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The field of genetic epidemiology is relatively young and brings together genetics, epidemiology, and
biostatistics to identify and implement the best study designs and statistical analyses for identifying genes
controlling risk for complex and heterogeneous diseases (i.e., those where genes and environmental risk
factors both contribute to etiology). The field has moved quickly over the past 40 years partly because the
technology of genotyping and sequencing has forced it to adapt while adhering to the fundamental principles
of genetics. In the last two decades, the available tools for genetic epidemiology have expanded from a genetic
focus (considering 1 gene at a time) to a genomic focus (considering the entire genome), and now they must
further expand to integrate information from other “-omics” (e.g., epigenomics, transcriptomics as measured
by RNA expression) at both the individual and the population levels. Additionally, we can now also evaluate
gene and environment interactions across populations to better understand exposure and the heterogeneity in
disease risk. The future challenges facing genetic epidemiology are considerable both in scale and techniques,
but the importance of the field will not diminish because by design it ties scientific goals with public health
applications.
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Abbreviations: GWAS, genome-wide association study; RCT, randomized controlled trial; SNP, single nucleotide polymorphism.

The emergence of modern genetics is generally attributed
to Gregor Mendel, the Austrian monk who used peas to
explain the principles of inheritance. His work laid the
foundation for genetics and defined the basic ideas of genes
as the functional unit of inheritance where different alleles
of a gene control an observable phenotype (1). After the
discovery of the molecular structure of DNA in 1953, this led
to the central dogma of genetics where information encoded
in DNA is transcribed into RNA and then translated into
protein, which ultimately results in a phenotype.

However, the field of genetic epidemiology is much
younger, and was first described by Neel and Schull in 1954
as “epidemiologic genetics” where the focus was on trying to
understand the role of genetics in determining risk to chronic
diseases, where known nongenetic factors also influence
risk (2, 3). The mixing of distinct disciplines (genetics and
epidemiology) required individuals to think about how genes

and nongenetic factors might control familial aggregation of
a phenotype (a disease or a quantitative trait) where multiple
risk factors are in play. In 1967, Morton, Chung, and Mi
coined the term “genetic epidemiology” and defined it as
“a science that deals with etiology, distribution, and control
of disease in groups of relatives and with inherited causes
of disease in populations” (3, p. 1). From this definition,
the new field of genetic epidemiology evolved, drawing
methods and tools from epidemiology, biostatistics, and
genetics to analyze the rapidly expanding forms of genetic
data from families and population-based samples to address
essential questions of genetic aggregation and susceptibility
and to identify causal genomic variants (Figure 1).

As we celebrate the centennial of the Department of Epi-
demiology at Johns Hopkins University, we also celebrate
40 years of research and teaching in genetic epidemiology.
At Johns Hopkins University there is a rich history of both
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Figure 1. Timeline of the development of genetic epidemiology. BRCA1, Breast cancer type 1 susceptibility protein; CFTR, cystic fibrosis
transmembrane conductance regulator; CIDR, Center for Inherited Disease Research; JHU, Johns Hopkins University; NIH, National Institutes
of Health; RFLP, restriction fragment length polymorphism; SNP, single nucleotide polymorphism.

medical genetics, started by the pioneering work of Victor
McKusick and Barton Childs in the 1950s, and epidemi-
ology, led by Wade Hampton Frost in the 1920s. Thus, it
is not surprising that in 1979, Bernice Cohen, a human
geneticist, and Abraham Lilienfeld, a physician and Chair of
Epidemiology, partnered with McKusick to establish the first
graduate training program in genetic epidemiology in the
world. They were active in integrating these two scientific
disciplines and introducing students in both the School of
Medicine and School of Public Health to research methods
suitable for defining the role genetics could play in health
and disease. In 1978, P. C. Huang, Bernice Cohen, and
Abraham Lilienfeld edited the first textbook focused on
genetics from a public health perspective (4). This was fol-
lowed by the textbook by Khoury, Cohen, and Beaty (1993),
Fundamentals of Genetic Epidemiology, which laid out the
principles of the emerging scientific discipline (5).

Forty years ago, we were just beginning to consider how
to integrate and effectively use the tools of two distinct scien-
tific disciplines to answer fundamental questions about how
genes influence risk of major chronic diseases such as type 2
diabetes, cardiovascular diseases, and common cancers. At
the time, there was no reference human genome sequenced,
and there were no public repositories of common haplotypes
or single nucleotide polymorphic (SNP) markers, and there
were no genome-wide association studies (GWAS). Here,
we highlight the role of genetic epidemiology within the
broader realm of epidemiology, and we discuss the strides
made in our understanding the genetic control of complex

disease that arose through critical advances in technology
during this time frame. We then briefly discuss directions
and challenges to be pursued in the future.

THE EARLY YEARS

Statistical, computational, and technological innovations
in genetic epidemiology have set standards for reporting
results and synthesizing knowledge not only for the field of
epidemiology but also for other scientific fields. As genetic
epidemiologists, we develop and apply statistically sound
methods to identify genetic factors associated with disease,
gather knowledge about underlying causal mechanisms
using several different kinds of genetic data, and use this
knowledge for improving public health, whether through
prevention or intervention in controlling human diseases.
Genetic epidemiology is still epidemiology—the study
designs must still protect from recognized confounders or
biases such as sampling, information, and ascertainment bi-
ases; population stratification (i.e., confounding by ances-
try); and sample or specimen errors, and there must be
transparent reporting of methods and analysis, as well as
replication/validation to confirm findings (6).

The field of genetic epidemiology works with traditional
population-based study designs as well as family-based
designs to ask a wide range of scientific questions. It
applies a broad range of methodological designs, from the
purely descriptive to the highly analytical (7). Early genetic
epidemiologic studies were focused on trying to assess the
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role of family history on the risk of disease and to quantify
familial aggregation, whether it results from genetic or
environmental causes (8). Sometimes evidence for familial
aggregation can be based solely on population prevalence
rates (Kpop) and the observed risk among relatives of cases
(stratified by the degree of relationship). The ratio of these
prevalence rates (λ = Krel/Kpop) is a direct measure of
familial aggregation and determines statistical power under
specialized study designs such as affected sib-pair studies
that are used to test for consequences of genetic linkage.
Other measures of familial aggregation include assessing
risk of disease if there is any family history of the disease,
including family members in the study, and through adoption
and migration studies. Beyond these simple risk ratios, the
most common summary statistic to measure any potential
degree of genetic control is “heritability.” Heritability dates
back to R. A. Fisher (1918), who developed the theory
underlying “polygenic” models, where an unspecified num-
ber of unobserved, independent, autosomal genes control
a quantitative phenotype (9), and extends to our current
definition of “narrow sense heritability” attributed to J. L.
Lush (10, 11). This linear model predicts an observed
phenotype as the simple sum of effects due to genetic and
nongenetic factors, and it allows partitioning the observed
total phenotypic variance (σ2) into corresponding genetic
and nongenetic components of variance.

The early years of genetic epidemiology were about
characterizing disease aggregation in families and in the
population and then estimating an overall heritability. The
aim was to consider the contribution of genes to disease
risk using what was observed (vs. unobserved genetics),
and these methods continue to be used today to summarize
the importance of genes. However, after the discovery of
DNA, the attention of the field rapidly turned towards
mapping genes associated with disease phenotypes (See
Figure 2).

DISCOVERY OF DNA

Rapid development of cost-effective technologies and
large-scale, global, collaborative scientific efforts have led
to an explosion of gene discovery over the past few decades.
These technical advances, coupled with large-scale, global
efforts to map risk genes, have resulted in empirical identi-
fication of many risk variants but still build upon many con-
cepts and theories about the genetic contribution to disease
developed early in the 20th century.

In 1909, Wilhelm Johannsen first introduced the term
“gene” to define the functional unit of heredity. In the
following decades, there was considerable debate over and
searches for the molecular basis of inheritance. During this
time, genetic studies relied on the use of protein biomark-
ers (e.g., blood types and serum proteins) to map causal
genes and test for cosegregation with disease in families.
It was not until 1953 that DNA was understood by Wat-
son and Crick (with unacknowledged contributions from
Rosalind Franklin) as having all the properties necessary to
act as the mechanism for genetic inheritance (12). In the
1960s, certain genetic conditions, such as phenylketonuria
(PKU), were screened for among babies, with subsequent

management providing direct impact (via dietary changes)
on a genetic disease. In the late 1970s, the Sanger sequencing
method was developed and created the ability to “read” DNA
nucleotides sequentially (13). Over the next decade, rapid
advances in laboratory techniques and automated processing
(e.g., polymerase chain reaction, restriction fragment length
polymorphisms, yeast and bacterial artificial chromosomes)
laid the groundwork needed to discover the first disease-
causing genes through genetic mapping and then to sequence
the entire human genome. Development of these techniques
in the 1980s led to the identification of the first causal genes
for Mendelian diseases (i.e., those conforming to autosomal
or X-linked recessive or dominant modes of inheritance).
For example, mutations in the cystic fibrosis transmem-
brane conductance regulator gene (CFTR) result in cystic
fibrosis among individuals who are homozygotes (14–16).
This discovery was the first Mendelian disease mapped in
humans, and it resulted in effective screening and treatment
in a public health context. The growing availability, during
the 1980s and 1990s, of restriction fragment length poly-
morphism and SNP panels led to the discovery of several
other disease genes (e.g., breast cancer type 1 (BCRA1),
Dystrophin).

USING GENETIC EPIDEMIOLOGY TO MAP GENES

In the early days of gene mapping, multiplex families
(i.e., those with 2 or more affected relatives) were the main
focus of research because they provided a way to follow
or track mutations within a family. While there were gene
mapping successes using laboratory methods developed in
the 1970s to 1980s, there was consensus among the scientific
community that more detailed gene maps were needed.
In 1990, the Human Genome Project was launched with
the goal of providing a physical map for all 3.2 billion
nucleotides in the human genome (17, 18). A working draft
human genome was completed in 2001, followed by the
completed version in 2003 (19–21). The Human Genome
Project provided the blueprint for future research to identify
specific genes controlling risk to human diseases.

At the turn of the 21st century, the cost to sequence 1
genome was tens of millions of dollars, and thus, measuring
the DNA sequence for many individuals to use in genetic epi-
demiology was not feasible. At about the same time, single
base extension chemistry and DNA microarrays were devel-
oped, which enabled researchers to measure a large number
of positions in the genome in a cost-effective way. In 2002,
the International HapMap Project was initiated to define pat-
terns of common genetic variants and haplotype structure in
humans; it included 270 individuals from Africa, Asia, and
Europe (22). The development of “next generation” or “mas-
sively parallel” sequencing methods, in the mid 2000s, led
to a substantial drop in genome sequencing costs and helped
launch the 1000 Genomes Project in 2008, which sought to
discover all variants with a minor allele frequency of >1%,
in an expanded set of 2,504 individuals from diverse popula-
tions (23–26). These laboratory advances and foundational
concepts enabled countless descriptive studies of the genetic
variation in different populations and the history of human
migration over time. The results of these projects have also
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Figure 2. Overview of genetic epidemiology contributions to public health.

enabled genome-wide mapping studies for complex diseases
using both common and rare variants.

Genetic epidemiology needed to adapt methods to accom-
modate these new types of genetic data. Similarly, ideas and
hypotheses generated long before DNA markers were avail-
able could now be tested with empirical data. Family-based
methods such as linkage analysis, transmission disequilib-
rium tests, and family-based association tests successfully
mapped genes for a number of human diseases (27–29).
In addition, utilization of existing case-control and cohort
studies led to the identification of thousands of genomic risk
factors across a wide range of complex common diseases
using both candidate gene and GWAS designs (30, 31).

The identification of these genes associated with many
complex diseases has not always yielded obvious causal
variants in part because most SNPs are in noncoding
regions and are merely in linkage disequilibrium (LD)
with some unobserved causal variant. Furthermore, these
genome-wide significant SNPs combined did not account
for the estimated heritability of most common diseases
and quantitative phenotypes (32), creating the so-called
“missing heritability” issue. Yet the collective implications
of GWAS findings (cataloged in https://www.ebi.ac.uk/
gwas/) clearly emphasize 2 broad points: 1) most complex
phenotypes are influenced by multiple genes, and 2) many

genes influence multiple phenotypes. Neither of these broad
conclusions is surprising given the biological complexity
underlying the pathogenesis of most common, complex
diseases. Although the scientific insights provided by
large-scale GWAS are indisputable (33, 34), it remains
difficult to translate these genetic risk factors to the level
of the individual. Implications for medicine and public
health are varied and eventually will include improving
diagnostics, screening, and risk prediction, as well as
identification of multiple genetic risk factors and biomarkers
useful in better understanding the underlying biology
and possible improvement of treatment and intervention.
However, identifying causal alleles remains a major goal of
genetic research, and this will require different biological,
laboratory, and statistical approaches.

Availability of cost-efficient measurement tools and con-
firmation of the theory that numerous common variants with
small effect sizes contribute to common complex disease
risk (35–38) led to relying on ever-larger sample sizes, facil-
itated by large scientific consortiums. The success of these
disease-focused consortia efforts resulted in the emergence
of megacohorts, consortiums, and biobanks (UK Biobank,
All of Us Cohort, TOPMed Consortium). This has led to
more “team science” with large-scale international collab-
oration of epidemiologists, geneticists, biostatisticians, and
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clinicians all coming together to share data, results, and
standardized tools to identify genes and genetic variants
associated with diseases (39).

OTHER -OMICS

The rapid technological advances extend beyond the DNA
sequence to other -omics, including epigenomics, transcrip-
tomics, metabolomics, and the microbiome (40). Advances
in computational speed have aided our ability to look across
the genome to integrate the different -omics. They also create
the opportunity to test hypotheses about genomics at the
tissue and even single-cell level, which moves from the
biology of populations to the tissue and even the cellular
level while building medical inferences, which must in turn
be applied back to individuals and populations.

One of the major challenges since sequencing of the
genome has been trying to understand how genes function.
The Encyclopedia of DNA Elements (ENCODE) Consor-
tium was designed to enable understanding of the way the
genome functions and identified biologically active regions
of the genome outside of canonical coding regions (41).
Measuring which genes are turned on or off has moved from
in situ hybridization to reverse-transcriptase quantitative
polymerase chain reaction to microarray to RNA-sequencing
measurement methods. Our ability to measure gene expres-
sion levels across the genome has led to identifying molec-
ular profiles unique to tumor cells, which are now routinely
used for diagnosis, prognosis, and treatment of some can-
cers. Other commonly measured genome-wide epigenetic
marks include DNA methylation, chromatin structure, and
histone tail modifications. The RoadMap Epigenomics Proj-
ect and International Human Epigenome Consortium are
currently working towards developing a reference map of the
epigenome across a large number of cell types (42) to
determine interindividual epigenetic variation possibly relat-
ed to disease. Epigenetic alterations have already been linked
to a diverse set of diseases, including cancer and autoim-
mune, psychiatric, and metabolic diseases. DNA methyla-
tion measures at hundreds of loci were found to be related
to the biological aging process and led to the development
of “epigenetic clock” tools for studying aging and health in
populations (43, 44). These clocks have been shown to be
associated with adverse health outcomes, including all-cause
mortality, cancer, infection with human immunodeficiency
virus-1, menopause, and cardiovascular disease (45–49).

The Genotype-Tissue Expression (GTEx) project is a
public reference data set to study tissue-specific expression
patterns across 53 tissues (50). Integrating multiple vari-
ant annotations or other -omics data and use of pathway-
based enrichment (51–53) and functional SNP prioritization
tools (54–56) might help to find causal genetic variants
and elucidate underlying biological mechanisms (57–59).
Different statistical approaches to integrate these -omics are
now used (60–63). For instance, PrediXcan application to a
GWAS involves estimating the transcriptome using weights
derived from reference transcriptome data sets (such as
GTEx) and then implementing a combined gene-based test
of association for estimated gene expression with any dis-
ease outcome (61). Other approaches use statistical methods,

-omics databases, and data from functional laboratory exper-
iments to prioritize and/or predict biological consequences
of genetic variants identified via GWAS (64–73). For exam-
ple, a combination of genetic sequence data, chromatin state
enrichment, and DNA methylation maps helped to pinpoint
likely causal genetic variants and provided novel insights
into the pathogenesis of type 2 diabetes (74, 75). These
integrated methods will be critical to the future of epidemi-
ology, as we more completely understand mechanism and
causality and can eventually translate that to public health
action.

FUTURE EPIDEMIOLOGIC DIRECTIONS

Two areas that will continue to have a large influence
on the broader field of epidemiology are the environment
and causal inference. We anticipate that these areas and the
still-evolving novel methods necessary to address them will
continue to grow and begin to define a new era in genetic
epidemiology.

Environmental accommodation

The study of gene-environment interactions (i.e., genotype-
specific phenotypic responses to different environmental
risk factors) remains an active area of research that started
with candidate gene studies and evolved to genome-wide
and gene-environment-wide interaction studies (7, 76, 77).
These interaction analyses are challenging because of the
large number of variables available for investigation—tens
of millions of genetic variants and potentially thousands of
environmental risk factors. Therefore, statistical methods
with improved statistical power have been developed and
continue to emerge (77). Alternative strategies to address
the large number of SNPs available for testing include some
methods for prioritizing genomic variants to be tested for
potential gene × environment interaction based on a priori
biological knowledge (78–80). Studies to examine genomic
risk burden and environmental factor interactions using
polygenic risk scores are emerging (81, 82). The issue of
breadth of studies (sample size) versus depth (repeated,
longitudinal measurements) are both important, and we
hope that with continued technologic advances the ability
to measure the environment (e.g., physical environment,
nature, or other nongenetic factors) continues to expand
with reduced costs. Large sample sizes with unified genetic
and environmental data will be needed to understand risk
and how disease processes can be modified (77).

Using genetics as an instrumental variable
in epidemiology

Genetic epidemiology has also been useful for traditional
epidemiologic studies through Mendelian randomization
analysis, where causal effects of one trait on another (even
in the presence of unmeasured confounding) are estimated
using genetic markers as instruments in an instrumental
variable framework. With some assumptions, the instru-
mental variable approach mimics the random assignment of
treatments in a randomized controlled trial (RCT) in public
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health. Genetic epidemiology provides easily measured
instrumental variables: genetic markers, where risk alleles
are randomly assigned at conception if the null hypothesis
of independence is actually true. Mendelian randomization
studies, thought of as intermediate between observational
studies and RCTs, have the ability to inform RCTs in
the absence of reliable evidence to prioritize drug targets
(83). For instance, Mendelian randomization studies have
consistently demonstrated C-reactive protein to be a simple
marker rather than a causal risk factor for cardiometabolic
diseases (83), thus potentially saving time and money by
avoiding an RCT destined to fail (84). Consistent with RCT
results on the drug ezetimibe (84), Mendelian randomiza-
tion study (85) implicated lowering of LDL cholesterol
via inhibition of the Niemann-Pick C1-like intracellular
cholesterol transporter 1 gene (NPC1L1) as causing reduced
risk of coronary heart disease (84). Future studies that
seek to accumulate evidence to support exposure effects
on health outcomes will likely continue to use genetic
markers as instrumental variables, particularly as megaco-
horts with genome-wide marker panels continue to emerge.

CHALLENGES

Despite the advances we have made in genetics over the
past four decades, there are important challenges we face in
genetic epidemiology that we must address going forward.
These include diversity of research populations, privacy, and
communication.

Diversity of research populations

Epidemiology understands the need for heterogeneous
study groups, so data can be evaluated across different
populations that vary in exposures, risks, and environments.
For genetic studies especially, ancestry represents the
history of populations, and this is reflected in differences
in allele frequencies and underlying haplotype block
structures. However, the GWAS Catalog (https://www.ebi.
ac.uk/gwas/) shows nearly 80% of all current participants
as being of European ancestry even though they only
represent 16% of the global population (86). Furthermore,
the fraction of non-European GWAS has not improved
since 2014 (86). It is especially important to draw subjects
from non-European populations into new genetic studies.
As we consider methods for risk prediction, therapeutic
development, and diagnostic scores based on genetic studies,
this work will yield limited or no benefits for non-European
populations if study populations are constructed only from
European-ancestry populations. This is not only about
inclusion in research; for genetics it will also determine
the downstream clinical and public health benefits. We need
to take an active role as epidemiologists to augment diversity
in research study populations.

Privacy

Deidentified genetic research data are now shared through
several national and international databases (Database of
Genotypes and Phenotypes, European Genome-Phenome

Archive), making these data available to a broad range of
researchers. There are concerns about sharing genomic data
with additional metadata because this can lead to direct or
indirect identification of individuals despite being “deiden-
tified” (87). This is not unique to genetics; the combination
of birthdate, sex, and 5-digit zip code can uniquely identify
87% of all US residents (88). However, with the increased
use of direct-to-consumer testing, new concerns are raised
about access to genetic information by law enforcement,
recently underscored by identification of a cold-case serial
killer using a relative match in a public genealogy database
(89). These databases have also uncovered nonpaternity,
marital affairs, and biological parents of closed adoptions,
situations that have created social and familial unrest
for people who thought that information would never be
unveiled. A study using a genealogy database company,
MyHeritage, including 1.28 million people genotyped using
direct-to-consumer testing, predicted the identification of
a third cousin or closer relation for 60% of individuals of
European ancestry (90). And as the database size grows to 3
million US individuals of European descent, the prediction
would match 99% of people to a third cousin or closer rela-
tion. This study also showed that the inclusion of geography,
age, and sex would narrow the identification of an individual
after finding a relative that matched. The balance of what
we can learn about individuals and the common good of
broadly sharing genetic data must be considered carefully.
Although these data were in the public domain, the same
concerns exist in the research domain. Understanding the
necessary protections for research participants is critical
and will remain important for all epidemiologic studies
that include genetic data from an individual or their family
members. Epidemiologists, unlike other data end-users,
are often responsible for consent and enrollment; thus,
a full understanding of all current and future risks is
important for researchers and for those outside of scientific
research.

Communication

Communication between scientists and the broader
community is also critical in all parts of epidemiology.
Explaining concepts of risk, prediction, and confounding
can be a challenge. For genetic epidemiology, where
genetic risk might be altered by penetrance of specific
alleles or gene expression, or modified by environmental
exposure, it becomes especially complicated. Historically,
genetic medicine has had the benefit of genetic counselors
who can explain these concepts to families or individuals
carrying risk alleles for Mendelian disorders. However, the
increased availability of genetic information and the direct
marketing of sequencing information to consumers has
not been accompanied by an increase in available trained
individuals to explain the allelic and genetic heterogeneity
controlling risk to complex diseases. Additionally, clinicians
are not being prepared in their medical curricula to address
individual genetic risks summarized as either polygenic risk
scores or sequencing studies. Translating causal findings
from genetic studies also remains a challenge. We must
find opportunities and mechanisms for continued education,
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so individuals (personalized medicine) and populations
(personalized public health) are given the knowledge—not
only the data—for informed health decisions.

CONCLUSIONS

For a relatively young field, genetic epidemiology has
made rapid progress over the past 40 years. Much of this
progress has been led by advances in laboratory and com-
putational technologies. Methods enabling high through-
put and cost-effective ways to measure genetic variants in
populations, rapid generation and public dissemination of
genetic resources, and large-scale team-based science have
expanded tools for research, and this information will need
to be incorporated into public health. In less than 20 years,
this field has seen costs drop from $2.7 billion per genome
sequence to $1,000 per genome sequence and has made sub-
stantial contributions to biomedical and population sciences.
As sequencing costs continue to drop and new technologies
(e.g., nanopores) emerge, we advocate for a larger number,
and more diverse, set of individuals to be sequenced and for
this data to be merged with a unified collection of multi-
omic and environmental exposure data. Additionally, new
laboratory methods such as clustered regularly interspaced
short palindromic repeats (CRISPR)-Cas9 (91, 92), which
can alter genomic sequence at the single base-pair level, hold
considerable promise for correcting mutations in the DNA
sequences that produce disease, but these also create ethical
concerns that must be considered carefully. In the decades to
come, it will remain a challenge to decipher the large amount
of data produced to understand how the molecular pieces
fit together and, in the context of external environment risk
factors, to influence health outcomes and work out how
to best communicate and use that information to improve
public health in an ethically responsible way. Forty years
ago at Johns Hopkins, we began to incorporate genetic ideas
and family history information into epidemiologic studies,
and since then we have mapped genetic variants, predicted
risk based on genetic profiles, and tested for potential inter-
actions between environment and genes for a multitude of
complex diseases, such as chronic obstructive pulmonary
disease, autism, birth defects, infection with human immun-
odeficiency virus, other viral infections, diabetes, cardiovas-
cular disease, schizophrenia, inflammatory bowel disease,
enteric infections, and more. We look forward to this next
era, when some of these genetic discoveries will transition
from “findings” to results with real impact on public health
and policy.
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