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Abstract

Background

Pandemic strains of HIV-1 (group M) encode a total of nine structural (gag, pol, env), regula-
tory (rev, tat) and accessory (vif, vpr, vpu, nef) genes. However, some subtype A and C

viruses exhibit an unusual gene arrangement in which the first exon of rev (rev1) and the

vpu gene are placed in the same open reading frame. Although this rev1-vpu gene fusion is

present in a considerable fraction of HIV-1 strains, its functional significance is unknown.

Results

Examining infectious molecular clones (IMCs) of HIV-1 that encode the rev1-vpu polymor-

phism, we show that a fusion protein is expressed in infected cells. Due to the splicing pat-

tern of viral mRNA, however, these same IMCs also express a regular Vpu protein, which is

produced at much higher levels. To investigate the function of the fusion gene, we charac-

terized isogenic IMC pairs differing only in their ability to express a Rev1-Vpu protein. Analy-

sis in transfected HEK293T and infected CD4+ T cells showed that all of these viruses were

equally active in known Vpu functions, such as down-modulation of CD4 or counteraction of

tetherin. Furthermore, the polymorphism did not affect Vpu-mediated inhibition of NF-κB

activation or Rev-dependent nuclear export of incompletely spliced viral mRNAs. There

was also no evidence for enhanced replication of Rev1-Vpu expressing viruses in primary

PBMCs or ex vivo infected human lymphoid tissues. Finally, the frequency of HIV-1 quasis-

pecies members that encoded a rev1-vpu fusion gene did not change in HIV-1 infected indi-

viduals over time.

Conclusions

Expression of a rev1-vpu fusion gene does not affect regular Rev and Vpu functions or alter

HIV-1 replication in primary target cells. Since there is no evidence for increased replication
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fitness of rev1-vpu encoding viruses, this polymorphism likely emerged in the context of

other mutations within and/or outside the rev1-vpu intergenic region, and may have a neutral

phenotype.

Introduction
HIV-1 protein synthesis is a tightly regulated process that involves the generation of more
than 100 viral mRNA species [1]. These transcripts are translated into the structural proteins
Gag, Pol and Env as well as two regulatory (Tat, Rev) and four accessory proteins (Vif, Vpr,
Vpu, Nef). In addition to these nine proteins, several studies have reported the existence of
fusion proteins, albeit only in tissue culture-propagated strains of HIV-1 [1–6]. These fusion
proteins are the result of alternative splicing, when exons of regular and/or alternative open
reading frames (ORFs) are brought together [1–6]. For example, the first exon of tat (tat1)
and the second exon of rev (rev2) can be joined via cryptic exons in env. Depending on the
env exon used, splicing results in the synthesis of a 26 kDa protein designated TNV or a 28
kDa fusion called TEV [2,3]. Similar to the parental Tat, these chimeric proteins are able to
activate LTR-dependent transcription [2,3]. However, mutational analyses of the respective
splice acceptor and donor sites have shown that TNV expression is not essential for HIV-1
replication in vitro [5]. Most recently, a previously unappreciated class of 1 kb transcripts
was identified [1], some of which encoded novel viral proteins, including an unstable fusion
protein comprising parts of Rev and Nef (Ref) as well as a Tat variant that contained 25 addi-
tional amino acids fused to its C-terminus (Tat^8c) [1]. In addition, fusion proteins compris-
ing parts of Tat, Rev, and Vpu (Vpt) as well as Tat and gp41 (p17tev) have been described
[4,6]. Whereas Tat^8c and p17tev exert some Tat activity, the functions of Vpt and Ref
remain unknown [1,4,6].

Alternative splicing is not the only mechanism that can generate unusual fusion proteins in
HIV-1. In 2010, we reported an HIV-1 gene arrangement in which rev1 and vpu genes were
present in the same reading frame without an intervening stop codon (Fig 1A) [7]. Analysis of
the deduced protein sequence of this gene fusion suggests that it spans the plasma membrane
like Vpu, but may contain an additional extracellular Rev-derived N-terminal domain (Fig 1B).
Canonical Vpu promotes efficient release of infectious virions by decreasing the cell surface
levels of CD4 [8] and counteracts the host restriction factor tetherin [9,10]. Furthermore, Vpu
down-modulates the NK and NKT cell activating receptors NTB-A and CD1d [11,12] and
blocks antiviral gene expression by inhibiting the activation of NF-кB [13–16]. Since Rev1-Vpu
contains the entire Vpu protein sequence, the fusion protein could exert some of these func-
tions, but may also have a negative effect. In addition, Rev1-Vpu may affect Rev activity,
although it lacks the C-terminal part of Rev (Fig 1B). Canonical Rev bypasses the normal
checkpoint of RNA splicing by mediating the nuclear export of incompletely spliced viral
mRNAs. It performs this function by binding to the Rev responsive element (RRE) present in
unspliced mRNAs [17]. Both the nuclear localization signal and the hydrophobic activation
domain of Rev, which are required for RRE binding, fall within the second exon of Rev (rev2)
that is absent from Rev1-Vpu. Thus, it is highly unlikely that Rev1-Vpu is able to perform this
function. However, the fusion protein contains parts of the Rev oligomerization domain and
may interfere with regular Rev activity. Here, we investigated whether the presence of a rev1-
vpu fusion gene influences known Rev or Vpu functions and whether expression of this fusion
protein alters the replicative capacity of HIV-1 in physiologically relevant target cells.
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Fig 1. Varying genomic organization of HIV-1 in the intergenic region between rev1 and vpu. (A) The
relative position of genes within HIV-1 subtype C clones ZM246F-10 (upper panel) and ZM247Fv-1 (lower
panel) is shown. Whereas ZM246 rev1 (green) and vpu (blue) lie within different reading frames and are
separated by an intervening stop codon (*), ZM247 encodes a rev1-vpu fusion gene. Frameshift mutations
that were introduced to generate or disrupt rev1-vpu in ZM246 and ZM247, respectively, are highlighted in
yellow. (B) Putative topology of the Rev1-Vpu fusion protein and its parental proteins Rev (green) and Vpu
(blue).

doi:10.1371/journal.pone.0142118.g001
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Results

Fusion gene containing HIV-1 proviruses express a Rev1-Vpu fusion
protein
To investigate the expression pattern and function of Rev1-Vpu, we took advantage of two sub-
type C infectious molecular clones (ZM246F-10 and ZM247Fv-1, from now on referred to as
ZM246 and ZM247) that represent transmitted founder viruses [18,19]. Whereas rev1 is sepa-
rated from vpu by a stop codon in the ZM246 clone, ZM247 encodes a rev1-vpu fusion gene
(Fig 1A). To examine the effect of the rev1-vpu polymorphism on virus replication, we intro-
duced frameshift (fs) mutations in the rev1-vpu intergenic regions of both ZM246 and ZM247,
resulting in the gain and loss of the fusion gene, respectively (Fig 1A). Western blot analyses
showed that HEK293T cells transfected with these proviral constructs expressed high levels of
regular Vpu irrespective of the presence or absence of the fusion gene (Fig 2A). For the two

Fig 2. Expression of the Rev1-Vpu fusion protein. (A) Western blot analysis of HEK293T cells co-transfected with the proviral clones described in Fig 1A
or a vpu-deficient mutant thereof. Expression vectors containing rev1-vpu or vpu cassettes served as size controls. Vpu and Rev1-Vpu were detected with an
antiserum raised against ZM247 Vpu. (B, C) Expression of Vpu and Rev1-Vpu in ZM247-infected PBMCs or SupD1 cells. Bands representing the Rev1-Vpu
fusion protein are highlighted by red arrows. Detection of p55, p24 and actin served as internal controls.

doi:10.1371/journal.pone.0142118.g002
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viruses that encoded a rev1-vpu fusion gene (ZM247 wt and ZM246 fs), an additional Vpu-
antiserum reactive protein of ~14 kDa molecular weight was observed (Fig 2A). Since this pro-
tein was absent fromWestern blots of the clones (ZM246 wt and ZM247 fs) in which rev1 and
vpu were separated by an intervening stop codon, it is highly likely that the 14 kDa band repre-
sents the Rev1-Vpu fusion protein. This conclusion was confirmed by the fact that its molecu-
lar weight was identical to that of Rev1-Vpu translated from expression vectors (Fig 2A).

To determine whether the Rev1-Vpu fusion protein was also expressed in CD4+ target cells,
we infected peripheral blood mononuclear cells (PBMCs) and the T cell line SupD1 [16] with
ZM247 wild type and frameshift viruses. Similar to the results obtained in transfected
HEK293T cells, the wild type virus expressed the Rev1-Vpu fusion protein, but at much lower
levels compared to regular Vpu (Fig 2B). Since the generation of vpu/env and rev transcripts is
temporally regulated [1] and other fusion proteins, such as TEV, appear to be expressed prior
to the production of their parental proteins [3], we examined the expression kinetics of
Rev1-Vpu and Vpu in infected SupD1 cells. Western blot analyses of infected cell lysates from
seven different time points identified the same ratio of Vpu and Rev1-Vpu over time (Fig 2C).
These results show that rev1-vpu containing proviruses express the fusion protein, but at a
much lower level compared to canonical Vpu.

Co-expression of Rev1-Vpu and Vpu results in less efficient down-
modulation of CD4, tetherin, CD1d and NTB-A in transfected cells
To investigate whether Rev1-Vpu exerts any of the functions ascribed to its parental Vpu pro-
tein, we cloned the ORFs of rev1-vpu and vpu of ZM246 fs and ZM247 wt into the CMV pro-
moter-based pCG expression vector [20] (Fig 3A). As expected, ZM246 and ZM247 Vpu
proteins were efficiently expressed in transfected HEK293T cells (Fig 3B). Due to leaky scan-
ning, the vector containing the ZM247 fusion gene did not only express Rev1-Vpu but also reg-
ular Vpu at a similar level (Fig 3B). Surprisingly, only trace amounts of Rev1-Vpu were
detected in cells transfected with the vector containing the fusion gene of ZM246 fs (Fig 3B).
Since this low expression levels precluded any meaningful analyses of ZM246 Rev1-Vpu, only
the ZM247 expression vectors were used for further experiments.

Flow cytometric analyses of transfected HEK293T cells revealed that ZM247 Vpu alone
reduced the cell surface levels of CD4, tetherin, CD1d and NTB-A more efficiently than the
combination of Vpu and Rev1-Vpu (Fig 3C, 3D, 3E and 3F). Thus, in the context of these
transfection experiments the fusion protein either lacked these Vpu functions and/or exerted a
dominant negative effect.

Proviruses expressing a Rev1-Vpu fusion protein do not exhibit a defect
in Vpu function
Since the transfection studies resulted in the overexpression of both Vpu and Rev1-Vpu, we
next analyzed the fusion protein in the context of proviral clones. To test whether the presence
of the fusion gene affected known Vpu functions, we co-transfected HEK293T cells with both
wt and fs versions of the infectious molecular clones of ZM246 and ZM247, together with
expression vectors for human tetherin or CD4. The lab-adapted HIV-1 NL4-3 clone and a vpu-
deficient derivative served as controls. Two days post transfection, surface expression of CD4
and tetherin were analyzed by flow cytometry. As expected, NL4-3, ZM246 and ZM247 wild
type viruses reduced the surface levels of CD4 and tetherin more efficiently than the NL4-3
control lacking vpu (Fig 4A and 4B). However, the presence or absence of a rev1-vpu fusion
gene had no effect on the efficiency of CD4 and tetherin down-modulation by the proviral
ZM246 and ZM247 constructs (Fig 4A and 4B). Since tetherin inhibits the egress of newly
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Fig 3. Functional activity of Rev1-Vpu expressed from pCG expression plasmids. (A) CMV-IE
promoter-based pCG expression vectors containing vpu (left panel) or the rev1-vpu fusion gene (right panel).
An enhanced version of the green fluorescent protein (eGFP) is co-expressed via an IRES. (B) Expression of
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Rev1-Vpu and Vpu in HEK293T cells transfected with the indicated pCG vectors. A Vpu-specific antiserum
was used for detection. eGFP was detected to check transfection efficiencies. (C-F) FACS analysis of (C)
CD4, (D) tetherin, (E) CD1d or (F) NTB-A receptor modulation by ZM247 Vpu and Rev1-Vpu. HEK293T cells
were transfected with expression vectors for the respective surface receptor and Vpu or Rev1-Vpu. 40 h post
transfection, surface receptor levels were monitored by two-color flow cytometry. Dot plots indicating the
gating strategy are shown in the right panels. Bar diagrams summarizing three to five independent
experiments +/- SD are shown on the left (***p<0.001; **p<0.01; *p<0.05; n.s. not significant).

doi:10.1371/journal.pone.0142118.g003

Fig 4. Vpu function in isogenic viruses differing only in their ability to express Rev1-Vpu. (A, B) FACS
analysis of surface expression levels of (A) CD4 and (B) tetherin on HEK293T cells co-transfected with the
indicated proviral constructs and expression vectors for the respective surface molecule. Dot plots indicating
the gating strategy are shown in the right panels. Bar diagrams summarizing three to six independent
experiments +/- SD are shown on the left. (C) p24 release from HEK293T cells co-transfected with the
indicated proviral constructs and increasing amounts of a tetherin expression plasmid. 40 h post transfection,
the amounts of cell-associated and cell-free p24 were analyzed by ELISA. Relative release was calculated as
ratio of p24 in the supernatant to total p24. The means of at least three independent experiments are shown.
(D) Activation of NF-κB by viruses harboring the fusion polymorphism or not. HEK293T cells were co-
transfected with the indicated proviral clones, and an NF-κB-responsive firefly luciferase reporter construct.
40 h post transfection, firefly luciferase activity was determined and normalized to the activity of aGaussia
luciferase control plasmid. The means of three independent experiments +/- SD are shown (***p<0.001;
**p<0.01; *p<0.05; n.s. not significant).

doi:10.1371/journal.pone.0142118.g004
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formed virions, we also quantified p24 release in the presence of increasing amounts of this
restriction factor. Consistent with the results obtained by flow cytometry, the fusion gene had
no appreciable effects on the efficiency of virus release (Fig 4C).

Vpu also blocks antiviral gene expression by inhibiting NF-кB signaling [13–16]. Using a dual
luciferase reporter assay [16], we compared the activation of this transcription factor by viruses
that encoded the rev1-vpu fusion versus those that did not. As expected, a vpu-deficient variant
of HIV-1 CH293 induced significantly higher levels of activated NF-кB than the respective wild
type control (Fig 4D). In contrast, suppression of NF-кB activation did not differ between the
wild type and frameshift variants of ZM246 and ZM247 (Fig 4D). In summary, the presence of a
rev1-vpu fusion gene in the HIV-1 provirus had no effect on known Vpu functions.

The rev1-vpu polymorphism does not affect Rev-dependent gene
expression
Since the RRE binding domain of the Rev protein is encoded by its second exon (rev2), we did
not expect Rev1-Vpu to mediate the nuclear export of incompletely spliced mRNAs. Nonethe-
less, Rev1 comprises parts of the Rev oligomerization domain (Fig 1B), raising the possibility
that Rev1-Vpu may exert some dominant negative activity on Rev function. To test this, we
took advantage of a previously described reporter construct that expresses GFP in a Rev-depen-
dent manner [21]. This construct contains an IRES GFP cassette that is flanked by splice donor
and acceptor sites (Fig 5A). Thus, GFP is only expressed in the presence of Rev, which binds to
the RRE within the IRES GFP cassette. To analyze whether Rev1-Vpu has an effect on Rev-
mediated RNA export, we co-transfected HEK293T cells with the Rev reporter construct as
well as the wild type or frameshift variants of ZM246 and ZM247. As expected, GFP reporter
gene expression was induced by increasing amounts of HIV-1 (Fig 5B). However, we did not
observe significant differences in Rev activity between wild type and frameshift-containing
viruses, indicating that the fusion protein, which was expressed in both ZM246 fs and ZM247
wt infected cells (Fig 5C), does not alter Rev function (Fig 5B). Consistent with this, Rev-
dependent Gag expression was proportional to the expression of the early protein Nef, which is
translated in a Rev-independent manner (Fig 5C).

The rev1-vpu polymorphism does not enhance HIV replication fitness
Although the rev1-vpu polymorphism did not affect known Rev or Vpu functions, we consid-
ered the possibility that it may affect viral replication by other mechanisms. To address this,
PHA-stimulated PBMCs were infected with equal tissue culture infectious doses (TCIDs) of
ZM247 and ZM246 strains that differed in their ability to express Rev1-Vpu. Although ZM247
replicated to higher titers than ZM246 [19], quantification of reverse transcriptase activity in
the cell culture supernatants revealed only minor differences between the wild type and frame-
shift-containing viruses (Fig 6A). For ZM247, the frameshift mutant lacking rev1-vpu repli-
cated slightly more efficiently, while the opposite was true for ZM246 (Fig 6A), although these
differences were not statistically significant. At day 3 post-infection, surface expression levels
of tetherin and CD4 were quantified by flow cytometry. In agreement with the data obtained in
transfected HEK293T cells, the efficiency of CD4 and tetherin surface down-modulation in
HIV-1 infected primary cells was not affected by the presence of a fusion gene (Fig 6B and 6C).

To not miss subtle differences in viral replication, we performed a direct competition assay
where PBMCs were simultaneously infected with equal TCIDs of both wild type and frameshift
viruses. Ten days post infection, viral RNA was isolated from the cell culture supernatants,
reverse transcribed, and the rev1-vpu region was sequenced in bulk. The relative fluorescence
of the wild type and frameshift genomes in the sequence chromatograms reflected their input
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Fig 5. Rev function in isogenic viruses differing only in their ability to express Rev1-Vpu. (A) Gene
arrangement of a reporter construct expressing GFP in a Rev-dependent manner. TheGFPORF is flanked
by splice donor site 4 (D4) and splice acceptor site 7 (A7). Rev mediates the export of intron-containing GFP
expressing mRNA via binding to the RRE. (B) Rev-dependent gene expression was determined by co-
transfection of HEK293T cells with increasing amounts of the indicated molecular clones of HIV-1, the GFP
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ratios and thus allowed the generation of standard curves (Fig 6D). The analysis of virus mix-
tures before and after culture in PBMCs showed that the ZM246 wild type virus outpaced its
frameshifted counterpart. At the end of the competition assay, the majority (74% +/- 18%) of
the isolated ZM246 genomes lacked the introduced fusion mutation (Fig 6E). In contrast,
ZM247 wild type, which naturally encodes the fusion gene, and its corresponding frameshift
mutant replicated with similar efficiencies (Fig 6E).

To examine possible effects of the rev1-vpu fusion gene under conditions that more closely
resemble HIV-1 infection in vivo, we also infected human tonsillar explant cultures that pro-
mote HIV-1 replication in the absence of exogenous stimuli [22]. In agreement with the results
obtained in PBMCs, ZM247 wild type and frameshift constructs replicated with similar kinetics
(Fig 6F). Interestingly, however, the newly introduced rev1-vpu polymorphism abrogated the
ability of ZM246 to replicate in these cultures (Fig 6F).

Mutations in the rev1-vpu intergenic region affect env expression
Since the frameshift mutation significantly reduced the replicative capacity of ZM246 without
affecting its Vpu or Rev activities, we hypothesized that the presence of a fusion gene may be
just an epiphenomenon of other adaptive mutations. Notably, the rev1-vpu intergenic region
contains minimal ORFs as well as potential shunt or IRES elements that regulate the expression
of Vpu and Env [23,24]. Anderson and colleagues suggested that specific RNA structures
upstream of envmay enable discontinuous ribosome scanning and regulate Env expression
from multicistronic mRNA [24]. Indeed, in silico structural analyses predicted several interior
and multi-branched loops as well as hairpin structures in the rev1-vpu intergenic regions of
ZM246 and ZM247 (Fig 7A, top panels). The frameshift mutations generating or disrupting
the rev1-vpu fusion gene, respectively, did not break up these structures and had only minor
effects on the folding of rev/vpu/env encoding mRNA (Fig 7A, bottom panels). Nevertheless,
Env expression levels of ZM246 fs were reduced by about 85% compared to its parental control
(Fig 7B). In contrast to that, Env glycoprotein levels of ZM247 remained unaffected by the
frameshift mutation (Fig 7B). In agreement with cellular Env protein levels, particle infectivity
of ZM246 fs was also decreased by about 80% whereas particle infectivity of ZM247 was not
affected by the frameshift (Fig 7C).

No evidence of acquisition or loss of the rev1-vpu polymorphism in
infected individuals over time
To estimate the percentage of HIV-1 strains harboring the rev1-vpu polymorphism we ana-
lyzed 2622 subtype A, C and CRF sequences from the Los Alamos HIV Sequence Database
(http://www.hiv.lanl.gov/). Screening these sequences, each of which represented a different
HIV-1 strain, for the fusion gene, we found 3% of clade A (11/396), 16% of clade C viruses
(136/864), and 3% of A/C recombinants (42/1362) to harbor rev1 and vpu in the same uninter-
rupted reading frame. Since these clades have been estimated to account for as many as 75% of
all HIV-1 infections worldwide [25], it seems clear that a significant fraction of naturally occur-
ring HIV-1 strains encode a rev1-vpu fusion gene. To examine whether the rev1-vpu fusion
gene was under positive or negative selection during the course of HIV-1 infection, we analyzed
the viral quasispecies in eight longitudinally sampled patients who were acutely infected with

reporter construct and a BFP expressing control plasmid. 40 h post transfection, GFP expression levels of
BFP positive cells were analyzed by flow cytometry. Examples of primary FACS data are shown in the lower
panel. (C) Western blot, showing Rev-dependent expression of p24-capsid and Rev-independent expression
of Nef in HEK293T cells transfected with the indicated proviral constructs.

doi:10.1371/journal.pone.0142118.g005
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Fig 6. Effect of Rev1-Vpu expression on HIV-1 replication in PBMCs and tonsillar explant cultures. (A) PHA-stimulated PBMCs were infected with
adjusted amounts of the indicated viruses. Virus replication was monitored by analyzing RT-activity in the supernatant. The means of three independent
experiments +/- SEM are shown. (B, C) Surface expression levels of (B) tetherin and (C) CD4 were determined by flow cytometry at day 3 post infection.
Infected cells were identified by intracellular p24 staining after surface staining of CD4 or tetherin. Dot plots indicating the gating strategy are shown in the
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clade A or C strains [26,27]. Previous studies had shown that all of these patients were infected
with single transmitted founder viruses, two of which encoded the rev1-vpu fusion gene, while
six others did not (Table 1). Interestingly, the presence or absence of this polymorphism
remained stable over time and we did not observe any obvious association with median CD4
counts or virus setpoint. Analysis of the evolving quasispecies in each patient failed to identify
any example of viral mixtures, despite the generation of up to 101 single template derived
sequences from multiple time points spanning as many as 96 weeks of observation (Table 1).
Thus, there was no evidence for the acquisition or loss of the rev1-vpu fusion gene in subtype A
and C infected individuals over time.

Discussion
All previously described HIV-1 fusion proteins, including TEV, TNV, Vpt, p17tev, Ref and
Tat^8c were discovered in tissue culture-propagated HIV-1, when alternative splicing was identi-
fied to generate mRNAs that contained exons from different canonical and/or non-canonical
open reading frames [1–4]. To our knowledge, rev1-vpu is the only primate lentiviral fusion gene
that is present in the genome of naturally occurring viral strains [7], thus warranting investiga-
tion of its potential functions. Here, we show that a Rev1-Vpu fusion protein is expressed in pri-
mary target cells, albeit at much lower levels than the cognate Vpu protein. This is due to the fact
that a major splice acceptor (A5) generates mRNAs that lack the initiation codon of rev1 [28,29],
which prevents the expression of the fusion protein (Fig 8). Only about 10% to 25% of vpu and
env encoding mRNAs use upstream splice acceptors (A4a, b or c) that retain the complete first
exon of rev and thus have the potential to express the fusion protein [1,28] (Fig 8). However,
even these (rev1-vpu encoding) mRNAs may express regular Vpu, since the rev1 initiation codon
may be skipped due to a weak Kozak sequence (leaky scanning) [23,29–31] or by-passed due to
the RNA secondary structure in this region (ribosomal shunting) [23,31]. The very low
Rev1-Vpu expression levels may explain why the function of the parental Vpu and Rev proteins
remain unaltered: viruses differing only in their ability to express Rev1-Vpu down-modulated
CD4, counteracted tetherin and inhibited the activation of NF-кB with similar efficiencies. Fur-
thermore, the fusion protein did not exert a dominant negative activity on Rev-mediated mRNA
export, although Rev1-Vpu contains parts of the Rev oligomerization domain.

Competition assays and replication kinetics in primary PBMCs as well as tonsillar explant
cultures revealed that the loss of a naturally occurring fusion gene did not affect the replication
capacity of the corresponding virus (ZM247). Interestingly, however, creation of a fusion gene
in a virus that did not naturally encode one (ZM246) impaired its replication potential in these
same cultures. The poor replication of the ZM246 frameshift mutant could be ascribed to
decreased Env expression levels and thus reduced particle infectivity. Although mRNA folding
was hardly affected by the frameshift mutation, the insertion of a nucleotide in the rev1-vpu
intergenic region may have disrupted unknown shunting or IRES elements that regulate Env
expression [24]. Alternatively, the mutation may affect linear ribosome scanning by increasing
the Kozak strength of vpu. In agreement with the latter hypothesis, Vpu levels were slightly
increased in the frameshift mutant of ZM246 compared to its wild type counterpart.

right panels. Bar diagrams summarizing four to five independent experiments +/- SD are shown on the left. (D) Sequence analyses of viral mixtures. Wt and
fs mutant virus stocks were normalized for infectivity, mixed at the indicated ratios, and the rev1-vpu region was sequenced after bulk amplification of cDNA.
The lower panels show respective standard curves. The peak fluorescence of the T residue at position 1 (ZM246 wt) and the A residue at position 3 (ZM247
wt) is expressed as a fraction of the total fluorescence (relative peak height). (E) Sequence chromatograms of 1:1 input mixtures and viral cultures 10 days
post infection (dpi). Percentages of wt and fs sequences displayed in the right panels were calculated from the standard curves shown in (D). (F) Human
tonsil explant cultures were infected and analyzed as described in (A). One representative experiment for one of three independent donors is shown
(***p<0.001; **p<0.01; *p<0.05; n.s. not significant).

doi:10.1371/journal.pone.0142118.g006
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Fig 7. Effect of rev1-vpu frameshift mutations onmRNA structure and Env expression. (A) mRNA structures of ZM246 wt, ZM246 fs, ZM247 wt and
ZM247 fs were predicted using the Mfold web server for nucleic acid folding and hybridization prediction [37]. The putative mRNA structures of full length rev/
vpu/env enconding mRNAs (using splice sites D1 and A4c) are shown on the left of each panel. Close-ups of the rev1-vpu intergenic region and the minimum
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In summary, these findings raise the possibility that the emergence of a rev1-vpu fusion
gene is merely a side effect of mutations that regulate Env glycoprotein expression. While
higher Env levels enhance particle infectivity, lower levels may serve as an immune evasion
mechanism to reduce antibody accessibility. Thus, primate lentiviruses have to strike a fine bal-
ance between optimizing virion infectivity and escaping the humoral immune response of their
host. The generation of a rev1-vpu fusion gene might not be essential to optimize env expres-
sion but may be tolerated as an epiphenomenon since Rev1-Vpu is only expressed at very low
levels and does not significantly affect known Rev or Vpu functions.

While our in vitro and in vivo data provide clear evidence against a general fitness advantage
of rev1-vpu containing viruses, they do not explain the apparent persistence of this mutation in
a subset of subtype A and C strains. Since tissue culture based findings have obvious limita-
tions, it is possible that the rev1-vpu fusion gene evolved in a subset of infected individuals in
response to particular host and/or environmental pressures. However, the absence of examples
of either the gain or loss of the fusion gene in eight longitudinally studied patients would sug-
gest that such events, if they occur, are exceedingly rare. It thus seems most likely that the
rev1-vpu fusion gene emerged as an epiphenomenon of other adaptive mutations, such as the

free energy ΔG are shown on the right. The nucleotides that are deleted in ZM247 wt and inserted in ZM246 fs are highlighted in yellow. (B) Western blot
analysis of HEK293T cells co-transfected with the proviral clones described in Fig 1A. gp160 and gp120 were detected using an antiserum raised against
HIV-1 M subtype C 96ZM651. A representativeWestern blot is shown on the left. Total Env expression (gp120+gp160) was normalized to total Gag
expression (p55+p24). The mean values (+/- SEM) of four independent transfections are shown on the right. (C) Particle infectivity was determined by
infecting TZM-bl reporter cells with equal amounts of p24. Three days post infection, β-galactosidase activity was measured. The mean values (+/- SEM) of
triplicate infections from two to four independent transfections are shown (***p<0.001; **p<0.01; n.s. not significant).

doi:10.1371/journal.pone.0142118.g007

Table 1. Frequency of the rev1-vpu polymorphism in HIV-1 quasispecies of infected individuals over time.

patient subt. number
of TF

variants

time points
sequenced

total
weeks
studied

SGSa

week
0

SGSa

week
2/3

SGSa

week
8

SGSa

week
24

SGSa

week
36

SGSa

week
48

SGSa

week
60

SGSa

week
96

fraction
SGS with
rev1-vpu
fusion

accession
numbers

ref.

R880F A 1 4 49 - - 10 3 11 11 - - 0/35 KP223797-
809,

KP223815-
26,

KP223834-
43

[26]

R463F A 1 5 48 - 14 8 8 8 9 - - 0/47 KP223729-
75

[26]

705010185 C 1 5 60 27 11 27 15 - - 16 - 0/96 JX973075-
170

[27]

706010164 C 1 5 60 37 10 23 11 - - 20 - 101/101 JX973234-
334

[27]

705010162 C 1 5 60 14 17 7 9 - - 23 - 70/70 JX972986-
98,

JX973019-
74,

JX974246

[27]

704010042 C 1 6 96 9 18 6 12 - - 24 25 0/94 JX972838-
930,

JX974245

[27]

705010198 C 1 4 60 10 10 28 - - - 15 - 0/63 JX973171-
233

[27]

703010256 C 1 6 96 10 12 27 10 - - 15 24 0/98 JX972739-
72,

JX972774-
837

[27]

a single genome sequences (SGS) per sample visit

doi:10.1371/journal.pone.0142118.t001
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optimization of env expression. Most HIV strains, however, may have taken another evolution-
ary road and achieved the same goal without generating a rev1-vpu fusion gene.

Conclusions
We show that naturally occurring HIV-1 strains, including transmitted founder viruses, which
encode the first exon of rev and vpu in the same reading frame, have the capacity to express a
Rev1-Vpu fusion protein, albeit at much lower levels than regular Vpu. Importantly, this poly-
morphism neither affects known Vpu or Rev functions, nor does it affect viral replication in
human PBMCs and lymphoid explant cultures. It thus seems likely that the rev1-vpu fusion
gene emerged in the context of other mutations within and/or outside the rev1-vpu intergenic
region, and may have a neutral phenotype.

Methods

Expression vectors
Rev1-vpu, vpu, tetherin, and CD1d genes were inserted via XbaI/MluI into the CMV promoter‐
based pCG expression vector [20]. An IRES eGFP, IRES BFP or IRES DsRed2 cassette was
inserted via BamHI so that the gene of interest is expressed together with the fluorophore from

Fig 8. Splice sites generating Rev1-Vpu encodingmRNA. The HIV-1 genome (black) and nine ORFs
encoding structural, regulatory and accessory proteins are depicted on top. Splice donor (D1-6) and acceptor
(A1-8) sites are indicated by dotted lines. mRNAs encoding Rev1-Vpu, Vpu and Env are shown in grey.
Depending on the cell type and time point post infection, 75–90% of Vpu and Env encoding mRNA species
fail to express Rev1-Vpu since the usage of splice acceptor site A5 removes an intron containing the initiation
codon of rev1. Only 10–25% of the Vpu encoding mRNAs have the potential to be translated into Rev1-Vpu
since splice acceptor sites A4a, A4b and A4c retain the complete first exon of rev.

doi:10.1371/journal.pone.0142118.g008
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a single bi-cistronic mRNA. The human CD4 gene was cloned into pcDNA3.1(+) via HindIII/
XbaI; transcript variant 2 of human NTB-A was cloned into pQCXIP [11]. The pHIT/G vector
expressing the vesicular stomatitis glycoprotein has been described previously [32]. An NF-кB
firefly luciferase reporter plasmid containing three NF-кB binding sites was kindly provided by
Dr. Bernd Baumann. A minimal promoter Gaussia luciferase construct was purchased from
Clontech (#631909) and used for normalization. It contains the TATA-like promoter (pTAL)
region from the Herpes simplex virus thymidine kinase (HSV-TK) that is not responsive to
NF-кB. The Tat/Rev reporter vector pNL-GFP-RRE(SA) was obtained through the NIH AIDS
Reagent Program, Division of AIDS, NIAID, NIH from Dr. John Marsh and Dr. Yuntao Wu
[21].

Proviral constructs
Proviral clones of HIV-M NL4-3, ZM246F-10 and ZM247Fv1 have been described previously
[18,33]. Using PCR-mediated overlap extension, frameshift mutations were introduced in the
intergenic region between rev1 and vpu to either generate (ZM246F-10) or disrupt
(ZM247Fv1) the rev1-vpu fusion gene. The frameshift mutations are identical to those
described by Kraus et al. [7]. To generate vpu-deficient mutants, stop codons were introduced
after the vpu start codon (ZM247: codons 3 and 4; ZM246: codons 4, 7 and 10).

Cell culture and transfections
HEK293T and TZM-bl cells were maintained in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% FCS plus 2 mM glutamine, streptomycin (120 mg/ml), penicillin (120
mg/ml) and transfected by the calcium phosphate method. 293T cells were first described by
DuBridge et al. [34] and obtained from ATCC. TZM-bl cells were obtained through the NIH
AIDS Reagent Program, Division of AIDS, NIAID, NIH from Dr. John C. Kappes, Dr. Xiaoyun
Wu and Tranzyme Inc [35]. SupD1 cells were maintained in RPMI medium supplemented
with 10% FCS plus 2 mM glutamine, streptomycin (120 mg/ml), penicillin (120 mg/ml) and
Hygromycin B (200 μg/ml). This cell line is a NF-кB reporter cell line derived from SupT1 cells
[16]. PBMCs from healthy human donors were isolated using lymphocyte separation medium
(Biocoll separating solution; Biochrom), stimulated for three days with phytohemagglutinin
(PHA) (1 μg/ml), and cultured in RPMI-1640 medium with 10% fetal calf serum (FCS) plus 2
mM glutamine, streptomycin (120 mg/ml), penicillin (120 mg/ml) and 10 ng/ml interleukin 2
(IL-2) prior to infection. Human tonsils removed during routine tonsillectomies and not
required for clinical purposes were dissected into 2 to 3 mm3 blocks and cultured in RPMI sup-
plemented with 10% FCS, 2 mM glutamine, streptomycin (120 mg/ml), penicillin (120 mg/ml),
gentamycin (50 mg/ml), timentin (310 μg/ml), 1% sodium pyruvate, 1% fungizone and 1%
non-essential amino acids. Tissue blocks were cultured on collagen sponge supports at a liq-
uid/air interface as previously described [22]. The use of human tonsillar tissue was approved
by the Ethics Committee of the Ulm University Medical Center. All donors provided written
consent.

Western blotting
To monitor expression of Rev1-Vpu and other viral proteins, HEK293T cells, PBMCs, and
SupD1 cells were lysed in M-PER buffer (Thermo Scientific) two days post transfection and
infection, respectively. Cell lysates were separated in 4–12% Bis-Tris gels (Invitrogen) and
transferred to PVDF membranes. Blots were probed with antibodies against Vpu, Nef or p24.
The monoclonal anti-p24 antibody was purchased from abcam (Cat# 9071, dilution 1:2,000).
The Vpu antiserum (Cat# 11942, dilution 1:5,000) was obtained through the NIH AIDS
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Reagent Program, Division of AIDS, NIAID, NIH from Drs. Beatrice H. Hahn and Matthias H.
Kraus [7]. The Nef antiserum (Cat# 2949, dilution 1:200) was obtained through the NIH AIDS
Reagent Program, Division of AIDS, NIAID, NIH from Dr. Ronald Swanstrom [36]. The Env
antiserum was purchased from ABLinc (Cat# 5411, dilution 1:1000). For internal controls,
blots were incubated with antibodies specific for GFP (polyclonal, abcam, Cat# 290, dilution
1:10,000) and β-actin (polyclonal, abcam, Cat# 8227, dilution 1:2,000). Subsequently, mem-
branes were incubated with anti-mouse or anti-rabbit IRDye Odyssey antibodies and proteins
were detected using a LI-COR Odyssey scanner.

Flow cytometry
To determine the effect of the rev1-vpu fusion gene on cell surface protein expression,
HEK293T cells were transfected in 6-wells by the calcium phosphate method with 1 μg of a
CD4, tetherin, NTB-A or CD1d expression vector and 5 μg of vectors co-expressing Vpu/
Rev1-Vpu and eGFP or proviral HIV-1 M constructs. For experiments in primary cells, 1 mil-
lion PHA-stimulated PBMCs were transduced with VSV-G-pseudotyped HIV-1. Two days
post transfection (HEK293T cells) or three days post transduction (PBMCs), cells were stained
extracellularly with antibodies against CD4 (monoclonal, Invitrogen, Cat# MHCD0405, dilu-
tion 1:40), tetherin (monoclonal, BioLegend, Cat# 348410, dilution 1:25), NTB-A (monoclonal,
R&D, Cat# FAB19081A, dilution 1:25) or CD1d (monoclonal, BD, Cat# 550255, dilution 1:10).
HEK293T cells transfected with proviral constructs and PBMCs were additionally permeabi-
lized and stained for p24 (rabbit anti-p24 polyclonal rabbit antiserum, generated by Eurogen-
tec; Alexa Fluor 488, life technologies, A11008, dilution 1:20). Fluorescence was detected by
two-color flow cytometry and changes in tetherin, CD4, NTB-A and CD1d surface expression
levels of eGFP or p24 positive cells were calculated.

Virus release assay
To determine tetherin-mediated restriction of virion release HEK293T cells were seeded in
6-well plates and transfected with 5 μg of a proviral construct and increasing amounts of a plas-
mid coexpressing human tetherin and DsRed2. 40 h post transfection, cells and supernatants
were lysed in Triton X-100 and the relative p24 release in the supernatant was determined by
an home-made antigen enzyme-linked immunosorbent assay (ELISA).

p24 ELISA
To quantify p24 amounts of HIV-1 M NL4-3, ZM246, and ZM247, a home-made sandwich
ELISA was used. Briefly, 96-well plates were coated with an anti-p24 antibody from abcam
(Cat# 9071, dilution 1:5,000), and bound p24 was detected using a polyclonal rabbit antiserum
generated by Eurogentec (dilution 1:667) and an HRP-conjugated secondary antibody from
Dianova (Cat# 111-035-008, dilution 1:2000). The protocol included several washing and
blocking steps using Phosphate-Buffered Saline + 0.05% Tween (PBS-T) and PBS + 10% FCS,
respectively.

Particle infectivity assay
To determine virion infectivity, virus stocks from HEK293T cells were adjusted for their p24
content using a home-made p24 ELISA. Subsequently, TZM-bl reporter cells were infected
with the adjusted virus stocks and β-galactosidase activity was measured three days post
infection.
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NF-κB reporter assay
Transfections for the NF-кB luciferase reporter assay were performed in 96-well plates and
each transfection was performed in triplicates. HEK293T cells were co-transfected with a firefly
luciferase reporter construct under the control of three NF-кB binding sites (100 ng), a Gaussia
luciferase construct under the control of a minimal pTAL promoter for normalization (25 ng),
and a proviral HIV-1 construct (100 ng). Dual luciferase assays were performed 40 h post-
transfection and the firefly luciferase signals were normalized to the internal Gaussia luciferase
control.

Rev reporter assay
The pNL-GFP-RRE(SA) reporter construct expresses GFP in a Tat- and Rev-dependent man-
ner. In the absence of Rev, only fully spliced mRNA which lacks the GFP ORF is exported from
the nucleus into the cytoplasm. HEK293T cells were co-transfected with 1 μg of
pNL-GFP-RRE(SA), 1 μg of a pCG vector expressing BFP and increasing amounts of proviral
HIV-1 M constructs (0.1 μg, 0.6 μg, 3.0 μg). Two days post transfection, GFP expression of
BFP positive (i.e. transfected) cells was determined by flow cytometry.

Viral replication in PBMCs and HLT
Virus stocks were generated by co-transfection of HEK293T cells with 5 μg of proviral DNA
and 1 μg of pHIT/G. Two days post transfection, virus stocks were harvested and TZM-bl
reporter cells were infected to adjust infectivity of the cell culture supernatants. Subsequently,
PHA-stimulated PBMCs and HLT explants were infected with normalized virus stocks. HIV-1
replication was monitored by determining reverse transcriptase activity in the supernatants 0,
3, 5, 7 and 10 days post infection.

Competition assay in PBMCs
1 million PHA-activated PBMCs were coinfected in 300 μl medium containing equal amounts
of wild type and frameshift viruses encoding a rev1-vpu fusion gene or not. After 6 h, cells were
washed three times and cultured in 2 ml of supplemented RPMI containing 10 ng/ml IL-2.
Supernatants were collected 10 d after infection and RT-PCR (SuperScript III One-Step
RT-PCR with Platinum Taq; Invitrogen) was performed to amplify viral genomic RNA using
primers flanking the rev1-vpu intergenic region. The PCR fragments were purified from aga-
rose gels and sequenced to determine the outcome of the competition.

Reverse transcriptase assay
To determine reverse transcriptase activity, 6 μl of cell culture supernatant were added to 25 μl
of a reverse transcription solution (50 mM Tris-HCl, 63 mM KCl, 4.2 mMMgCl2, 0.08% Noni-
det P40, 1.68 mM EDTA, 4.2 mM polyA, 0.14 μg/ml oligo-dT, 4 mM DTT, 25 nCi 32P isotope)
and incubated at 37°C for 2 h. Subsequently, 6 μl of the reaction mixture were transferred on a
whatman filter paper and washed 3–5 times with 2x SSC buffer (300 mMNaCl, 30 mMNa3Ci-
trate x2 H2O, pH 7.0). After washing with 96% ethanol, the filter was dried. Radioactivity was
detected with a BAS 2000 Phospho-Imager and the signal was quantified using AIDA Image
Analyzer.

Analysis of the HIV-1 quasispecies in longitudinally studied patients
Previously published single genome sequences (SGS) from human subjects acutely infected
with a single clade A or C transmitted founder virus and followed longitudinally for 1–2 years
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were retrieved from Genbank (for accession numbers see Table 1). Subjects were infected by
heterosexual routes, identified at clinical sites in Rwanda, Malawi or South Africa, and
remained treatment-naïve for the duration of study. These longitudinal sequences (half or near
full length genomes) were originally generated to study virus sequence evolution in response to
host immune responses [26]. Sequences were aligned, translated into the three forward reading
frames, and evaluated for the presence of a rev1-vpu fusion gene.

In silico analyses of RNA structure
mRNA structures were predicted using the Mfold web server for nucleic acid folding and
hybridization prediction [37]. Linear rev/vpu/env encoding mRNA spliced at donor 1 and
acceptor 4c was used for modeling. 5’ and 3’mRNA ends were not modified. In silico folding
was performed at 37°C, 1M Na+ and 0 MMg++. Both, the maximum size and maximum asym-
metry of interior/bulge loops were set to 30. The maximum distance between paired bases was
unlimited.

Statistical analyses
Statistical calculations were performed with a two-tailed unpaired Student’s t test or one sam-
ple t test using Graph Pad Prism 5.03. P values<0.05 were considered statistically significant.
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