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Abstract: Trans-acting splicing factors play a pivotal role in modulating alternative splicing by
specifically binding to cis-elements in pre-mRNAs. There are approximately 1500 RNA-binding
proteins (RBPs) in the human genome, but the activities of these RBPs in alternative splicing are
unknown. Since determining RBP activities through experimental methods is expensive and time
consuming, the development of an efficient computational method for predicting the activities of
RBPs in alternative splicing from their sequences is of great practical importance. Recently, a machine
learning model for predicting the activities of splicing factors was built based on features of single
and dual amino acid compositions. Here, we explored the role of physicochemical and structural
properties in predicting their activities in alternative splicing using machine learning approaches and
found that the prediction performance is significantly improved by including these properties. By
combining the minimum redundancy–maximum relevance (mRMR) method and forward feature
searching strategy, a promising feature subset with 24 features was obtained to predict the activities
of RBPs. The feature subset consists of 16 dual amino acid compositions, 5 physicochemical features,
and 3 structural features. The physicochemical and structural properties were as important as the
sequence composition features for an accurate prediction of the activities of splicing factors. The
hydrophobicity and distribution of coil are suggested to be the key physicochemical and structural
features, respectively.

Keywords: machine learning; partial least square regression; minimum redundancy–maximum
relevance; forward searching strategy; hydrophobicity; secondary structure; amino acid compositions

1. Introduction

Alternative splicing (AS) is one of the major contributors to the functional complexity
of the human genome and occurs in ≥90% of human genes [1,2]. Abnormal AS, such as
mutations in cis-acting sequence elements in pre-mRNA and trans-acting splicing factors,
are the common causes of a large number of human diseases [3]. AS is regulated by splicing
factors that specifically bind to cis-elements in pre-mRNA to modulate the recognition of
splice sites nearby [4,5]. The same splicing factor can promote or inhibit the inclusion of
an exon in the spliced product depending on the location of the same cis-element that it
binds to in pre-mRNA [6]. Recognizing the activities of splicing factors in developmental or
differentiation contexts is essential for a better understanding of heart [7], brain [8], and liver
development [9], and T-cell activation [10]. During the past decade, many studies have been
performed to identify the splicing targets of individual splicing factors and their binding
sites in developmental contexts, characterize the activities of the splicing factors in splicing
coordination, and then infer the potential functions of these splicing networks for tissue and
organ development [11,12]. For example, muscleblind-like proteins have been introduced
to induce embryonic splicing patterns for more than half of the developmentally regulated
AS transitions [13]. Polypyrimidine tract-binding protein 2 promotes neuronal development
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and tissue maintenance [14], and splicing-regulatory (SR) proteins promote exon inclusion
by specifically binding to their cognate targets within an alternative exon [15]. Additionally,
machine learning models have been successfully applied to explore the regulation of AS
outcomes by using genomic data in the era of big data [12,16–18], specifically to identify
gene targets of a therapeutic for human splicing disorders [12], predict the RNA polymerase
II pausing events from the contextual DNA sequences [17], and identify effective exon
skipping using antisense oligonucleotides [18].

Splicing factors contain both functional domains that directly participate in splicing
and RNA-binding domains that bind specifically to the cis-elements in pre-mRNA. Thus,
splicing factors are RNA-binding proteins (RBPs). According to a recent proteomic analysis,
there are approximately 1500 RBPs in the human genome [19]. It is not clear how many
of these RBPs are splicing factors. These RBPs are likely to regulate splicing because most
of them are located in the nucleus. Experimentally measuring the activity of each RBP by
engineering splicing factors [20] is impractical, motivating the development of predictive
models for understanding the activities of these RBPs. Computational studies to identify
splicing-regulatory cis-elements have been frequently reported [21–28]. Fairbrother et al.
identified ten motifs with exonic splicing enhancer activity by analyzing exon–intron and
splice site composition in human genes [21]. Xiong et al. trained a deep neural network
on exon skipping events and constructed a promising model to predict the exon inclusion
probability [22]. Recently, a machine learning model of alternative splicing, which enables
the identification of universal rules of RNA splicing, was learned from gene libraries with
millions of synthetic sequences [23]. However, the identification of potential trans-acting
splicing factors via computational approaches is still limited. To unveil the activities of
these RBPs in splicing, Mao et al. accessed the splicing activities of 63 putative func-
tional domains from 51 human RBPs by engineering them into an RNA-binding domain
with programmable specificity. They found that more than 80% of these domains possess
nontrivial activities to regulate splicing. In addition, they constructed a model using a
machine learning approach to predict the splicing-regulatory activities of RBPs from their
sequence compositions [1]. However, they took only the amino acid composition and
dipeptide composition as features to represent the RBPs. In this study, we hypothesize that
a model of splicing factor activity that includes physicochemical and structural features
can outperform the model utilizing only sequence composition features. Physicochemical
properties have recently been used to improve the performance of machine learning models
for the evaluation of target diversity and compound promiscuity in protein–drug interac-
tions [29], identification of 5-methylcytosine sites [30] or N6-methyladenosine sites [31]
in RNA sequences, classification of protein domains with highly variable sequences [32],
and characterization of intrinsic properties of protein–protein interfaces [33]. Xu et al.
incorporated physicochemical properties in a deep sparse autoencoder to identify splic-
ing sites and demonstrated the constructed predictor (named iSS-PC) to be superior to
other predictors for the same purpose [34]. Structural information is fundamental for
understanding protein functions because more than 188,000 biological macromolecular
structures are present in the protein data bank at the atomic or near atomic level. For exam-
ple, the complex structure of an RNA recognition motif of the splicing factor SRSF1 with
RNA was recently determined. The structure revealed a bimodal mode of interaction of
SRSF1 with RNA and deepened the understanding of how SRSF1 activates the inclusion
of the SMN1 (survival of motor neuron 1) exon7 [35]. However, the structures for most
of RBPs are not available. Thus, the inclusion of structural information of RBPs can only
rely on structure prediction tools. Physicochemical and structural properties were demon-
strated to be essential in the prediction of protein structure classes [36,37], DNA binding
protein identification [38], and other functional properties of proteins [39–42]. Thus, in
this study, we explore whether the physicochemical and structural properties of RBPs play
non-negligible roles in predicting the context-dependent activities of RBPs in regulating
splicing. Specifically, we aim to determine which physicochemical and structural properties
are the most important ones in such predictions.
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In this study, we first included physicochemical and structural properties together
with the single and dual amino acid compositions to represent RBPs. Then, minimum
redundancy-maximum relevance the (mRMR) method and forward feature searching
strategy were combined to determine the best feature sets and optimize the prediction
model using a machine learning approach, partial least squares regression (PLSR), followed
by model evaluation with 5-fold cross-validation. Finally, the roles of physicochemical and
structural properties in predicting the activities of RBPs are discussed.

2. Results and Discussion
2.1. Comparing the Performance of Different Machine Learning Approaches

To choose the suitable machine learning algorithm, we compared the performance
of three machine learning approaches PLSR, RFR, and SVMR. In terms of accuracy and
computational time, the PLSR model was superior to the other two regression models, RFR
and SVMR; 647 features were used to train the three regression models, and the PLSR model
produced the highest Spearman’s correlation coefficient (γ) 0.69. The Spearman’s coefficient (γ)
of RFR and SVMR were 0.53 and 0.54, respectively. Computation times for a single 5-fold cross
validation on 647 features in PLSR, RF, and SVMR were 1.8 s, 330 s, and 3.6 s, respectively.
These results demonstrate the superior fitting ability of PLSR. Therefore, in the following
sections, only the results of PLSR are presented.

2.2. Determining the Parameters of PLSR for an Optimal Performance

As the performance of PLSR depends on the number of principal components used
in the model, we tested the performance of PLSR using different principal components.
Each protein was represented by a 647-dimensional numeric vector, and for 85 samples, an
original feature matrix X (85× 647) was obtained in this work. First, the feature matrix X
(85× 647) was trained using the PLSR model within the number of principal components
from 1 to 10. The results (Figure 1, Table S1) show that the PLSR model achieves the best
performance when the number of components = 3, with R2, RMSE, NRMSE, Pearson’s
correlation coefficient, and Spearman’s rank correlation coefficient (γ) of 0.47, 0.32, 0.72,
0.77, and 0.69, respectively. Therefore, we used the PLSR model with the number of
components = 3 to analyze the feature importance in the following sections.

Figure 1. Curves of five performance measures produced by PLSR with component number rang-
ing from 1 to 10 and 647 features trained by using the PLSR model as the input space. When the
component number is 3, RMSE and NRMSE achieve the lowest value; R2, Pearson’s correlation
coefficient, and Spearman’s coefficient have the highest value. Therefore, the PLSR shows the best
performance when the number of principal components is 3. R2 is the coefficient of determina-
tion, and RMSE, NRMSE is the root mean square error and the normalized root-mean-square
error, respectively.
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2.3. Feature Selection with mRMR Method

By using the mRMR feature selection program developed by Zhang [43], we obtained
two feature lists (Table S2): (1) the maxRel feature list, in which the features are listed
in a decreasing relevance to the target; (2) the mRMR feature list, which is selected and
ordered based on mutual information. To determine how many foremost features in the
mRMR feature list should be included in the prediction model, the features in the mRMR
feature list were added one by one, and the performance of the prediction model with the
selected feature subset was evaluated using 5-fold cross-validation. Here, we ran all the
features in the mRMR feature list and obtained the optimized feature subset that achieved
the highest prediction accuracy (Spearman’s correlation coefficient of 0.71) when the 625th
feature was added (Figure 2, Table S3). The PLSR model obtained a higher Spearman’s
coefficient based on the first 625 features in the mRMR feature list than that based on
the 647 features. Therefore, a feature vector with a dimension smaller than the original
feature vector (627-dimensional) was formed with 625 features based on the mRMR method.
Similar results can be obtained when metrics such as R2, RMSE, NRMSE, and Pearson’s
correlation coefficient are used (Figure S1).

Figure 2. Curves of Spearman’s correlation coefficient produced by mRMR features (red line)
and the forward feature searching strategy (black line). The mRMR method combined with the
forward feature searching strategy has a good performance in feature selection. mRMR and Forward
represents the minimum redundancy-maximum relevance method and forward feature searching
strategy, respectively.

2.4. Feature Selection with Forward Feature Searching Strategy

Using the mRMR method, a feature subset with 625 features was obtained. However,
the 625-dimensional feature vector is still a high-dimensional feature vector. Therefore, in this
section, we attempt to find a better feature subset than the feature subset obtained using the
mRMR method. The mRMR feature selection is fulfilled without involving the PLSR prediction
model. The mRMR method can obtain the feature selection order quickly, whereas the forward
feature searching strategy can provide a more accurate and better feature subset, which involves
a prediction model.

This study combined the mRMR method with the forward feature searching strategy
to obtain a better feature subset. We chose the first several features from the list of mRMR
features and the remaining features by using the forward feature searching strategy. Our
method aims to find a feature subset with few features that have the highest Spearman’s
coefficient. The reasons to use Spearman’s coefficient to evaluate the model performance
are as follows: (1) five metrics are correlated (Figure S2); (2) predicting the correct rank of
the activities of RBPs is crucial for the selection of potential inhibitors or activators.
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We chose the first two features in the mRMR feature list as the initial feature subset
because the PLSR model requires at least three features when the number of principal
components is 3. We then searched the remaining features using the forward feature search-
ing strategy, a feature order table and a performance assessment table (Tables S4 and S5).
Figure 2 shows that the best feature subset is between 20 and 100 features in the forward
feature order list. The highest prediction Spearman’s coefficient was 0.94 when 93 fea-
tures (6 from physicochemical properties, 17 from structural information, and 70 from
sequence compositions) were selected in the feature subset to compare the fitted values
and experimentally measured values (Figure S3). When more than 93 features are selected,
the Spearman’s coefficient deteriorates, indicating that the PLSR model suffers from the
overfitting problem. Therefore, the 93-feature subset is regarded as the optimal feature
subset in this work.

2.5. Comparison between mRMR Method and Forward Feature Searching Strategy

In this study, we explore two questions: What is the difference between the feature list
ordered by the mRMR method and the forward feature searching strategy? Which feature
extraction method is more efficient? To answer these questions, we divided the 647 features
into 13 subsets according to the order list. Their prediction accuracy (Spearman’s coefficient)
is shown in Figure 3, where the Spearman’s correlation coefficients of the subsets in mRMR
are not significantly different. The first subset in the forward feature searching strategy
achieved the highest value. Overall, the forward feature searching strategy achieved a
more accurate prediction. Therefore, the forward feature searching strategy should be first
considered when the computational resources are sufficient.

Figure 3. Feature importance analysis of the mRMR method and the forward feature searching
strategy. The dots of the Spearman’s coefficient are produced using the mRMR features (orange lines,
blue dots) and the forward feature searching strategy (green lines, orange dots). The first 50 features
of the forward feature searching method achieved the highest value.

2.6. Feature Importance Analysis

After obtaining the best feature subset with 93 features, we evaluated the relative con-
tributions of the features obtained from physicochemical properties, structural information,
and sequence compositions. Thus, 6 physicochemical property features, 17 structural informa-
tion features, and 70 sequence composition features in the best feature subset were separated into
three new feature subsets. For each feature subset from a particular property, a prediction model
was constructed based on PLSR, and its performance was evaluated (Figure 4). The Spearman’s
coefficients for the physicochemical subset (6 physicochemical property features), the structural
subset (17 structural information features), and the sequence subset (70 sequence composition
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features) were 0.61, 0.30, and 0.59, respectively. The prediction ability of 6 physicochemical
property features is comparable to that of 70 sequence composition features. Thus, the physic-
ochemical properties are very important in the function of splicing factors. Although the
sequence composition is as important as the physicochemical properties, structural information
is indispensable in accurately predicting RBPs’ splicing activities.

Figure 4. Three performance measures (R2, Pearson’s correlation coefficient, and Spearman’s
correlation coefficient) produced by 6 physicochemical features, 17 structural information features,
and 70 sequence composition features based on the PLSR model when the number of component is 3.

Figure 2 shows the first 24 features of the forward searching features achieve good
performance, and the Spearman’s coefficient is 0.92. Table 1 shows the 24 foremost
features obtained using the forward feature researching strategy. The first 2 features
(backbone_angles_φ_3th and hydrophobicity_distribution_H-0.0) are taken from the mRMR
features in the forward searching feature list. Here, we hypothesize that the physicochemi-
cal and structural properties contribute significantly to the prediction of the activities of
RBPs. To verify our hypothesis, we further analyzed the contributions of features as follows.
The foremost 24 features consist of 16 Dual-AAC, 3 physicochemical, and 5 structural fea-
tures. The number of Dual-AAC features dominates in the top 24 features, highlighting the
importance of Dual-AAC in predicting the activities of splicing factors. This is consistent
with the results of a previous study [1]. Although the occurring frequencies of several
dual-features such as SR and RS are very high in splicing factors, they are not selected in
the top 24 list because the values of these features do not change significantly, and thus
the prediction model is not sensitive to them. However, the top 24 list contains many
physicochemical and structural features as well, in which the features related to hydropho-
bicity and coil structure are the majority. Hydrophobicity is the driving force for protein
folding and plays an important role in protein–protein interactions [44–46]. Our results
suggest that hydrophobicity interactions can be dominant in the splicing complex formed
between RBPs and other proteins involved in splicing. Furthermore, the appearance of two
structural information features, SS8_distribution_C-1.0 and SS3_distribution_C-1.0, in the
top 24 list indicates that the coil structures tend to be at the C-terminal of RBPs, and these
low-complexity domains in the C-terminal can be important for the function of splicing fac-
tors (note that functional domains of splicing factors are mainly low-complexity domains).
We showed two SHAP plots in the supplementary material (Figures S4 and S5) for feature
importance analysis. These SHAP plots are shown based on the 5-fold cross-validation.
As a powerful method for selecting features and analyzing feature importance, these SHAP
plots show similar results to the combined mRMR and forward feature searching strategy.
The top10 features of the list of mean (|SHAP|) values and the list of mRMR and forward



Int. J. Mol. Sci. 2022, 23, 4426 7 of 18

feature searching strategy are the same. The SS8_Dual_GG feature in the list of SHAP has a
more significant contribution to predicting the activities of RBPs. This is consistent with the
result that structure information and physiochemical properties are critical in predicting
splicing factors.

Table 1. Order, names, and brief descriptions of the foremost 24 features selected by using the forward
searching strategy with the performance of the corresponding prediction model measured by using
the Spearman’s correlation coefficient.

Order Name Descriptions Spearman

1 Backbone angle_tau-3th the measurement of the residue-wise torsion -
2 Hydrophobicity_distrib-ution_H-0.0 the first distribution value for H -
3 Polarity_composition_P the percentage of physiochemical property P 0.65
4 Dual-AAC_GT the percentage of dual amino acid GT 0.72
5 Dual-AAC_HK the percentage of dual amino acid HK 0.74
6 Dual-AAC_KK the percentage of dual amino acid KK 0.76
7 Dual-AAC_FN the percentage of dual amino acid FN 0.79
8 Dual-AAC_HY the percentage of dual amino acid HY 0.81
9 Dual-AAC_TA the percentage of dual amino acid TA 0.83
10 Dual-AAC_RT the percentage of dual amino acid RT 0.85
11 Dual-AAC_TT the percentage of dual amino acid TT 0.88
12 SS8_Dual_GG the percentage of dual 310 − helix G 0.89
13 Dual-AAC_AA the percentage of dual amino acid AA 0.90
14 Dual-AAC_DP the percentage of dual amino acid DP 0.91
15 Dual-AAC_IY the percentage of dual amino acid IY 0.91
16 Dual-AAC_YQ the percentage of dual amino acid YQ 0.92
17 Dual-AAC_VH the percentage of dual amino acid VH 0.92
18 SS8_distribution_C-1.0 the fifth distribution of coil in SS8 0.92
19 SS3_distribution_C-1.0 the fifth distribution of coil in SS3 0.92
20 Hydrophobicity_distrib-ution_N-1.0 the fifth distribution of N 0.92
21 Dual-AAC_CG the percentage of dual amino acid CG 0.92
22 Dual-AAC_CE the percentage of dual amino acid CE 0.92
23 Dual-AAC_WS the percentage of dual amino acid WS 0.92
24 SS8_Dual_GS the percentage of pair 310 − helix G and high-curvature loop S 0.92

2.7. Comparison with the Existing Model

In the only existing work for predicting the activities of trans-acting splicing factors
based on machine learning, 123 features (consisting of both AAC and Dual-AAC) were
selected to predict the activities of RBPs based on the PLS model developed by Wang’s
group [1]. Thus, we compared the performance of the 123 features from Wang’s group
and the performance of 93 features (the best feature subset) obtained in this work. Here,
we trained the PLSR model with the number of components ranging from 1 to 10 using
the 123 features in Wang’s work based on 85 RBP samples, which are also used in this
work. The highest R2 (0.41) and Spearman’s coefficient values (0.65) were obtained using
the PLSR method when the number of components was 1 (Table S6). When the number
of components was 3, R2 and Spearman’s correlation coefficients were 0.35 and 0.58,
respectively. As shown in Figure 5, both the R2 (0.60) and the Spearman’s coefficient (0.94)
achieved in this work using 93 features are higher than those achieved using 123 features
in Wang’s work. Thus, in this study, a machine learning model with better performance
than that of the previous work was obtained. These results highlight the need to include
the physicochemical properties and structural information of RBPs in prediction models.
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Figure 5. Differences in five performance measures between 93 features (the best feature subset) and
123 features (the feature subset) proposed in Wang’s work. R2, Pearson’s, and Spearman’s correlation
coefficients of 93 features are higher than those of 123 features, and RMSE and NRMSE are lower
than those of 123 features.

3. Materials and Methods

The overall workflow for constructing the prediction model involved five major
stages: Data set collection, feature extraction, feature selection,and model training and
validation (Figure 6).

Figure 6. Methodology for predicting the activities of trans-acting splicing factors. RBPs is RNA
binding proteins, AAC is amino acid composition, Dual-AAC is dual amino acid composition, ASA
is solvent accessible surface area, HSE is half-sphere exposure, SS3 and SS8 is 3-state and 8-state
secondary structural elements, respectively, and PLSR is partial least square regression.

3.1. Data Collection

We collected 91 putative functional domains for which the splicing regulatory activity
in the exonic context was tested in the experiments by Mao et al., in which 63 domains
and the rest were from the training and testing datasets, respectively [1]. After removing
some RBPs whose structures could not be predicted by SPOT-1D [47], we obtained 85 ex-
perimentally tested RBPs sequences and their activities as the training dataset in this study.
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Here, PLSR was used to construct predictive models to fit the value log10 (fold change in
splicing factor activity) of each RBP. The sequences and splicing regulatory activities for
these functional domains are listed in Table S7.

3.2. Feature Extraction

To construct models that predict the activities of RBPs based on their sequence,
the amino acid sequences of these proteins need to be converted into equal-length vectors
via feature extraction [48]. In this section, we presented proteins with three main types of
features: sequence compositions, physicochemical properties, and structural information,
which are widely used in sequence coding research.

3.2.1. Sequence Composition Features

Extracting features based on distinguishable patterns of the protein sequences is the
oldest known and most common method of presenting proteins and has been widely used
in several studies [41,49–51].

Amino Acid Composition
Amino acid composition(AAC) is a vector containing 20 elements, each of which

corresponds to the frequency of an amino acid type in the entire protein sequence [49],
i.e., a given protein P is defined by a vector in a 20-dimensional space according to the
following Equation (1):

P =


p1
p2
...

p20

 (1)

with
pi =

ci
len(seq)

, i = 1, 2, . . . , 20

where ci represents the number of occurrences of type i native amino acid in the protein se-
quence P, len(seq) is the length of the sequence, and pi represents the occurrence frequency
of amino acid i in protein P.

Dual Amino Acid Composition
To better represent the protein, another sequence composition feature, dual amino

acid composition (Dual-AAC), was considered in this work. Dual-AAC can translate a
sequence of protein into a 400 dimensional numerical vector, which can be described using
the following Formula (2):

D =


D1,1
D1,2

...
D20,19
D20,20

 (2)

with

Di,j =
fi,j

∑i=20
i=1 ∑

j=20
j=1 fi,j

, i = 1, 2, . . . , 20; j = 1, 2, . . . , 20

where fi,j is the number of transitions from type i native amino acid to type j native amino
acid in a whole protein sequence and Di,j is defined as the changing frequency of two
i, j native amino acids. In the sequence composition, Dual-AAC can be considered the
composition of K-spaced amino acid pairs (CKSAAPs) with K = 0 [52]. CKSAAPs was
successfully employed in predicting the potential palmitoylation sites [51] and human
ubiquitination sites [50].
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3.2.2. Physicochemical Property Features

For a given protein sequence, we used 84 physicochemical features to represent its
global information. The physicochemical features include the following properties: hy-
drophobicity, normalized Van Der Waals volume, polarity, and polarizability; a global
description of the amino acid sequence can be used to obtain 21 features for each of these
properties [53–55]. For example, the procedure for obtaining the global properties for
hydrophobicity is the following: first, we classify each amino acid into three categories
polar, neutral, and hydrophobic amino acids, and then amino acids falling into the three
categories are substituted by characters P, N, and H, respectively. In this step, the protein
sequence is converted to a pseudosequence consisting of P, N, and H. Then, we calcu-
late the composition (the occurrence frequencies of P, N, and H in the whole sequence),
transition (changing frequencies between two different properties, for example, changing
frequencies between P and N include both the transition from P to N and the one from
N to P), and distribution (portion of the protein sequence that contains 25%, 50%, 75%,
and 100% of P, N and H, respectively) [54,55]. Therefore, the hydrophobicity property of
RBPs can be represented by 21 features: 3 composition features, 3 transition features, and
15 distribution features.

3.2.3. Structural Descriptor

Using protein structural information to improve the prediction performance was
demonstrated in a number of bioinformatical applications [52,56,57]. We thus introduced
structural information of splicing factors in this study. As the functional domains of
splicing factors are largely intrinsically disordered low-complexity domains, extracting the
structural information from the amino acid sequences of RBPs is challenging. Recently,
Zhou et al. developed a powerful tool (SPOT-1D) for protein structure prediction (https://
sparks-lab.org/server/spot-1d/ (accessed on 10 February 2020)) [47]. We used SPOT1D to
predict the one-dimensional (1D) structural properties of RBPs. The structural information
of RBPs was extracted from the output files of SPOT-1D. Therefore, we obtained 3-state
secondary structure (SS3), 8-state secondary structure (SS8), solvent accessible surface
area (ASA), half-sphere exposure (HSE), backbone angles (θ, τ, φ, and ψ) and contact
numbers (CN) for each residue in an RBP and converted them into structural features for
model training.

Features Constructed from SS3 and SS8
One-dimensional structural properties of proteins include SS3 and SS8, which means

3-state and 8-state secondary structural elements, respectively. As important protein
descriptors, SS3 and SS8 are known for only a relatively small number of proteins; thus,
we predicted them from amino acid sequences using SPOT-1D [47]. SPOT-1D provided
independent predictors for both SS3 and SS8, and SS8 is defined as 310− helix (G), α− helix
(H), π − helix (I), β − bridge (B), β − strand (E), high − curvatureloop (S), β − turn (T),
and coil (C). These can be condensed into three types (SS3): helix H (G,H, and I in SS8),
strand E (B and E in SS8), and coil C (everything else). Therefore, SS8 can be viewed as
pseudosequences that consist of G, H, I, B, E, S, T, and C, whereas SS3 can be viewed as
pseudosequences that consist of H, E, and C. Then, the composition, dual composition
and distribution of the queried pseudosequences are presented. Therefore, 27 features
(3 composition features; 9 dual composition features; and 15 distribution features) are
included in SS3 and 112 features (8 composition features; 64 dual composition features; and
40 distribution features) are included in SS8.

The probability of an amino acid belonging to C, E, or H in the case of SS3 is provided
in the output files of SPOT-1D. For a protein P with L amino acids, three probabilities for
each amino acid are given, and thus three L-dimensional numerical vectors are provided.
We converted each of these probability vectors into three position-dependent features
using the following strategy. We first equally divide an L-dimensional numerical vector
into three parts: the first, middle, and end parts. Then, the average value in each part
is used as the value of the feature for the corresponding part. Therefore, there are 3

https://sparks-lab.org/server/spot-1d/
https://sparks-lab.org/server/spot-1d/
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features for each L-dimensional numerical vector and thus 9 features in the case of SS3.
Together with the 27 features constructed previously, there are 36 features for SS3 in total.
Similarly, there are eight probability vectors for the secondary structure types in the case of
SS8, and 24 additional features are obtained besides the 112 features obtained previously.
In total, there are 136 features for SS8. Therefore, a 172-dimensional feature vector is formed
based on the structural properties of both SS3 and SS8.

Features Constructed from Other Structural Properties
The other structural properties correspond to the ASA, HSEα-up and -down, CN and

backbone angles, which can be obtained from the outputs of SPOT-1D [47]. Similar to the cases
of probability vectors for SS3 or SS8, we convert each of these properties for the sequence of an
RBP into three position-dependent features. We thus obtain 24 (3× 8) features.

Finally, all features are combined into a vector to train a model. The total number of
features is 20 + 400 + 84 + 172 + 24 = 700 (Table S8). Each RBP sequence is transferred into
a 700-dimensional vector (Table 2).

Table 2. Feature description.

Feature Type Overview of the Features

Amino acid composition 20
Dual amino acid composition 400
Hydrophobicity 21
Normalized Van Der Waal volume 21
Polarity 21
Polarizability 21
SS3 36
SS8 136
Others (ASA, HSEα−up and down, CN and backbone angles) 24
Total 700

3.3. Feature Normalization

To avoid having a particular feature leading the prediction, we need to normalize all
features using the following Equation (3):

X
′
=

X− Xmean

Xstd
(3)

where X, Xmean, and Xstd represent the original value, the mean value of X, and the standard
deviation of X, respectively. X

′
is the output value of X after normalization.

3.4. Feature Selection

A 700-dimension vector was constructed based on the description in the feature
extraction section. However, the problem of ”curse of dimensionality” may occur when
we directly input the high-dimensional feature into the models [58]. Thus, to improve
the prediction performance of the predictors and save computing resources, we need to
reduce the feature space to a low-dimensional one using feature selection algorithms. Here,
a feature matrix X (85× 647) was obtained after removing the features that are almost
zero in all samples (Table S9). Then, we selected mRMR algorithm and forward feature
searching strategy to reduce the feature matrix X further.

mRMR
As a widely used feature selection algorithm, mRMR is proposed by Peng et al. [59] to

select a subset of features that minimize the redundancy of the original feature space and
remove features of low relevance to the target class. This algorithm is especially useful for
large-scale feature selection problems. mRMR has been employed in many research fields,
including predicting protein structure classes [55,60], the prediction of protein–protein
interaction [61,62], and others [52,63,64].
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However, the optimization of feature selection through mRMR does not guarantee that
the selected subset is also the best one for the prediction model because the mRMR method
does not involve a prediction model [55]. Typically, the forward feature searching strategy
is applied to the results of mRMR to improve the performance of the prediction model.

Forward Feature Searching Strategy
First, an initial feature subset A is selected, and then the remaining features are added

one by one using the following Equation (4):

max
i∈ΩA

P(A ∪ (i)) (4)

where ΩA, i, P(A∪ (i)) represent the remaining feature subset, one feature in the remaining
feature subset, and the prediction accuracy of the model with the feature subset A ∪ (i),
respectively. max

i∈ΩA
P(A ∪ (i)) means that finding a feature i from the remaining feature

subset lets feature subset A ∪ (i) obtain the maximum value of the prediction accuracy.

3.5. Model Training

Partial least squares is a well-established technique in multivariate data analysis and
has been applied to predict the activities of trans-acting splicing factors successfully [1].
Therefore, we used PLSR as the predictor in this study. PLSR is a method used to relate
two data matrices, X and Y, using a linear multivariate model [65,66]. PLSR has the ability
to analyze data with strongly correlated, noisy, and incomplete variables in both X and Y.
It projects the X and Y variables to a new space and forms new X

′
and Y

′
variables. Then,

a regression model is constructed between the X
′

and Y
′

variables. As one of the most
classic regression models, PLSR has been widely used in analyzing biological data [67–70]
such as determining the secondary structure of proteins in different environments [67],
extracting gene association networks from microarray data [68], and exploring subcellular
responses of prostate cancer cells to X-ray exposure [69]. The number of principal com-
ponents is a key parameter that affects the performance of PLSR. The parameter space
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} was searched to identify the number of principal components at
which the optimal performance was reached in this work.

The PLSR algorithm was compared with the random forest regression (RFR) and
support vector machine regression (SVMR) algorithms. RFR and SVMR are among two
of the most-used regression models, and they have been previously compared with the
PLSR model in various studies [71–74]. Two key parameters that affect the performance
of RFR are the number of the trees (M) and the number of features (mtry), whereas the
performance of SVMR with a Gaussian radial basis kernel is affected by parameters cost
(C) and gamma (Γ). We used grid search to identify the optimal values of these pa-
rameters in the parameter space as follows: M ∈ {1, 2, . . . , 99}, mtry ∈ {1, 2, . . . , 29}, C
∈ {0.01, 0.1, 05, 1.0, 5, 10, 15, 20}, and Γ ∈ {2−6, 2−5, . . . , 25, 26}. The three machine learning
algorithms were implemented in the machine learning library sklearn (version 0.24.2).

3.6. Cross-Validation

Cross-validation is one of the most common methods used to estimate the performance
of a model. In this study, we used 5-fold cross-validation. We randomly split the original
dataset into five equal-sized subsets. For each cross-validation test, one subset was used
as the testing dataset, and the remaining four subsets formed the training dataset [75].
Therefore, each subset was used once for testing and four times for training, and testing
was repeated five times [52]. The average metrics over the 5-fold models were used to
evaluate the performance of the model.

3.7. Performance Evaluation

Five metrics, the coefficient of determination (R2, Equation (5)), the root mean square
error (RMSE, Equation (6)), the normalized root-mean-square error (NRMSE, Equation (7)),
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the Pearson’s correlation coefficient (ρ, Equation (8)), and the Spearman’s rank correlation
coefficient (γ, Equation (9)) were used to evaluate the model performance. Those equations
are defined as follows:

R2 =
∑N

i=1(ypred,i − ȳobs)
2

∑N
i=1(yobs,i − ȳobs)2

(5)

RMSE =

√√√√ 1
N

N

∑
i=1

(yobs,i − ypred,i)2 (6)

NRMSE =
RMSE√

1
N−1 ∑N

i=1(yobs,i − ȳobs)2
(7)

ρ =
∑N

i=1(yobs,i − ȳobs)(ypred,i − ȳpred)√
∑N

i=1(yobs,i − ȳobs)2
√

∑N
i=1(ypred,i − ȳpred)2

(8)

γ = 1−
6 ∑N

i=1 d2
i

N(N2 − 1)
(9)

where N is the number of domains in the validation set (N = 17). yobs,i and ypred,i rep-
resent the prediction value and observation value of log10(fold change in exon inclusion),
respectively. ȳobs and ȳpred are the mean values of yobs,i and ypred,i, respectively. While the
Spearman’s rank correlation coefficient γ represents the Pearson’s correlation of the ranks,
di is the difference between the two ranks of yobs,i and ypred,i.

4. Conclusions

The biological significance of trans-acting splicing factors has motivated the develop-
ment of computational tools to predict the splicing activities of RBPs. As a natural extension
of an existing work, in which only the AAC and Dual-AAC features were employed, this
study incorporated the physicochemical properties and structural information of RBPs into
a machine learning model using the PLSR method. We established a more accurate machine
learning model than that of the existing work [1] by considering the physicochemical and
structural information. We demonstrated that physicochemical and structural properties
play an equally vital role compared with the sequence compositions in the accurate predic-
tion of the activities of RBPs in alternative splicing. By combining the mRMR method and
the forward feature searching strategy, we obtained 24 features, and the Spearman’s rank
correlation coefficient of the constructed prediction model was 0.92. Hydrophobicity and
coil structure are were the two most important features among the proposed physicochemi-
cal and structural properties. These two features have important functional implications
for splicing factors: hydrophobicity interactions are the main driving forces for RBPs to
form splicing complexes with other proteins involved in alternative splicing; functional
domains of RBPs that are mainly low-complexity domains have the potential preference
to be located at the C-terminal of the splicing factors. This study provides a reference for
understanding the splicing factors and further explores the mechanism of human gene
expression. Studies analyzing the relationship between the activities of splicing factors and
RBP sequences based on machine learning methods are limited, and this study makes a
great contribution in this field. Predicting the activities of splicing factors using machine
learning approaches saves a great deal of time and money.

Future research will improve the performance of the prediction model in the follow-
ing aspects: (1) the dataset; (2) the feature extraction method; (3) the machine learning
approach. Currently, the number of neutral domains (with splicing activity close to zero)
in the dataset is too small compared with the number of splicing activators and splicing
inhibitors. The model thus has the tendency to predict a true neutral domain to be either
an activator or inhibitor. The inclusion of more neutral domains in the dataset could be
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important to eliminate the bias in the current prediction model. Here, only four physic-
ochemical properties were extracted. Note that there are now 566 amino acid indices in
the AAindex [76,77], and each amino acid index can be used as a feature. Thus, other
properties, such as amino acid charges at different pH values, average flexibility, surface
tension, solvation free energy, and conformational preferences, can also be included in
the feature set to achieve potentially better representations of RBPs. Only the information
of secondary structure prediction using the SPOT-1D method is included in this work.
The importance of structural features in the prediction model highlights the need to obtain
three-dimensional structural information for a better understanding of the potential func-
tion of these RBPs in alternative splicing. Such structural information can be obtained via
experimental approaches or the state-of-art computational methods such as AlphaFold [78]
or RossetaFold [79]. In this study, the number of experimentally tested RBPs was too small
to explore the relationship between RBP sequences and their functions using deep learning
approaches. In the future, we expect to establish a public database with a greater number of
experimental works and improve the performance of the prediction model by incorporating
more information about splicing factors and more data. Although we demonstrated the
PLSR as a promising method in the prediction of splicing activity of RBPs, we only tested
three machine learning models. It would be beneficial to evaluate the performance of
other machine learning models, such as artificial neural networks [80–82] and boosting
algorithms [83,84], in the near future.
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