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Abstract 

The translation of images of chemical structures into machine-readable representations of the depicted molecules is 
known as optical chemical structure recognition (OCSR). There has been a lot of progress over the last three decades 
in this field, but the development of systems for the recognition of complex hand-drawn structure depictions is still at 
the beginning. Currently, there is no data for the systematic evaluation of OCSR methods on hand-drawn structures 
available. Here we present DECIMER — Hand-drawn molecule images, a standardised, openly available benchmark 
dataset of 5088 hand-drawn depictions of diversely picked chemical structures. Every structure depiction in the 
dataset is mapped to a machine-readable representation of the underlying molecule. The dataset is openly available 
and published under the CC-BY 4.0 licence which applies very few limitations. We hope that it will contribute to the 
further development of the field.
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Objective
Most chemical information is published in text and 
images in the primary scientific literature. The automated 
conversion of these unstructured, human-readable data 
formats into structured, machine-readable representa-
tions is essential to make the information available in 

publicly accessible databases. The reliable extraction of 
information from the depictions of the chemical struc-
tures is an ongoing challenge that still has not been fully 
solved yet. Chemical structure depictions are converted 
into computer-readable representations using optical 
chemical structure recognition (OCSR) systems [1].

The field of OCSR has developed significantly over the 
last 30 years. Most OCSR tools follow a hard-coded set of 
rules to assemble the underlying molecule based on the 
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elements in the vectorised image [2–11]. By 2020 several 
deep learning-based solutions are available [12–18].

In order to evaluate the performance of the available 
OCSR tools, realistic benchmark datasets are necessary. 
At present, there are four real-world datasets available 
[1, 9, 19] that contain chemical structure depictions that 
were collected and curated from publications and pat-
ents. The evaluation of the performance on realistic data 
is crucial to demonstrate whether the tools are robust 
enough to be used in an automated chemical literature 
mining process.

The resolution of hand-drawn chemical structures 
is a more challenging task than the resolution of auto-
matically generated depictions. In addition to the vary-
ing depiction features which are present anyway, the 
individual, unique way of drawing the structure adds an 
increased level of complexity. In 2021, the deep learn-
ing-based OCSR tool ChemPix [15] demonstrated its 
capability to interpret simple hand-drawn hydrocar-
bon structures with high accuracy. There also are a few 
closed-source methods and commercial systems available 
that claim to be capable of resolving hand-drawn chemi-
cal structures [20–22]. The authors of the deep-learning-
based OCSR tool img2mol demonstrated the capability 

of their tool to recognise some hand-drawn chemical 
structures that they had picked themselves and noted the 
lack of a standardised benchmark set [14].

With the development of more OCSR tools that focus 
on the resolution of hand-drawn chemical structure 
depictions, there is a need for a standardised dataset 
to evaluate their performance. Here we present DECI-
MER  —  Hand-drawn molecule images, a set of 5088 
hand-drawn chemical structures depictions. Every image 
is mapped to a machine-readable representation of the 
underlying molecule. The diversely picked molecules rep-
resent a wide variety of small molecules. The dataset was 
created to facilitate the ongoing development in the field 
of OCSR and is openly accessible.

Data description
The dataset consists of 5088 PNG images of unique 
hand-drawn chemical structure depictions (Fig. 1) which 
are mapped to their corresponding SMILES [23] string as 
well as an SD file. The structures have been drawn by 24 
volunteers from the Westphalian University of Applied 
Sciences, Campus Recklinghausen, Germany, who have 
graciously offered to use their free time to contribute to 
the generation of this dataset.

Fig. 1 Examples of hand-drawn chemical structure depictions from the dataset
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The molecules have been picked from all structures 
in PubChem [24] using RDKit’s implementation of the 
MaxMin algorithm [25] based on Morgan fingerprints 
[26] to ensure a diverse coverage of the chemical space. 
The only filtering rule that has been applied is a molecu-
lar weight maximum of 1500 Da. As a consequence, fea-
tures like stereochemical information, charged groups 
as well as different types of isotopes are present in the 
dataset.

There are two categories of images:

Drawn on a piece of white paper and scanned (Fig. 2)
Drawn using a mobile device or tablet and directly 
saved as an image (Fig. 3).

Curation
In total, 6000 diverse molecules were selected from 
PubChem using RDKit’s implementation of the MaxMin 
algorithm based on Morgan fingerprints. Subsequently, 
CDK Depict [27], a structure depiction generator based 
on the Chemistry Development Kit (CDK) [28], was used 
to create production-quality 2D images in batches. Each 
batch of images was then converted into PDF files and 
they were distributed among the volunteers. Using the 
chemical structure depictions generated by CDK as a 

visual template, each volunteer drew the structures on a 
piece of paper using a black or blue pen or on their tablet 
using an input device.

Each volunteer sent back the scanned images or the 
images generated using their device after completing a 
batch. The curators reviewed the drawings, manually con-
firmed the correctness of the molecules, cropped the 
scanned images and stored them in separate image files. As 
part of the curation, structures that weren’t correct due to 
human error were discarded. A total of 568 images out of 
6000 were rejected due to issues with the depicted structure. 
Another 344 structures were not returned by the volunteers. 
This resulted in the final dataset of 5088 images in total.

An identifier was assigned to each image, and the same 
identifier was used to label the SD file which was gener-
ated using the CDK. Additionally, the dataset contains a 
file containing a table of the identifiers and correspond-
ing SMILES representations.

FAIR‑ification
The following steps were taken in order to make the data-
set findable, accessible, interoperable and reusable (FAIR) 
[29]. The dataset was deposited in a publicly accessible 
data repository, in this case, Zenodo. This ensures that 
the dataset is easily findable. Furthermore, Zenodo pro-
vides a digital object identifier (DOI) that can be used 
to locate the dataset and it can also easily be integrated 
into Github as well. With Zenodo being an open, public 
repository, the dataset can be accessed from any part of 
the globe. To make it as interoperable as possible, the gen-
erated images use PNG as the final image format, which 
can be used across a variety of operating systems. Addi-
tionally, SMILES and SDF are representations of chemical 
structures which can be read by every cheminformatics 
toolkit. The dataset has been published under the CC-BY 
4.0 licence. This licence includes that every user can redis-
tribute or change the data as much as they want as long as 
they refer to the original authors when publishing results 
based on it. It is possible to use the data for non-commer-
cial or commercial purposes without further obligations.

Limitation
No restrictions or limitations apply to using and reusing 
the dataset. Everyone can use this dataset as a standard 
benchmark set for the evaluation of the performance of 
their OCSR tools. The dataset includes a wide range of 
chemical structures and represents a much larger chemi-
cal space. The structures were drawn by various indi-
viduals to ensure the diversity of drawing styles. The 
main limitation is caused by the molecular weight filter 
(< 1500Da) as it excludes certain molecules like big mac-
rocycles, proteins or artificial polymers. Additionally, 
Markush structures are not represented.

Fig. 2 A chemical structure depiction generated by CDK, sketched 
on a sheet of paper and scanned as an image file

Fig. 3 A chemical structure depiction generated by CDK, sketched 
on a tablet and saved as an image file
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Due to the limited number of images in this dataset, we 
do not recommend attempting to train a deep learning 
model using this dataset. We highly recommended using 
it exclusively for benchmarking instead of fitting the tools 
to the dataset.

Abbreviations
CDK: Chemistry development kit; CC: Creative commons; DOI: Digital object 
identifier; FAIR: Findable, accessible, interoperable, and reusable; OCSR: Optical 
chemical structure recognition; PDF: Portable document format; PNG: Portable 
network graphics; SDF: Structural data file; SDG: Structure diagram generator; 
SMILES: Simplified molecular-input line-entry system.
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