showing a more
inhibitory effect had introduced MSCs at a latter phase in tumor activity. These intriguing
results suggest that the particular phase of tumor growth, early versus late, may strongly
influence the effect of MSCs [114].

In addition, as with any other animal model of disease, key differences exist between
animal models and the actual clinically encountered entities. For instance, animal models
of glioblastomas are not as well-established as their human counterparts. This time-
difference allows the latter to be relatively well-vascularized, thus supplying greater fuel
for tumor growth. In addition, greater lapses of time allow tumors to become relatively
more heterogenous genetically, an effect that can frustrate clinicians by endowing tumors
with treatment resistance and greater degrees of aggressiveness.

Furthermore, it must be noted that stem cell therapy is not entirely free of risk. For
instance, the utilization of viral vectors, such as oHSV, carries the theoretical risk of reactiva-
tion. This, however, has been alleviated with the development of strains that have greater
mutation burdens and more tumor-specificity, as opposed to older strains. For instance,
the older Gamma 34.5 mutant carried a potential risk of transforming into the wild-type
variety as it was only this particular mutation that rendered it incapable of harming the
host. Further developments, which have created greater safety margins by introducing
further mutations, have contributed to increasing the safety of these therapies [94,95].

11. Conclusions

Using NSC technologies in neuro-oncology is opening new insights for better patients’
management. Although the clinical data are still scarce, the migratory and tumor homing
features of NSCs can be exploited to provide an important drug delivery source that may
help in targeting malignant cells with a reduced toxicity. Yet, the durability of engineered
stem cells effects has to be investigated and enhanced to optimize their killing capacities
and to avoid the recurrence of the neoplasm. In addition, as many therapy modalities can
be provided by NSCs, the best approaches and the optimal combinations that can provide
satisfactory clinical results still have to be identified and applied in glioma research.
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