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Role of OPRM1, clinical and 
anthropometric variants in 
neonatal pain reduction
ilaria erbi1, Massimiliano ciantelli2, Riccardo farinella1, cristina tuoni2, Manuel Gentiluomo1, 
francesca Moscuzza2, cosmeri Rizzato3, Alice Bedini2, Maddalena faraoni2, 
Stefano Giusfredi1, Arianna tavanti  1, paolo Ghirri2 & Daniele campa1 ✉

An increased awareness on neonatal pain-associated complications has led to the development of pain 
scales adequate to assess the level of pain experienced by newborns such as the ABc score. A commonly 
used analgesic procedure is to administer a 33% oral dextrose solution to newborns prior to the painful 
intervention. Although this procedure is very successful, not in all subjects it reaches complete efficacy. 
A possible explanation for the different response to the treatment could be genetic variability. We 
have investigated the genetic variability of the OPRM1 gene in 1077 newborns in relation to non-
pharmacologic pain relief treatment. We observed that the procedure was successful in 966 individuals 
and there was no association between the genotypes and the analgesic efficacy when comparing 
individuals that had an ABc score = 0 and ABC score >0. However, considering only the individuals 
with ABc score>0, we found that the homozygous carriers of the G allele of the missense variant SNP 
rs1799971 (A118G) showed an interesting association with higher ABC score. We also observed that 
individuals fed with formula milk were more likely to not respond to the analgesic treatment compared 
to those that had been breastfed.

Until few decades ago, it was thought that newborns were unable to feel pain: for this reason, many painful pro-
cedures, such as surgical interventions, tracheal intubation or venipuncture, were performed without analgesia. 
However, there are overwhelming evidences supporting the fact that the ability to respond to painful stimuli 
starts during intrauterine life1–6. Pain related stress has been associated with poor growth and neurocognitive 
impairment in term and preterm infants3,5–10. Intracranial hemorrhage and periventricular leukomalacia have 
been described as short term complications of painful procedures while behavioral disorders, anxiety spec-
trum disorders, sleep disorders, reduced post-natal growth and poor neurological outcome have been identi-
fied as long-term complications of prolonged stress/pain in early life8,9. An increased awareness on neonatal 
pain-associated complications has led to the development of pain scales adequate to assess the level of pain expe-
rienced by newborns (ABC scale, PIPP scale). These scales are based on behavioral changes (crying, changes in 
facial expression) and vital signs (heart rate, respiratory rate) during painful procedures. All term infants are com-
monly subjected to painful procedures before discharge at home for neonatal rare disease screening purposes; 
preterm newborns experience more invasive procedures such as intubation, central vein catheterization and may 
undergo 3 or 4 blood sampling every day for the first few weeks of life. Alongside improved methods to assess 
pain, also clinical procedures to alleviate it have been developed. With this regard, for major painful procedures, 
such as tracheal intubation, opioids and benzodiazepines are recommended, while less painful procedures (e.g. 
venipuncture or capillary blood sampling from the heel) are generally performed under a non-pharmacological 
analgesia. A commonly used approach is to administer an oral dextrose solution (20 to 33% concentration) to 
newborns prior to the painful intervention11. Although this procedure is very successful, not in all subjects it 
reaches analgesic efficacy. Numerous evidences suggest the involvement of the mu opioid receptor (MOR-1) in 
the analgesic efficacy of the dextrose solution. However, it is not clear if this effect is achieved through a direct 
interaction between the sugar and the receptor or through the regulation of endogenous opioids. Taddio and 
colleagues in a very small study consisting in 11 preterm infants aimed at establishing a direct link between 
beta-endorphin increase after sucrose administration, did not report a statistically significant association12. 
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However, several studies conducted using animal models suggest the release of endogenous opioids through the 
blockage of mu opioid receptor during the administration of sweet substances13. To support this hypothesis, there 
is also the observation that the greatest analgesic efficacy is recorded after about two minutes from the begin-
ning of glucose administration, time lapse that coincides with that necessary for the release of endorphins14. An 
additional indirect association between the MOR-1 receptor and dextrose/sucrose analgesia is the observation 
that newborns of methadone addicted mothers did not respond to orogustatory (sucrose) stimulation15. Finally, 
the analgesic effect of oral dextrose may also be attributable to an increase in plasma insulin levels which in turn 
has been shown to have analgesic activity through the regulation of many pathways16,17. The MOR-1 receptor is 
encoded by the OPRM1 gene that is highly polymorphic and many studies performed in adults have suggested 
an association between the genetic variability in the OPRM1 gene, and the response to pain relief treatment in 
adults18–25. Despite all these evidences, to the best of our knowledge, there are no studies linking the effect of the 
dextrose/glucose treatment with the genetic variability of the gene. With these premises we have investigated for 
the first time the genetic variability of the OPRM1 gene in 1077 newborns collected at University Hospital of Santa 
Chiara, in relation to non-pharmacologic pain relief treatment.

Materials and methods
Study population. Blood samples from 1077 neonates born between 2015 and 2019 were collected at the 
Division of Neonatology of the Santa Chiara Hospital. For each newborn 5 ml of blood were collected from the 
cord at birth, in a completely not invasive way. Anthropometric measures at birth (birth weight, length, head 
circumference), type of feeding (exclusive breastfeeding, partial breastfeeding and exclusive formula milk) data 
on delivery (spontaneous vs caesarean section and mother’s pharmacological analgesia if present) and familiar 
history (ethnicity, mother’s age, pre-pregnancy BMI, weight increase during pregnancy, relevant diseases) were 
also collected. The parents of all subjects signed a written informed consent form the study was conducted in 
accordance with the Declaration of Helsinki and was approved by the ethical committee of the Meyer Children 
Hospital of Florence.

pain relief determination. In order to reduce variability secondary to different type of procedures, we 
assessed just heel lancing for neonatal metabolic screening. According to Italian Neonatal Society guidelines26 
and international guidelines for pain relief in newborns, before the procedure to all neonates a 33% dextrose 
solution was orally administered in order to reduce pain perception. The heel incision device used was Gentle 
heel™ produced by Alleset, Inc (Flowery Branch, USA). Pain level was assessed with ABC scale, which consists 
of three cry parameters: (A) First cry acuteness (NO = 0; YES = 2), (B) Burst rhythmicity (NO = 0; YES = 2), (C) 
Cry constancy (no cry or only a brief moan = 0; not constant, but more than a brief moan = 1; constant = 2). 
The ABC scale was validated for healthy, non-intubated term newborns27. Clinical procedures and pain recording 
were carried out at the Neonatology Unit of the Santa Chiara Hospital by trained personnel only.

Snps selection. Common genetic variability in the OPRM1 gene region was investigated following a hybrid 
functional and tagging approach to identify candidate SNPs. For OPRM1 tagging SNPs were selected with the 
use of the Haploview Tagger Program (http://www.broad.mit.edu/mpg/haploview/; http://www.broad.mit.edu/
mpg/tagger/)28, using pairwise tagging with a minimum r2 of 0.8. In addition, we have included in the selection 
the OPRM1-rs1799971 (A118G) that is a putatively functional SNP. The final selection included 11 SNPs for the 
OPRM1 gene.

DnA extraction and genotyping. DNA was extracted from umbilical cord blood using Quick-DNA Plus 
Kit (Zymo Research). Genotyping was performed using the allele-specific TaqMan PCR SNP genotyping assay 
(Thermo Fisher Scientific, Waltham, Massachusetts, USA) as recommended by the manufacturer. Detection of 
the genotyping calls was made using the QuantStudio 5 Real-Time PCR System (Applied Biosystems by Thermo 
Fisher Scientific, Waltham, Massachusetts, USA), 3.5% of the samples were duplicated to ensure genotyping 
quality.

Statistical analysis. Hardy-Weinberg equilibrium was tested by the chi square test. The association between 
the SNPs, the covariates considered (mentioned before) and pain relief treatment was calculated using an uncon-
ditional logistic regression computing Odds Ratio (OR) and confidence intervals (CI) considering the ABC score 
as a categorical variable (ABC score = 0 Vs ABC score >0). In addition, we also performed an analysis consider-
ing only the individuals that had and ABC score>0 and calculated the association between the genotypes and the 
ABC score (ABC score coded as 1;2;3;4;5 and 6) with a general linear model (glm). Genetic analyses were per-
formed under a co-dominant inheritance model. For a subgroup of individuals (n = 845), we have also collected 
data on the person performing the sedation (so forth called operator) and we used this variable for adjustment. 
We performed crude analysis (without adjusting for operator) and adjusted analysis. The glm model was adjusted 
for gestational age and operator, since these variables were the only ones showing a borderline association with 
the ABC score.

Bioinformatic analysis. We used several bioinformatic tools to assess possible functional relevance for the 
SNPs showing significant associations. RegulomeDB (http://regulome.stanford.edu/)and HaploReg29 were used 
to identify the regulatory potential of the SNPs, The Genotype-Tissue Expression (GTEx)30 was used to identify 
potential associations between the SNP and expression levels of nearby genes (eQTL).
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Results
Data filtering and quality control. All SNPs genotype distribution were in Hardy-Weinberg equilibrium 
with a P-value > 0.005. The average polymorphism call rate was 98.84% with a minimum of 97.62% for rs610231 
and a maximum of 99.72% for rs2075572. The concordance rate for the duplicated samples was more than 99%.

Anthropometric, clinical and lifestyle variables and analgesic treatment response. Oral dex-
trose administration was successful in avoiding pain related to minor painful procedures in 966 individuals out 
of 1054; in 88 patients it was not effective: 9 had an ABC score of 1, 40 of 2, 13 of 3, 17 of 5 and 9 of 6. For 33 
individuals the ABC score was not calculated. In the crude analysis we observed that the type of feeding (exclusive 
breastfeeding, partial breastfeeding and exclusive formula milk) had an effect on the ABC score with the tendency 
(P test for trend p = 0.005) of mixed types and artificial feeding to increase the chance of having an ABC score > 
0 with OR 1.90 (95% CI 1.18–3.06; P-value = 0.008) for mixed type and OR 2.23 (95% CI 0.88–5.64; P-value = 
0.088) for formula milk. In addition, we observed that also the age of the mother had a weak effect on the ABC 
score with OR 1.05 (95% CI 1.01–1.09; p = 0.036) for each year increase in the maternal age. These results are 
shown in Table 1. The other variables taken into consideration did not show any significant result. Adjusting for 
operator we observed similar results (Supplementary Table 1). Considering the subjects with ABC score > 0 none 
of the variables showed a statistically significant association, with gestational age and operator showing a border-
line association with the ABC score (Supplementary Table 2).

SNPs effect on analgesic treatment. In the crude analysis we observed no statistically significant associ-
ation as shown in Supplementary Table 3. Adjusting for operator we observed that rs510769 was close to the con-
ventional threshold for statistical significance in the codominant model: OR 1.6 (95% CI 0.99–2.58) p = 0.055 as 
shown in Table 2. Considering the subgroup analysis of the individuals with an ABC score > 0, we observed that 
homozygous carriers of the G allele of the missense SNP rs1799971 (A118G) were associated with a higher ABC 
score, although the results were borderline not significant (p = 0.055) as shown in Supplementary Table 4. We 
also performed exploratory analysis adjusting for gestational age as shown in Table 3, operator (Supplementary 
Table 5) and gestational age and operator (Supplementary Table 6). OPRM1-rs1799971 (A118G) was associated 
with high ABC score reaching statistical significance when adjusting for gestational age (p = 0.041).

Possible functional effects. Haploreg and RegulomeDB did not show any potential functional effect for 
the SNPs taken into consideration and the GTEx database did not suggest any eQTLs for the rs1799971-SNP.

Discussion
In this study we have enrolled more than 1000 newborns to investigate whether genetic variability and anthropo-
metric and lifestyle factors could influence non-pharmacologic analgesic treatment in newborns. This sample size 
makes it one of the largest studies on newborn genetics with the addition of meticulously collected information 
on anthropometric and life style factors. The efficacy of the non-pharmacologic treatment was very good affecting 
966 (92%) out of 1054 individuals.

We observed an association between feeding type and analgesic efficacy of the non-pharmacologic treatment. 
The association was significant in the crude model and with adjustment. The trend showed a clear association 
between natural human milk and increased chance of effective analgesic treatment (p = 0.005). A possible expla-
nation of this association might reside in the fact that breast feeding could have a prolonged soothing effect on 
newborns, decreasing their anxiety and increasing the sugar effect. The pain relief effect of breast milk could 
also be explained by the higher concentration of tryptophan compared to formula milk. As suggested by Heine, 
tryptophan is a precursor of melatonin, which can increase beta endorphin production regulating appetite, 

Covariates

Logistic analysis

OR(a)(CI)(b) p-value p-trend

Gender_(m/f) 0.87(0.56–1.34) 0.521 0.520

Gestational age_(weeks) 0.99(0.83–1.19) 0.939 0.939

Procedure’s executor 1.03(1.01–1.05) 0.005 0.005

Feeding type_(maternal/ mixed) 1.90(1.18–3.06) 0.008
0.005

Feeding type_(maternal/ artificial) 2.23(0.88–5.64) 0.088

Mode of birth_(vaginal delivery/ cesarean 
section) 1.07(0.69–1.66) 0.757 0.757

Maternal age_(years) 1.05(1.01–1.09) 0.036 0.036

Spinal anesthesia_(yes/no) 1.19(0.75–1.89) 0.468 0.468

Epidural anesthesia_(yes/no) 0.83(0.45–1.51) 0.534 0.534

General anesthesia_(yes/no) 1.35(0.17–10.76) 0.775 0.774

Birth weight_(gramms) 0.99(0.99–1.00) 0.118 0.118

Maternal gestational diabetes_(yes/no) 1.16(0.65–2.08) 0.616 0.616

Mother’s smoke_(yes/no) 1.64(0.68–3.98) 0.274 0.270

Table 1. Logistic analysis between Anthropometric, clinical and life style variables and ABC score. (a)OR 
identifies the Odds Ratio. (b)CI represents the Confidence Interval.
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satisfaction and pain perception31. The relative relevance of the two different aspects could not be weighted 
because all patients that received human milk were breastfed and did not receive expressed breast milk or human 
milk from donors.

From a genetic point of view, we observed that in the logistic regression (ABC score > 0 vs ABC score = 
0) rs510769 was close to the conventional threshold for statistical significance (p = 0.055) and that in the glm 
model (ABC score from 1 to 6) the carriers of the G allele of the rs1799971 showed the least benefit from the 
analgesic treatment. OPRM1-rs510769 is an intronic variant that has been investigated in relation to various 
human traits, such as onset of side effects in patients during a methadone maintenance treatment (MMT)32, 
smoking behavior in MMT33, susceptibility to heroin addiction34 and amphetamine-induced euphoria35. 
However, there are no functional evidences in the literature for this SNP; in addition, the results from the 
bioinformatic tools we used are inconclusive. Therefore, it is not easy to infer a mechanistic relation between 
the SNP and analgesic treatment.

On the other hand, rs1799971 (A118G) is the most studied variant in the OPRM1 gene and there are over-
whelming evidence, spanned among a decade, supporting its role in a variety of human phenotypes including 
pain, analgesia and drug tolerance18–21,24,25,33,36–39. This polymorphism is a missense variant with an A to G nucle-
otide change that leads to an amino-acid substitution (Asn40Asp) at a putative N-glycosylation site in the extra-
cellular receptor region. The majority of the studies support an increased pain sensitivity and worse response to 
pain relief therapy in individuals with the GG genotype compared to the other genotypes18–21,24,25. Changes from 
a basic amino acid to an acid amino acid in the OPRM1 receptor could alter its ability to bind ligands and could 
explain the altered effectiveness of the protein. In agreement with what suggested by the literature, we observed 
a tendency for GG homozygous to display less affective analgesic efficacy, even though in a subgroup analysis. 
This difference may be explained by the fact that pain relief treatment is a complex experience that is mediated by 
several variables. Indeed, a single SNP is unlikely to predict the ability to respond to the therapy, also considering 
the relative small size of non-responders in our population. However, our results suggest, even though with a 
weak statistical association, that among the individuals that do not respond to the therapy the intensity of the 
score could be mediated by the genotype of the rs1799971 (A118G) variant. This result should be interpreted with 
caution since it comes from a subgroup analysis, and therefore from a small number of individuals; in light of the 
multiple tests that we performed it could be statistical fluctuation. However, our findings are in line with what 
has been repeatedly observed for adults, i.e. the GG genotype of the rs1799971 (A118G) SNP associated with less 
effectiveness of pain reducing treatments.

SNP ALLELES

ABC SCORE > 0(a) ABC SCORE = 0(b)
Codominant-
heterozygous(c)

Codominant-
Recessive (d) Dominant(e) Recessive (f)

MM(a) Mm(a) mm(a) MM(b) Mm(b) mm(b) OR(g)(CI)(h) p-value OR(CI) p-value OR(CI) p-value OR(CI) p-value

rs10485057 A/G 67 11 0 623 102 3 1.03 
(0.53–2.03) 0.927 n.c(j). — 1.00 

(0.51–1.96) 1.000 n.c. —

rs1799971 A/G 55 20 1 519 197 21 0.98 
(0.57–1.68) 0.931 0.38 

(0.05–2.91) 0.352 0.91 
(0.54–1.54) 0.726 0.38 (0.05–2.91) 0.354

rs2075572 C/G 30 35 13 296 319 125 1.12 
(0.67–1.88) 0.660 1.09 

(0.55–2.17) 0.807 1.11 
(0.69–1.80) 0.662 1.02 (0.55–1.92) 0.939

rs3823010 G/A 51 26 0 528 185 10 1.41 
(0.85–2.33) 0.181 n.c. - 1.33 

(0.81–2.20) 0.264 n.c. -

rs4870266 G/A 59 16 1 611 117 7 1.50 
(0.83–2.71) 0.180 1.49 

(0.18–12.48) 0.713 1.50 
(0.84–2.67) 0.170 1.38 (0.17–11.54) 0.764

rs510769 C/T 40 36 0 447 252 36 1.60 
(0.99–2.58) 0.055 n.c. - 1.40 

(0.87–2.26) 0.165 n.c. -

rs540825 T/A 45 27 6 454 232 47 1.18 
(0.71–1.96) 0.511 1.35 

(0.54–3.36) 0.515 1.21 
(0.75–1.95) 0.428 1.27 (0.52–3.10) 0.595

rs610231 A/G 54 20 1 529 171 24 1.20 
(0.69–2.07) 0.517 0.44 

(0.06–3.33) 0.426 1.11 
(0.65–1.89) 0.711 0.42 (0.06–3.16) 0.399

rs675026 G/A 37 31 10 373 290 77 1.11 
(0.67–1.84) 0.682 1.38 

(0.65–2.91) 0.398 1.17 
(0.73–1.87) 0.521 1.32 (0.65–2.68) 0.448

rs6923231 G/A 65 12 0 638 95 3 1.26 
(0.65–2.42) 0.493 n.c. - 1.22 

(0.63–2.34) 0.557 n.c. -

rs9322446 G/A 65 12 0 591 137 9 0.79 
(0.41–1.51) 0.476 n.c. - 0.74 

(0.39–1.40) 0.353 n.c. -

Table 2. Association between OPRM1 polymorphisms and ABC score (ABC score > 0 vs ABC score = 0). 
ABC SCORE > 0 includes newborns who do not respond to non-pharmacological analgesic treatment: MM(a): 
homozygotes for the most common allele; Mm(a): heterozygotes; mm(a): homozygotes for the minor frequency 
allele. ABC SCORE = 0 contains newborns who respond positively to non-pharmacological analgesic therapy: 
MM(b): homozygotes for the most common allele; Mm(b): heterozygotes; mm(b): homozygotes for the minor 
frequency allele. (a)genetic model that compares Mm vs MM (reference). (b)genetic model that compares mm 
vs MM (reference). (c)genetic model that compares Mm and mm vs MM (reference). (d)genetic model that 
compares mm vs MM and Mm (reference). (e)OR identifies the Odds Ratio. (f)CI represents the Confidence 
Interval. (g)n.c. means not calculated, due to the rarity of the minor allele. (h)Analyses were adjusted for operator.
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In conclusion, this study highlights that the type of milk seems to be associated with newborn pain treatment 
response and also suggests a possible association between the missense variant rs1799971 (A118G) and pain 
reduction in newborns. These findings if further replicated could represent an important step in evaluating the 
possibility of a personalized analgesia in newborns.

Data availability
The data for this work will be made available to researchers who submit a reasonable and detailed request to the 
corresponding author, conditional to approval of the Ethics Commission of the of the Meyer Children Hospital of 
Florence. Data will be stripped from all information allowing identification of study participants.
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rs610231 A/G −0.15(−0.95–0.64) 0.705 −0.99(−4.20–2.22) 0.547 −0.19(−0.97–0.59) 0.634 −0.94(−4.13–2.24) 0.562

rs675026 G/A −0.04(−0.78–0.70) 0.912 0.39(−0.69–1.46) 0.480 0.06(−0.63–0.75) 0.866 0.41(−0.60–1.42) 0.427

rs6923231 G/A −0.04(−1.00–0.91) 0.931 n.c. — −0.04(−1.00–0.91) 0.931 n.c. —

rs9322446 G/A 0.27(−0.68–1.21) 0.580 n.c. — 0.27(-0.68–1.21) 0.580 n.c. —

Table 3. Regression analysis between OPRM1 polymorphisms and ABC SCORE > 0 corrected by gestational 
age. (a)genetic model that compares heterozygotes vs homozygotes for the most common allele (reference). 
(b)genetic model that compares homozygotes for the minor frequency allele vs homozygotes for the most 
common allele (reference). (c)genetic model that compares heterozygotes and homozygotes for the minor 
frequency allele vs homozygotes for the most common allele (reference). (d)genetic model that compares 
homozygotes for the minor frequency allele vs heterozygotes and homozygotes for the most common allele 
(reference). (e)Coeff. identifies linear regression coefficient. (f)CI represents the Confidence Interval. (g)n.c. means 
not calculated, due to the rarity of the minor allele.
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