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Abstract

The time course of the center of pressure (CoP) during human quiet standing,

corresponding to body sway, is a stochastic process, influenced by a variety of

features of the underlying neuro-musculo-skeletal system, such as postural sta-

bility and flexibility. Due to complexity of the process, sway patterns have

been characterized in an empirical way by a number of indices, such as sway

size and mean sway velocity. Here, we describe a statistical approach with the

aim of estimating “universal” indices, namely parameters that are independent

of individual body characteristics and thus are not “hidden” by the presence

of individual, daily, and circadian variations of sway; in this manner it is pos-

sible to characterize the common aspects of sway dynamics across healthy

young adults, in the assumption that they might reflect underlying neural

control during quiet standing. Such universal indices are identified by analyz-

ing intra and inter-subject variability of various indices, after sorting out indi-

vidual-specific indices that contribute to individual discriminations. It is

shown that the universal indices characterize mainly slow components of

sway, such as scaling exponents of power-law behavior at a low-frequency

regime. On the other hand, most of the individual-specific indices contribut-

ing to the individual discriminations exhibit significant correlation with body

parameters, and they can be associated with fast oscillatory components of

sway. These results are consistent with a mechanistic hypothesis claiming that

the slow and the fast components of sway are associated, respectively, with

neural control and biomechanics, supporting our assumption that the univer-

sal characteristics of postural sway might represent neural control strategies

during quiet standing.

Introduction

Postural sway during human quiet standing is often

quantified by measuring the motion of the Center of

Pressure (CoP), namely the point of application of the

ground reaction force vector. CoP shift profiles are closely

related to the sway of the Center of Mass (CoM) during

quiet standing (Morasso et al. 1999). Thus, motion of the

standing body can be estimated from CoP patterns with

an acceptable accuracy either in the context of the single-

inverted pendulum model (Morasso et al. 1999; Lafond

et al. 2004) or the double pendulum model with hip and

ankle joints (Colobert et al. 2006). Characterizing CoP

motion is of critical importance for understanding neural

mechanisms of postural control (e.g., Winter et al. 1998;

Peterka 2002; Bottaro et al. 2005; Kiemel et al. 2006; Kim

et al. 2008) as well as for better diagnosing severity of

neurological diseases with postural instability (e.g., Horak

et al. 1992; Rocchi et al. 2002; Maurer et al. 2003; Visser

et al. 2008).
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CoP complex fluctuations can be modeled as a two-

dimensional stochastic process (Carroll and Freedman

1993; Collins and De Luca 1994; Loughlin et al. 1996), in

the anterior-posterior (AP) and medio-lateral (ML) direc-

tions on the horizontal plane. Due to complexity, CoP

time-series have been characterized by a number of sim-

ple, usually scalar valued measures or indices (Collins and

De Luca 1993; Prieto et al. 1996; Baratto et al. 2002;

Jacono et al. 2004; van der Kooij et al. 2011), such as

sway size (Seigle et al. 2009), mean sway velocity (Ray-

makers et al. 2005), and scaling exponents (Collins and

De Luca 1994; Milton et al. 2009). Since each index can

measure only a limited aspect of the process, two sway

time-series characterized by the same sway size, for exam-

ple, can be accompanied by completely different temporal

patterns. A set of indices that capture different (i.e., un-

correlated and/or independent) aspects of sway might be

able to describe details of the process (Prieto et al. 1996).

Alternatively, some aspect of sway characterized by an

appropriate index might be able to reflect inherent neural

control of postural dynamics, and others might represent

merely individual motor habits and/or body-parameter-

dependent biomechanics (Chiari et al. 2002; Hue et al.

2007).

The current study was motivated by our preliminary

work that examined differences in CoP signals among

healthy young, healthy elderly and elderly patients with

Parkinson’s disease (Yamamoto et al. 2011), showing that

the population of patients exhibited a postural sway of

significantly smaller size than the healthy population. This

fact seemed paradoxical and inconsistent with the symp-

tom of postural instability, which is typical in most

patients with Parkinson’s disease, if we take into account

that large sway size is often considered implicitly as a typ-

ical sign of postural instability (Frenklach et al. 2009).

However, this apparent paradox might be consistent with

the postural inflexibility observed by Horak et al. (1992).

On the other hand, as noted by Rocchi et al. (2002),

there is no agreement among researchers on the specific

features of sway in quiet standing that characterize Par-

kinson’s disease, although the term “abnormal” is fre-

quently used to describe such patterns, with the implicit

assumption that abnormal sway means excessive sway. In

any case, the issue of physiological versus pathological

sway size should be carefully reexamined in the context of

optimal motor variability (Stergiou et al. 2006).

Body sway during quiet standing in healthy subjects

shows subject-dependent variability. In other words, CoP

signals might exhibit less trial-to-trial variability within

individuals. Instead, it might be subject specific over a

sequence of multiple measurements at different occasions

for a given individual. Indeed, Santos et al. (2008)

showed that CoP signals exhibit less daily and circadian

variability than intuitively expected, and thus are more

reliable within individuals. Moreover, CoP can be used

for systematic individual discriminations (Demura et al.

2001). For example, it has been shown that CoP velocity

is strongly correlated with body weight, where the

amount of weight-dependent individual differences is

comparable with the standard deviation of CoP velocity

across subjects (Teasdale et al. 2007). Individual specific-

ity and reliability of CoP signals imply that comparisons

in the values of an index between populations of subjects

without taking into account the individual specificity

might possibly lead to inappropriate interpretations of

postural functions such as stability and flexibility (van der

Kooij et al. 2011), which could also be the case in the

above-mentioned clinical situations.

This study aims to elucidate universal indices that can

measure postural characteristics common across healthy

young subjects, independent of body parameters and not

hidden by the presence of individual, daily, and circadian

variations of sway. Such universal indices, if any, might

reflect the origins of postural fluctuation, i.e., inherent

neural control mechanisms that induce postural sway.

Several theories have been formulated about such mecha-

nisms. In particular, we may expect that indices associ-

ated with the slow components of sway in the 0.1–0.5 Hz

frequency range, either nonoscillatory (Kiemel et al. 2006)

or oscillatory (Nomura et al. 2013), might be highlighted

as major factors of universal indices, since the slow com-

ponents have been shown to account for the majority of

sway variance during quiet stance (Kiemel et al. 2002)

and they are considered as key elements for understand-

ing neural control of upright standing (Kiemel et al.

2006). However, there is still active debate about the ori-

gin of such slow components: (1) are they the manifesta-

tion of imperfect estimation with (Loram et al. 2005,

2011) or without (Kiemel et al. 2006) intermittency in

the control loop? (2) are they due to a slowly migrating

reference point defined by a central command (Zatsiorsky

and Duarte 1999)? (3) are they due to the intermittency

in delay feedback control (Insperger 2006; Bottaro et al.

2008; Asai et al. 2009; Milton et al. 2009; Suzuki et al.

2012)? In any case, there is agreement that slow postural

dynamics is determined by the neural control, not by

unspecified colored, long-term correlated noise perturbing

the upright stance. There is also agreement about the

mechanistic origin of the fast oscillatory components, in

the 0.5–1.0 Hz frequency range, and the mechanical

dynamics of single- and double-inverted pendulum-like

body (Kiemel et al. 2002; Creath et al. 2005), for the fas-

ter components in the 1.0–2.5 Hz frequency range.

The statistical analysis, adopted in this study for eluci-

dating universal indices, is model-free (hypothesis-free)

and thus it might be unable to strongly suggest which
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hypothesis is most physiologically plausible. However, we

are confident that it could be beneficial for understanding

neural control of upright posture provided that reason-

able correspondences can be found between sets of uni-

versal indices and model-based functional mechanisms

for stabilizing upright posture. This is because a process

of finding universal indices is completely independent of

hypothetical postural control mechanisms that have been

proposed previously, and coincidental matches of univer-

sal indices with some of the hypothetical control mecha-

nisms might imply that aspects of postural sway

characterized by the universal indices are associated with

those control mechanisms.

In the Methods section, an experimental protocol for

measuring CoP signals during quiet standing is described

first. Then, a number of sway indices for characterizing

such signals are introduced. Criteria for evaluating uni-

versality and individual specificity for those indices are

defined, based on which, the indices are classified into

three groups: (1) universal group, (2) individual-specific

group, (3) mixed group. Statistical methods used for per-

forming, improving and validating the classification are

described. The Results section summarizes our classifica-

tion. We then discuss about how the statistical index clas-

sification can be interpreted.

Methods

Experimental methods

Measurements of CoP signals were performed with six-

teen healthy young adult men during quiet standing on a

force platform (Model OR-6-5-1000, AMTI, Watertown,

MA) with eyes open. Each subject was instructed to place

his bare feet along a V-shaped guide marked on the plat-

form, in such a way that the ankles were aligned with the

medio-lateral (ML) axis of the platform and the two mal-

leoli were equally separated about 1 cm from the ante-

rior-posterior (AP) axis of the platform: thus, the

platform origin coincided roughly to the center of gravity

(vertical projection of CoM) of the ideal vertically upright

body, in order to enable intertrials and intersubject com-

parison of CoP position with respect to the ankle position

(the origin of the force plate). Subjects were instructed to

keep their gaze at a fixation point displayed at eye-level

height about 2 m away from them. Measurements were

performed at five different times of a day (10:00 AM,

12:00 PM, 2:00 PM, 4:00 PM, 6:00 PM) for three contiguous

days. For each measurement session, four trials were per-

formed of 70 s quiet standing. Thus, in the 3 days, 60

CoP time series were acquired from each subject. Since

one subject (Subject-15) reported a consistent lack of

sleep, the sway data from this subject were eliminated

from the analysis. Thus, the data used for the following

analysis were from 15 subjects, with a total of 900 sway

data. Means and standard deviations characterizing those

subjects were as follows; age: 23.4 � 1.8 years old, height:

171.0 � 5.4 cm, weight: 66.3 � 9.5 kg. All subjects pro-

vided written informed consent to participate in this

research, which has been approved by the ethical commit-

tee for human studies at Graduate School of Engineering

Science, Osaka University.

Both components of the CoP data were digitized,

namely the component in the ML-direction (CoP-ML) and

that in the AP-direction (CoP-AP), using a 16-bit A/D

converter, with a sampling frequency of 60 Hz; then they

were low-pass filtered off-line, using a fourth-order zero-

phase-lag Butterworth filter with a cut-off frequency of

10 Hz, before the analysis described below.

Sway indices

From the stored CoP data, a large number of sway indices

– 73 – were computed: most of them were already pro-

posed in the literature and some of them were introduced

in this study. The complete list is shown in Table 1,

which reports the index numbers, names, and brief

descriptions. See the Supporting Information for detailed

definitions of the indices. A preliminary normalization of

the data was carried out by detecting indices that were

not characterized by a normal distribution over the whole

population of subjects and the whole set of trials. In such

cases, a logarithmic transformation was carried out in the

assumption that such indices values might exhibit a log-

normal distribution. The following step was to standard-

ize each index in such a way to exhibit a null mean and a

unitary standard deviation over the whole set of trials for

all the subjects. In particular, if we denote with x
ðkÞ
i;p the

original k-th index (k 2 {1,���,73}), the subscripts i runs

through i = 1, ��� , N with N = 900 being the number of

total trials for counting trials across all subjects, and

through i = 1, ��� , n with n = 60 being the number of

individual total trials for counting trials within each indi-

vidual. The subscript p 2 {1, ��� , 15} represents the sub-

ject number. The corresponding standardized k-th index

or z-scores were computed as follows:

z
ðkÞ
i;p ¼ x

ðkÞ
i;p �mðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N�1

PN
i¼1

x
ðkÞ
i;p �mðkÞ

� �2s ; (1)

where

mðkÞ ¼ 1

N

X15
p¼1

Xn
i¼1

x
ðkÞ
i;p : (2)
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Table 1. The list of 73 indices for characterizing CoP time-series. Indices with “*” were defined for both CoP-ML and CoP-AP. Indices of their

numbers with and without parentheses represent that they were obtained for CoP-AP and CoP-ML, respectively. Indices with “**” were

defined for CoP of planar movement, CoP-ML and CoP-AP, where indices without parentheses are for planar movement, and those with

parentheses are for CoP-ML and CoP-AP, in this order. Indices with italic numbers did not pass the normality test, thus they exhibited non-

Gaussian distributions.

Index no. Index name Description References

1(2) Mean* Mean position of sway Vuillerme et al. (2002), Kirby et al. (1987)

3 log-Area Log of 95% confidence ellipse area Rocchi et al. (2002), Maurer et al. (2003),

Schieppati et al. (1994))

4 log-Axis1 Log of the size of major axis of 95% confidence ellipse Agostini et al. (2013)

5 log-Axis2 Log of the size of minor axis of 95% confidence ellipse Agostini et al. (2013)

6 Angle Absolute value of angle between major axis and ML axis Rocchi et al. (2002)

7(8) Mean-cross* The number of mean CoP crosses

9(12) Slope-L* Slope at low-frequency band in PSD of CoP Yamamoto et al. (2011), Asai et al. (2009),

van der Kooij et al. (2005)

10(13) Slope-H* Slope at high-frequency band in PSD of CoP Yamamoto et al. (2011), Asai et al. (2009),

van der Kooij et al. (2005)

11(14) Critical-freq* Critical frequency at which two regression lines of

PSD of CoP intersect

15(16) Zero-cross-V* The number of zero crosses of low-pass filtered

CoP velocity

17 log-LNG Log of total path length of CoP trajectory Chastan et al. (2008), Stylianou et al. (2011)

18 log-LNG/Area Log of total path length of CoP trajectory divided

by 95% confidence ellipse area

Demura et al. (2001)

19(21) log-Alpha* Log of shape parameter of Gamma distribution

fitted to the duration of mean CoP velocity crosses

20(22) Beta* Scale parameter of Gamma distribution fitted to

the duration of mean CoP velocity crosses

23 MT3 Mean time interval between successive peaks on

Sway-Density Curve at R = 3

Jacono et al. (2004)

24 MP3 Mean peak value on Sway-Density Curve at R = 3 Jacono et al. (2004)

25 MD3 Mean distance in AP-ML plane between successive

peaks on Sway-Density Curve at R = 3

Jacono et al. (2004), Popa et al. (2007)

26 Mean-MT Mean MT value for R 2 [2, 5] Jacono et al. (2004)

27 log-Slope-MP Log of slope of regression line of graph for MP

versus R 2 [2, 5]

Jacono et al. (2004)

28 Mean-MD Mean MD value for R 2 [2, 5] Jacono et al. (2004), Popa et al. (2007)

29 FD Fractal dimension Prieto et al. (1996)

30 log-Area-SW Log of mean triangle area enclosed by mean CoP

position and two consecutive points

Prieto et al. (1996), Agostini et al. (2013)

31(32,33) MFREQ** Mean frequency of a circular motion with a

radius equal to mean amplitude

Prieto et al. (1996)

34(37,40) log-Power** Log of total power of CoP Prieto et al. (1996)

35(38,41) PF50** 50% power frequency of CoP Prieto et al. (1996)

36(39,42) PF95** 95% power frequency of CoP Prieto et al. (1996), Rocchi et al. (2002)

43(47,51) D-short** Diffusion coefficient of CoP at short-term region Collins and De Luca (1993)

44(48,52) D-long** Diffusion coefficient of CoP at long-term region Collins and De Luca (1993)

45(49,53) Critical-Dt-linear** Time interval at the intersection of two regression

lines on linear-scale stabilogram diffusion plot

Collins and De Luca (1993), Maurer et al. (2004)

46(50,54) Critical-D-linear** Mean square value at Critical-Dt-linear on linear-scale

stabilogram diffusion plot

Collins and De Luca (1993), Maurer et al. (2004)

55(59,63) Slope-short** Slope of stabilogram at short-term region on log-scale

stabilogram diffusion plot

Collins and De Luca (1993), Maurer et al. (2004)

56(60,64) Slope-long** Slope of stabilogram at long-term region on log-scale

stabilogram diffusion plot

Collins and De Luca (1993), Maurer et al. (2004)

57(61,65) Critical-Dt-log** Time interval at the intersection of two regression

lines on log-scale stabilogram diffusion plot

Collins and De Luca (1993), Maurer et al. (2004),

Maurer and Peterka (2005)
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All statistical analyses were carried out using either

MATLAB Statistical toolbox (The Mathworks, Natick,

MA) or SAS (SAS Institute, Cary, NC).

Classification of indices

As explained in the previous subsection, after normaliza-

tion and standardization of the 73 indices, namely for the

set of z
ðkÞ
i;p , the next step would be to divide them into 3

classes: (1) individual-specific indices, (2) universal indi-

ces, (3) other indices. The procedure is shown in Fig. 1.

For each index, each trial, and each subject, we computed

individual means and variances. The idea, detailed in

Fig. 1 is that an index is a candidate for the universal

class if its means and variances are common across sub-

jects. Contrastingly, if the individual means of a given

index vary significantly across subjects and, moreover, if

the individual variance is small, the index might represent

an individual-specific feature of sway. For classifying the

indices, we first determined possible candidates of indi-

vidual-specific indices using linear discriminant analysis,

and they were sorted out from the overall set before

selecting candidates of universal indices.

Normality test

The linear discriminant analysis for selecting candidates

of individual-specific indices requires normal distribution

for every set of 60 values of each index for each subject.

Thus, the Lilliefors’ normality test (P < 0.01) was applied

to each of 73 sets of indices for each subject. An index

was included in the linear discriminant analysis, if it

passed the normality test for more than 70% of the sub-

jects (11 or more out of 15 subjects). This step corre-

sponds to Fig. 1A based on which M indices out of 73

indices were used for the linear discriminant analysis.

Linear discriminant analysis

In the linear discriminant analysis for selecting candidates

of individual-specific indices, linear discriminant func-

tions were configured so that they could discriminate

every individual correctly as much as possible from 15

subjects. Since it was expected that not all but only a lim-

ited number of indices are useful for the discrimination,

optimally selected q indices from M normally distributed

indices were used for the analysis. In the analysis, N

(=n 9 p = 900) points (index vectors) distributed in the

q-dimensional index space were considered. The linear

discriminant function that could discriminate subject-p

from subject-p0 forms a (q�1)-dimensional hyperplane,

and it was determined so that it could separate 60 index

vectors for subject-p from those for subject-p0. The “opti-

mal” set of q indices used for the individual discrimina-

tion was determined using a stepwise selection technique

based on the Akaike Information Criterion (AIC) as

described below, since some indices might highly contrib-

ute to discriminating each individual, some might be

redundant depending on the combination of indices due

to correlations among indices, or some do not contribute

to the discrimination at all. The q indices selected in this

way out of M normally distributed indices were consid-

ered as candidates of individual-specific indices. This step

corresponds to Fig. 1B. See Appendix A1 for details of

how the linear classifier for the individual discrimination

that utilizes q indices was obtained.

Selection of the set of indices using AIC

Selections of the optimal q indices for the discrimination

were performed using the AIC-based stepwise method

(Fujikoshi 1985), in which the optimal combination of

indices that minimizes the AIC was identified. Note that,

in general, the larger the number of indices used, the

more correct will be the discrimination, although a too

large number may cause an over-fitting problem, which

can be avoided by the use of AIC. The iterative algorithm

is articulated in Appendix A2.

Determination and validation of individual-
specific indices

The iterative algorithm described above provides a list of

indices, ordered according to a decreasing degree of

Table 1. Continued.

Index no. Index name Description References

58(62,66) Critical-D-log** Mean square value at Critical-Dt-log on log-scale

stabilogram diffusion plot

Collins and De Luca (1993), Maurer et al. (2004),

Maurer and Peterka (2005)

67(68,69) log-RMS** Log of root mean square distance of CoP Rocchi et al. (2002), Maurer et al. (2004),

Agostini et al. (2013)

70(71,72) log-MV** Log of mean CoP velocity Prieto et al. (1996), Kouzaki and Masani (2012),

Agostini et al. (2013)

73 Flattening Flattening of 95% confidence ellipse Agostini et al. (2013)
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CoP measurements at different times per day
(10 AM, 12 PM, 2 PM, 4 PM, 6 PM) and
3 contiguous days (Nsub = 15, Ndata= 900)

Calculation of all indices for every CoP data

Are there any indices with
inappropriate values?

Normality test (α = 0.01) for each subject for
distribution of 60 values for each index

incomplete indices
(not used for further analysis)

Does the index
(each index) pass the normality test

for over 70% subjects?

The choice of highly individual specific
indices using linear discriminant analysis

with the AIC stepwise method

Is the error rate of
discriminant analysis

flatten out?

Plotting the variance of mean (VM) and the
variance of variance (VV) for all subjects

just for visualization
Plotting the variance of mean (VM) and the
variance of variance (VV) for all subjects

individual-specific index
candidates

Is the radial distance
from origin in VM-VV
plane less than 0.35?

othersuniversal index
candidates

Classification
of indices

Improvement
and

 validation of
the classification

Is the absolute value
of correlation coefficient with

individual-specific index candidates
more than 0.8?

Is the absolute value
of correlation coefficient with

universal index candidates
more than 0.8?

Estimation of the ratio of the variance by a
individual factor to the variance of residual

of the model on mixed effect model analysis

Pairwise correlation analysis and hierarchical cluster analysis for all indices

Is the estimated
ratio less than 1.0?

individual-specific indices universal indices others

Correlation analysis between index-values and a body parameter

A

B

C

D

F

E

Interpretation of
the classification

Figure 1. Flow chart for the classification of indices. It was composed of three steps; namely, classification, improvement and validation, and

interpretation of the classification. See Methods for details.
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contribution to the individual discrimination. Candidates

of individual-specific indices were determined based on

the apparent error rate and the error rate evaluated in the

cross-validation procedure (leave-one-out method). In the

latter, the error rate was calculated by examining the dis-

criminant performance for each of 15 subjects using the

optimal linear classifier that uses each of q indices (q = 1,

2, ��� , M) in the iterative algorithm. Candidates of indi-

vidual-specific indices were determined as the set of indi-

ces for which the apparent error rate and the error rate

were converged to a small value below about 10%.

Universality and individual-specificity of
sway indices

For each subject, 60 values were calculated for each index,

thus providing individual mean and variance of the index

for each subject. Candidates of the universal indices were

determined by examining variability of the individual

means (VM: Variance of individual Means) and the indi-

vidual variances (VV: Variance of individual Variances)

across subjects for each index. In this way, the candidates

of individual-specific indices obtained by the linear discri-

minant analysis could be validated by using a VM-VV plot

for each index. Namely, for the individual-specific indices,

we expect the subject-to-subject variability of individual

means to be large but the variability of individual vari-

ances to be small, and thus they should be plotted far

from the origin along the VM-axis of the VM-VV plane.

On the other hand, for universal indices, we expect the

subject-to-subject variability of individual means and

individual variances to be both small, and thus they

should be plotted close to the origin of the VM-VV plane.

In this study, if a distance between a VM-VV point of an

index and the origin in the VM-VV plane was less than

or equal to 0.35, that index was considered as a universal

index candidate. This step corresponded to Fig. 1C.

Finally, for the third class of indices, the subject-to-

subject variability of individual means should have inter-

mediate values and they should appear in a different area

of the VM-VV plane, away from the origin and the VM-

axis.

Pairwise correlation and cluster analysis of
indices

In order to improve the classification of individual-spe-

cific and universal index candidates, a pairwise correlation

analysis among indices was performed. More specifically,

correlation coefficients between all possible combinations

of two indices were calculated. If a correlation coefficient

with one of the individual-specific index candidates was

greater than 0.8 for an index that had not been selected

as an individual-specific index candidates in the previous

procedure, that index was shifted into the group of indi-

vidual-specific indices. This step corresponds to Fig. 1D,

by which the determination of individual-specific indices

was completed.

Similarly, if a correlation coefficient with one of the

universal index candidates was greater than 0.8 for an

index that had not been selected as a universal index can-

didate in the previous procedure, that index was shifted

into the group of universal indices. This step corre-

sponded to Fig. 1E. However, as shown later in the result

section, this rule did not apply to the experimental data.

A hierarchical cluster analysis with group average

method was then performed to classify indices into sev-

eral clusters that were correlated with each other. This

analysis could be a validation of the classification by the

linear discriminant analysis, and also useful for general

studies of postural control to clarify sets of indices that

involve similar (or redundant) information about CoP

time-series. In the cluster analysis, a distance between two

indices was defined using the correlation coefficient

between those indices. More specifically, for a correlation

coefficient r between two indices, the distance between

those indices was defined as 1�r. Distances between all

possible pairs of indices in two clusters were calculated,

and the average value of those distances was considered

as the distance between the two clusters.

Linear mixed-effect model analysis

Finally, a linear mixed-effect model analysis was per-

formed for the obtained universal index candidates to

further improve the determination of universal indices.

The linear mixed-effect model analysis is useful to clarify

factors of variance of those indices. The global variance V

of an index is indeed a combination of the variances

attributed, respectively, to the subjects rsub, to the days

rday, to the times rtime, to the interactions among these

three factors rsub 9 day, rsub 9 time, rday 9 time, and to a

generic variance re:

V ¼ rsub þ rday þ rtime þ rsub�day þ rsub�time

þ rday�time þ re: (3)

If, for a candidate of the universal index group, the

amount of variance attributed to the subject is smaller

than the error variance, it is plausible to conclude that

variability of the index is not due to subjects but just to a

natural variability, thus confirming that the index was

indeed universal. More specifically, the ratio rsub/re was

calculated for each candidate of universal index group,

and if the ratio was less than or equal to 1.0 for an index,

the index was confirmed as universal.
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Correlation between body parameters and
sway indices

In order to gain insights about physiological and/or bio-

mechanical meanings from the index-classification and to

examine whether the universality and the individual spec-

ificity of indices reflect biomechanical features of the

body, a correlation analysis between body parameters and

values of each index was performed. It was expected that

universal indices were not correlated significantly with

body parameters since universal indices represent com-

mon features of CoP across subjects, whereas it would be

the case for individual-specific indices.

More specifically, correlation coefficients between the

moment of inertia for each of 15 subjects and values of

each index were calculated. This step corresponded to

Fig. 1F. The moment of inertia for each subject was cal-

culated by mh2 where m and h were the mass and height

of the subject. Values of the inertia were standardized as

zero mean and unit variance across subjects, respectively,

prior to the correlation analysis.

Results

Measurements of CoP patterns

Figure 2 exemplifies CoP trajectories traced in the support

plane, and CoP-AP and CoP-ML time-series for two differ-

ent subjects, measured at different circadian times of three

contiguous days. In this particular case, the intersubject dif-

ferences are quite apparent and clearly greater than the

day-dependent intra-subject variability. However, aspects

commonly shared by the two subjects are not obvious.

Clarification of such universal features of sway, if any,

require the quantitative characterizations of the sway data

presented in the methods and described in the following.

Values of the indices

Values of the 73 indices were evaluated for each of the

900 CoP time-series from all subjects. Eight indices exhib-

ited apparently inappropriate values or failure in obtain-

ing index-values for certain sets of data. Those indices

were associated with two specific features of the sway pat-

terns: (1) log-log plots of the power spectral density func-

tions of the posturographic data; (2) log-scaled

stabilogram diffusion plots. In the former case, two indi-

ces (11 and 14) characterize the critical frequency that

separates low- and high-frequency bands. In the latter

case, six indices (57, 58, 61, 62, 65, and 66) are related to

the critical time-lag that separates short- and long-term

scaling regimes. The problem is that the algorithm used

for estimating those indices assume a double power law

behavior, which is indeed found in most of the subjects.

However, in some case, the data are characterized by a

single-power-law-like behavior and then the algorithm

fails.

In this way, eight indices (numbered 11, 14, 57, 58, 61,

62, 65 and 66 in Table 1) were eliminated and thus, the

number of indices used for the following classification

was reduced to 65.

Normality test of the indices for each
subject

The Lilliefors’ normality test was performed for each of

the 65 remaining indices from each subject: 53 of them

passed the test. Figure 3 exemplifies individual box-plots

of normally distributed index-values for two indices,

namely the index 9 (Slope-L-ML: the slope of power law

behavior, i.e., the scaling exponent in the log-log power

spectral density at a low-frequency band for CoP-ML)

and the index 22 (Beta-AP: the scale parameter of

Gamma distribution that approximates the distribution of

time intervals between changes in the sign of CoP-AP

sway velocity). It is quite evident that the boxes in the

former case were located almost centrally with similar

mean and standard deviation values across subjects,

whereas in the latter case the boxes exhibited varied

means and standard deviations. This means that the index

9 is universal and the index 22 is individual.

Twelve indices that did not pass the normality test,

namely indices 6, 38, 44, 45, 46, 47, 48, 49, 50, 52, 53

and 54. In particular, index 6 represents the absolute

value of the angle between ML axis and major axis of

confidence ellipse of CoP; indices 44, 48, and 52 represent

the diffusion coefficients of CoP at long-term region

obtained from the linearly-scaled stabilogram diffusion

plot; indices 45, 49, and 53 represent the critical time-lag

obtained from the linearly-scaled stabilogram diffusion

plot; indices 46, 50, and 54 represent the mean square

value of the above-mentioned indices 45, 49, and 53. In

general, this means that the indices associated with the

stabilogram diffusion plot mostly exhibited non-Gaussian

distributions, which suggests necessity of careful use of

those indices, despite their popularity in the recent stud-

ies (e.g., Doyle et al. 2008; T Hsiao-Wecksler et al. 2003;

Bosek et al. 2005). Those indices were not used in the fol-

lowing linear discriminant analysis, i.e., they were elimi-

nated from the candidates of individual-specific indices.

Linear discriminant analysis for selecting
candidates of individual-specific indices

The AIC-based stepwise method for determining the lin-

ear discriminant functions was applied for the selection of
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Figure 2. Examples of CoP patterns (planar CoP trajectory, CoP-AP and CoP-ML) for two different subjects measured at different circadian

times and different days. (A)–(F): CoP data from subject-09. (G)–(L): CoP data from subject-16. For each subject, from the top to the bottom

panels, the measurements were performed at 12:00 pm of Day 1, 4:00 pm of Day 1, 12:00 pm of Day 2, 4:00 pm of Day 2, 12:00 pm of Day

3, and 4:00 pm of Day 3.
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an optimal set of indices among the 53 normally distrib-

uted indices: 40 indices exhibited individual-discrimina-

tion ability, whereas the remaining 13 indices did not and

were excluded for the selection of the optimal set. The

selection criterion was based on the apparent error rate

and the error rate in the cross-validation (leave-one-out

method), which examined the rates such that the optimal

linear discriminant functions failed in discriminating each

individual. The 40 indices were ranked according to such

error measures and were ordered from the one that con-

tributed most to discriminating individuals to the one

that contributed less. Figure 4 plots the error measures of

the ordered set of 40 indices (the actual index numbers

are reported on top of the figure box). Of course both

plots fall down monotonously and we chose, as a thresh-

old, an error rate of 10%. This threshold identifies the

following set of 8 indices as the best candidates of the

group of individual-specific indices: 24, 2, 22, 16, 1, 71,

72, and 19 in a descending order of discriminating ability.

The numbers of such indices are colored in red in the

upper part of Fig. 4. Moreover, they appear in the first 8

lines of Table 2, which summarizes means and standard

A
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Figure 3. Box-plot of every subject for (A) Slope-L-ML (Index 9) and (B) Beta-AP (Index 22). (A) Slope-L-ML (Index 9) was normally distributed

in most of the subjects. h and P-values for each panel represent the results of Lilliefors’ test examining the null hypothesis that the data comes

from a normal distribution. h = 1 if the test rejects the null hypothesis at 1% significance level, and h = 0 otherwise. The individual means of

Slope-L-ML index for all subjects were close to each other, which made the individual variances relatively large. (B) Beta-AP (Index 22) was also

normally distributed in all subjects. The individual means of Beta-AP index were largely subject-dependent, which made the individual variances

relatively small.
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deviation of the indices ordered according to the discrim-

ination ranking.

Index 24 (MP3) has the highest ranking. It represents

the mean peak value of the Sway Density Curve (SDC)

that characterizes how densely a sway trajectory stays

locally in the AP-ML plane as a function of time. More

specifically, an SDC represents changes in the time dura-

tion of how long CoP trajectory stays locally and time-

continuously inside a circle with a radius of R mm,

centered at a CoP point at every sampling instant of time

(Jacono et al. 2004), where R = 3 mm for obtaining

MP3. It often exhibited an oscillatory waveform for

R = 3 mm, which means that CoP stays locally for a per-

iod of time (corresponding to a peak of the oscillatory

SDC waveform), and then migrates to another location

(corresponding to a valley of the SDC). See Fig. S3. The

MP3 index quantified the mean of peak values of such

oscillatory SDC waveforms for R = 3 mm. Thus, the lar-

ger the values of MP3, longer the time duration the CoP

trajectory stays locally. As shown in Table 2, the mean of

MP3, for the original values prior to the standardization

across subjects, was about 2.3 sec with a large subject-

dependent variability, during which CoP was trapped

locally in a small circle. This means that CoP exhibited

an oscillation of small amplitude (less than 3 mm) in a

localized area with frequencies higher than 0.43 Hz,

roughly corresponding to the fast or the very fast oscilla-

tory components.

Index 2 (Mean-AP) has the second-best ranking. It cor-

responds to the mean position of CoP-AP.

Index 22 (Beta-AP) has the third best ranking. It repre-

sents the scale parameter of Gamma distribution that

approximates the distribution of time intervals of changes

in the sign of CoP-AP velocity. Such function is formu-

lated as follows:

pðxÞ ¼ 1

CðaÞba x
a�1e

�x
b (4)

where x represents the inter-zero-cross interval in the

CoP-AP velocity profile, and the parameters b and a pro-

vide the index values of Beta-AP and log-Alpha-AP,

respectively. Note that the mean and variance of this dis-

tribution are ab and ab2, respectively. Histograms for

sequences of the inter-zero-cross intervals in the CoP-AP

velocity for each CoP time series were fitted by this distri-

bution. See Fig. S4. The distribution of inter-zero-cross

intervals in the CoP velocity was introduced in this study

based on our consideration such that the fast and the

very fast oscillatory components of sway would generate

the corresponding inter-zero-cross intervals in the CoP

velocity profile. With a Gamma-fitted distribution, large

and peaky unimodally distributed small intervals would

Table 2. Means and standard deviations (SD) of individual-specific

and universal indices prior to standardization.

Discrimination

ranking Index

Mean and SD prior to

standardization

Individual-specific index

1 MP3 (Index 24) 2.347 � 1.341 sec

2 Mean-AP (Index 2) 51.47 � 18.04 mm

3 Beta-AP (Index 22) 0.11 � 0.046

4 Zero-cross-V-AP

(Index 16)

146.4 � 20.67

5 Mean-ML (Index 1) 0.742 � 6.409 mm

6 log-MV-ML (Index 71) 0.686 � 0.12 mm/sec

7 log-MV-AP (Index 72) 0.798 � 0.097 mm/sec

8 log-Alpha-ML (Index 19) 0.084 � 0.074

9 log-Alpha-AP (Index 21) 0.163 � 0.115

11 Beta-ML (Index 20) 0.14 � 0.042

12 log-Slope-MP (Index 27) 0.143 � 0.272 sec/mm

17 log-Power-ML

(Index 37)

2.016 � 0.273 mm2/Hz

19 PF95-AP (Index 42) 1.141 � 0.285 Hz

39 log-LNG (Index 17) 2.792 � 0.098 mm

– log-Power (Index 34) 2.001 � 0.254 mm2/Hz

– log-MV (Index 70) 0.947 � 0.098 mm/sec

Universal index

– Angle (Index 6) 62.45 � 23.5 degree

– Slope-L-ML (Index 9) �0.996 � 0.61 mm2/Hz2

– Slope-L-AP (Index 12) �1.2 � 0.62 mm2/Hz2

– PF50-ML (Index 38) 0.324 � 0.066 Hz

– PF50-AP (Index 41) 0.329 � 0.071 Hz

– Flattening (Index 73) 0.377 � 0.165
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Figure 4. Apparent error rate and error rate of leave-one-out

cross-validation as the function of number of indices used for the

linear discriminant analysis. The order of indices was determined by

the AIC-based stepwise method, where the indices were included

into the linear classifier according to the order of indices. Red-color

numbers represent the indices that were selected as the individual-

specific index candidates.
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appear when the CoP velocity profile clearly and predom-

inantly contains the very fast oscillatory components,

which can be characterized by small values of Beta-AP

combined with large values of log-Alpha-AP. That is, the

more frequently and clearly the very fast oscillatory com-

ponent is contained in the CoP velocity profile, the smal-

ler the values of Beta-AP (b) and the larger the values of

log-Alpha-AP (a) are estimated. Indeed, in the data set

analyzed in this study, the mean value of Beta-AP across

subjects was small at about 0.1 (Table 2), and the median

of the Gamma-fitted-distribution was roughly about

0.2 seconds. The inter-zero-cross intervals of 0.2 seconds

in the CoP velocity profile corresponds to the oscillation

with frequency of about 2.5 Hz, which corresponds to the

very fast oscillatory component.

Index 16 (Zero-cross-V-AP) has the fourth best rank-

ing. It represents the number of changes of sign of low-

pass-filtered CoP-AP velocity. It was introduced in this

study to characterize the low-frequency changes in the

sign of CoP-AP velocity, based on our consideration such

that the CoP velocity profile might include both of the

fast (0.5–1.0 Hz) and the very fast (1.0–2.5 Hz) oscilla-

tory components, and the low-pass-filtering would

enhance the former by eliminating the latter. See Fig. S1.

Indeed, the mean of the Zero-cross-V-AP index, for

the original values prior to the standardization across

subjects, was about 140 times in 70 s (Table 2),

corresponding to the inter-zero-cross-intervals of the low-

pass-filtered CoP velocity of about 0.5 seconds and the

oscillation in the CoP velocity profile with 1.0 Hz, and

thus roughly to the fast oscillatory component.

In order to show there was no over-fitting in the selec-

tion of the 8 indices defined above, we analyzed the sub-

ject discrimination test by the optimal linear classifier in

relation to the set of 8 indices. We found that the appar-

ent error rate was rather small: 9.8%. Also the error rate

of leave-one-out cross-validation was small: 11.0%. On

the other hand, when the whole set of 40 indices selected

by the AIC-based stepwise method was used, the apparent

error rate and the error rate of leave-one-out cross-valida-

tion were 3.3% and 6.3%, respectively, and this was com-

parable in performance to the optimal linear classifier.

VM-VV plot and candidates of universal
indices

The identification of universal index candidates was per-

formed using the previously defined VM-VV plot, with

the criterion that indices closer to the origin can be con-

sidered more likely candidates. We chose a distance of

0.35 from the origin as the selection threshold. In Fig. 5,

such threshold is represented by the circular sector. The

whole set of 73 indices is plotted in the figure and it

appears that 6 indices fall inside the circular region: 6, 9,

12, 38, 41 and 73. These indices are taken as candidates

of the universal group. Most of these candidates are asso-

ciated with the temporal structure of CoP patterns at the

low-frequency regime: index 9 (Slope-L-ML), index 12

(Slope-L-AP), index 38 (PF50-ML), and index 41 (PF50-

AP).

Slope-L-ML and Slope-L-AP represent, respectively,

the scaling exponents of CoP-ML and CoP-AP at the
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Figure 5. The variance of individual means (VM) and the variance of individual variances (VV) of each index across subjects. Numbers plotted

in the VM-VV plane represent the index numbers. The candidates of universal and individual-specific indices were colored in blue and red,

respectively. Indices colored in orange were also considered as individual-specific later by the correlation analysis. Indices colored in black were

neither universal nor individual specific.
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low-frequency band (between about 0.04 Hz and 0.5 Hz).

As shown in lower part of Table 2, the mean � SD values

of Slope-L-ML and Slope-L-AP across subjects, for the

original values prior to the standardization, were

�0.996 � 0.61 and �1.2 � 0.62, respectively, and they

were roughly consistent with the characteristics associated

with the intermittency observed in postural sway (Collins

and De Luca 1993) and in an intermittent postural con-

trol model (Asai et al. 2009).

PF50-ML and PF50-AP represent the frequencies that

bisect the total powers of CoP-ML and CoP-AP, respec-

tively. Thus, the larger the power in the low-frequency

side, the lower (the smaller) the PF50 values. The

mean � SD values of PF50-ML and PF50-AP across sub-

jects (the original values prior to the standardization)

were 0.324 � 0.066 Hz and 0.329 � 0.071 Hz, respec-

tively, meaning that the postural sway of all subjects

exhibited low-frequency variability prominently with sim-

ilar amounts of rate against the total power. In general, it

appears that universal features of CoP patterns are associ-

ated with the low-frequency slow components of sway.

The remaining candidates are index 6 (Angle of the

95% confidence ellipse of CoP) and index 73 (Flattening

of the same ellipse). They are associated with the overall

geometry (not detailed structure) of the CoP trajectory in

the AP-ML plane. Note that index 6 did not pass the nor-

mality test.

As a cross-check, we can see from Fig. 5 that indices

that were identified by the linear discriminant analysis as

individual-specific candidates are located far away from

the origin.

In order to illustrate the properties of the two main

classes of indices, namely universal vs. individual indices,

let us consider two representative pictures: Figs. 6 and 7.

Figure 6 compares a typical universal index (number 9,

Slope-L-ML) and a typical individual index (number 22,

Beta-AP). In both cases, the figure shows the pooled his-

togram of the corresponding index. In the former case,

the overall histogram is Gaussian-like and the color-coded

histograms of the individual subjects are well aligned with

it, a feature that we can expect of a universal index. In

contrast, the overall histogram of index 22 is far from

Gaussian-shaped and the individual histograms are dis-

tributed differently, a typical feature of an individual

index.

Figure 7 compares the distribution of the two groups

of indices for two representative subjects (subject codes 9

and 16). The top panel shows the radar chart of the 6

universal indices (numbered 6, 9, 12, 38, 41, 73), and the

bottom panel that of the 8 individual indices (numbered

1, 2, 16, 19, 22, 24, 71, 72). It is evident that in the for-

mer case the charts for the two subjects are quite similar,

with overlapping range of variation. In the latter case, the

charts are quite different, enhancing subject-specific fea-

tures.

Improvement, validation and
characterization of the classification

Figure 8 shows the correlation coefficients for the pair-

wise correlation analysis among normally distributed 65

indices and the dendrogram obtained by the hierarchical

cluster analysis. By the pairwise correlation analysis, we

identified eight additional indices that are strongly corre-

lated (absolute values of correlation coefficient greater

than 0.8) with the previously defined individual-specific

index candidates (indices 24, 2, 22, 16, 1, 71, 72 and 19).

The newly added eight indices are the indices 17, 20, 21,

27, 34, 37, 42 and 70. This extends the individual-specific

group to 16 elements, as reported in Table 2.
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Figure 6. Pooled histograms stacked over all subjects for Slope-L-

ML (Index 9) in (A) and for Beta-AP (Index 22) in (B). The title of

each panel indicates the h and P-values of the Lilliefors’ test for

each index. The index Slope-L-ML was considered as universal, for

which the pooled histogram was similar to the normal distribution

and each bin of the histogram were almost evenly occupied

(stacked) by subject-wise different colors. On the other hand, the

index Beta-AP was considered as individual specific, for which

shape of the pooled histogram was asymmetry with a long tail and

was not similar to the normal distribution. Moreover, each bin of

the histogram was not evenly occupied by subject-wise colors.
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It was confirmed that, for the newly added eight indi-

vidual-specific indices, variances of individual means

(VM) across subjects were large, and those of individual

variances (VV) across subjects were small. Thus, they

were located near the previously determined eight indi-

vidual-specific index candidates in the VM-VV plot (see

Fig. 5). This means that those newly added eight indices

include information useful for the individual discrimina-

tion, but they were redundant due to high correlations

with the individual-specific index candidates. Thus, they

did not contribute to lowering the AIC in the linear dis-

criminant analysis.

The way of how the extended individual-specific indi-

ces correlate with each other could be summarized by the

hierarchical cluster analysis (the dendrogram in Fig. 8), in

which the sixteen individual-specific indices were clus-

tered into a set of four clusters indicated by the dotted

rectangles in the dendrogram. Integration of the linear

discriminant analysis, the correlation analysis and the

hierarchical cluster analysis revealed four major factors

(actually three as described below) that were responsible

for the characterization of the sixteen individual-specific

indices. The linear discriminant analysis clarified the indi-

ces 24, 2, 22, 16 and 1, in this descending order for the

ability of individual discrimination. The fact that the first

four indices (24, 2, 22, and 16) were clustered into the

four distinguished groups implied that they characterized

different aspects of sway.

The first major factor was represented by the most indi-

vidual-specific index 24 (MP3), to which the individual-

specific indices 19 (log-Alpha-ML), 21 (log-Alpha-AP) and

27 (log-Slope-MP (Jacono et al. 2004)) were clustered

together, referred to as the MP3 cluster, by the positive

correlations with MP3. As defined by equation (4), the

indices 19 (log-Alpha-ML) and 21 (log-Alpha-AP) repre-

sent the shape parameters of Gamma distributions, which

were dominantly determined by the very fast oscillation in

the velocity profile with frequency of 2.5 Hz, together with

the indices 20 (Beta-ML) and 22 (Beta-AP) that were

grouped in the third cluster as described below. Index 27

(log-Slope-MP) is directly related to index 24 (MP3), since

it represents how the MP values change as the radius R of

local circle increases. Since index 24 (MP3) represents the

sway power with frequencies higher than about 0.43 Hz as

described above, all of these indices were associated with

the fast and the very fast oscillatory components of sway.

The positive correlation between MP3 and log-Alpha indi-

ces could be described as follows: (1) The larger the values

of MP3, the longer the time durations of sustained small

amplitude oscillation within the local circles. (2) The more

frequently and clearly the very fast oscillatory component

is contained in the CoP velocity profile, the smaller the

values of Beta-AP (b) and the larger the values of log-

Alpha-AP (a) are estimated as described above. Since the

appearance of sustained small amplitude oscillation might

correspond to the very fast oscillatory component, the

larger the values of MP3, the larger the values of log-Alpha-

AP, yielding the positive correlation between MP3 and log-

Alpha-AP. See Fig. S4. Note that this logic was reflected in

the negative correlation between MP3 and Beta-AP.

The second factor was represented by the second most

individual-specific index 2 (Mean-AP), to which the fifth

best discriminant individual-specific index 1 (Mean-ML)

was clustered, referred to as the Mean-AP cluster. These

two indices could be considered as a measure of motor

habit, which vary depending on if a subject tended to

stand with droopy posture or with backward inclining

posture, and with left or right inclining posture.

The third factor was represented by the third best dis-

criminant individual-specific index 22 (Beta-AP), to

which the five newly added individual-specific indices

(indices 20, 34, 37, 17 and 70) and two previously

selected individual-specific indices 71 and 72 were clus-

tered together, referred to as the Beta-AP cluster, by the
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Figure 7. Radar charts illustrating how the CoP time-series of two

representative subjects were characterized commonly and

differently, respectively, by the set of values of the universal index

candidates and by the set of individual-specific index candidates. In

each panel, solid lines connect the individual mean values of the

indices, and dashed lines connect the individual mean � SD values

of the indices. (A) Universal index candidates. (B) Individual-specific

index candidates.
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positive correlations with Beta-AP. One could observe

that the Beta-AP cluster was composed of two sub-clus-

ters {20, 22, 34, 37} and {17, 70, 71, 72}. Index 20 (Beta-

ML) and index 22 (Beta-AP) was positively correlated

because Beta-ML also characterized the very fast oscilla-

tion with frequency about 2.5 Hz as in Beta-AP. Indices

34 and 37 in the first sub-cluster represent log-Power and

log-Power-ML, respectively. Those CoP-power-related

indices and Beta-AP (and Beta-ML) were positively corre-

lated by the following complicated logic. Firstly, an

increase in Beta-AP implies lowering of a value of the sin-

gle modal peak in Gamma distribution of CoP velocity

profile and widening of the peak, where a large value of

the single modal peak corresponds to frequent appear-

ances of small inter-zero-cross intervals. Thus the lower-

ing of the peak value means diminishing of the very fast

component (see eq. 4). Although the diminishing of the

very fast component resulted in lowering in CoP-power

at high- frequency regime, actually it caused an overall

increase in CoP-power at high- frequency regime. This

was because CoP amplitude accompanied by the very fast

velocity component was small (less than 3 mm), and the

diminishing of the very fast component could not much

affect the CoP-power. Instead, decreases in the occurrence

of small inter-zero-cross intervals (<0.2 sec; the very fast

component) resulted in increases in the occurrence of lar-

ger inter-zero-cross intervals than 0.2 sec (but smaller

than 1.0 sec), which contributed to the increase of CoP-

power in the frequency range of about 0.5–1.0 Hz,

because CoP amplitude accompanied by the changes in

CoP velocity in this frequency range could be much larger

than that in the frequency of the very fast component. In

this way, Beta-AP cluster characterized essentially the

same aspect of CoP pattern as the MP3 cluster, i.e., the

very fast component of sway, although these two clusters

were distantly located in the dendrogram, due to the neg-

ativity of the high correlation between Beta-AP and MP3.

Indices 17, 70, 71 and 72 in the second sub-cluster of

the Beta-AP cluster represent log-LNG (the total path

length of CoP trajectory on AP-ML plane), log-MV (the
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This dendrogram was drawn up on the basis of hierarchical cluster analysis where the correlation coefficients were used as the distance among

indices.
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mean velocity of CoP of planar movement), log-MV-ML

and log-MV-AP, respectively, and all of them were associ-

ated directly with the mean sway velocity. Under the situ-

ation that the low-frequency power (PF50) was almost

invariant and independent of the subjects, the increase

(decrease) in the mean sway velocity could be caused only

by the increase (decrease) in the fast and the very fast

oscillatory components, resulting in the positive correla-

tions between the indices in the second sub-cluster and

Beta-AP.

The fourth factor was represented by the fourth best

discriminant individual-specific index 16 (Zero-cross-V-

AP), to which the newly added index 42 (PF95-AP) was

clustered, referred to as the Zero-cross-V-AP cluster, by

the positive correlation between them. Note that PF50-

ML and PF50-AP were selected as the universal indices,

whereas PF95-AP was selected as the individual-specific

index. Since the mean value of PF50-AP across subjects

was about 0.32 Hz, and the mean value of PF95-AP was

about 1.1 Hz (see Table 2), the subject specificity (sub-

ject-dependent feature of the PSD) characterized by PF95-

AP was due to difference in the shape and power of PSD

at the frequency band between 0.32 Hz and 1.1 Hz, at the

middle of which typical frequency of the fast oscillatory

component (0.6 Hz) is located.

Correlation coefficients between each of the six uni-

versal index candidates and all the remaining indices

were also calculated. In no case the correlation was

greater than the chosen threshold of 0.8, thus the group

of universal indices was not extended by the correlation

analysis.

Finally, we used the linear mixed-effect model for val-

idating the classification in the two groups. Table 3

reports the quantification of factors of the variances for

both groups of indices. It appears that for all the uni-

versal index candidates (indices 6, 9, 12, 38, 41 and 73)

the ratios rsub/re are less than 1.0, confirming that, as

expected, the major factor that causes variability of the

universal index candidates is not subject, but the neutral

errors. In contrast, all the individual-specific indices

have values of the ratio rsub/re which are largely greater

than 1.0, confirming that, as expected, the major factor

that causes variability of the individual-specific indices is

subject.

Correlation between body parameters and
the two groups of indices

We may expect that an index of the universal group is

uncorrelated or very weakly correlated with a body

parameter as the moment of inertia of a subject. At the

same time we may expect the opposite for an index of

the individual-specific group. Figure 9, which shows the

scatter plots of index 12 (universal group) in panel A and

the plot of index 72 (individual-specific group) in panel

B, confirms this relationship.

Moreover, Table 4 reports the correlation coefficients

with the moment of inertia for all the indices of the two

groups. It appears that all the indices of the universal

group have a very small correlation, in any case smaller

than 0.1. For the indices of the individual-specific group

we have a different pattern: almost half of them are some-

how correlated (indices 17, 27, 34, 37, 70, 71, and 72;

correlation value greater than 0.4); three of them are un-

correlated (indices 2, 19, 21; correlation value less than

0.1); the remaining indices (1, 16, 20, 22, and 42) are

weakly correlated.

Finally, Wilcoxon rank sum test was carried out to

examine whether the absolute values of correlation coeffi-

cients between the universal indices and the moment of

inertia and those between the individual-specific indices

and the moment of inertia were significantly different.

The results show that there are significant differences with

P < 0.01, indicating that values of most of the individual-

specific indices depended on the body parameter of each

subject, whereas values of the universal indices were not

determined by the body parameters.

Table 3. Ratio of subject-depend variation to residual of mixed

effect model for the universal and the individual-specific indices.

Discrimination

ranking Index

Ratio of subject

variation to residual

Individual-specific index

1 MP3 (Index 24) 5.054

2 Mean-AP (Index 2) 4.615

3 Beta-AP (Index 22) 5.407

4 Zero-cross-V-AP (Index 16) 2.419

5 Mean-ML (Index 1) 2.395

6 log-MV-ML (Index 71) 4.295

7 log-MV-AP (Index 72) 3.066

8 log-Alpha-ML (Index 19) 3.004

9 log-Alpha-AP (Index 21) 2.701

11 Beta-ML (Index 20) 2.43

12 log-Slope-MP (Index 27) 4.652

17 log-Power-ML (Index 37) 4.067

19 PF95-AP (Index 42) 2.158

39 log-LNG (Index 17) 4.102

– log-Power (Index 34) 2.893

– log-MV (Index 70) 4.102

Universal index

– Angle (Index 6) 0.113

– Slope-L-ML (Index 9) 0.246

– Slope-L-AP (Index 12) 0.409

– PF50-ML (Index 38) 0.881

– PF50-AP (Index 41) 0.625

– Flattening (Index 73) 0.302
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Discussion

The main aim of this study was to identify, in the sway

patterns of healthy young subjects during quiet standing,

universal features, common to all subjects and indepen-

dent of individual anthropometric parameters as well as

circadian biological rhythms. The rationale is that such

universal features may reflect a common motor control

strategy adopted by the central nervous system of any

individual for stabilizing the upright posture. A comple-

mentary aim of the study was to distinguish such univer-

sal features, captured by a number of indices, from

individual-specific features.

In order to achieve such goals, a large number of CoP

time-series were collected from a population of healthy

young subjects. From this dataset a redundant set of indi-

ces (seventy three of them, initially) was extracted. An

articulated statistical analysis of the indices allowed us to

sort out a subset of six universal indices and a subset of

eight plus extended eight individual-specific indices.

Our analysis showed that the universal indices charac-

terize mainly the slow component of sway, such as scaling

exponents of power-law behavior at a low- frequency

regime (0.04–0.5 Hz). On the other hand, it was shown

that the individual-specific indices were associated with

the fast (0.5–1.0 Hz) and the very fast (1.0–2.5 Hz) oscil-

latory components and the mean CoP position on the

ML-AP plane. Moreover, we showed that the individual-
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Figure 9. (A) Scatter plot of Slope-L-AP (Index 12) as one of the universal index versus the moment of inertia of each subject. (B) Scatter plot

of log-MV-AP (Index 72) as one of the individual-specific index versus the moment of inertia of each subject. Individual-specific index tended to

correlate more with the moment of inertia than universal index.

Table 4. The correlation coefficients between the moment of

inertia and the index values, separately for the universal and the

individual-specific indices.

Discrimination

ranking Index

Correlation

coefficient

Individual-specific index

1 MP3 (Index 24) �0.332

2 Mean-AP (Index 2) �0.06

3 Beta-AP (Index 22) 0.303

4 Zero-cross-V-AP (Index 16) 0.149

5 Mean-ML (Index 1) �0.216

6 log-MV-ML (Index 71) 0.571

7 log-MV-AP (Index 72) 0.592

8 log-Alpha-ML (Index 19) �0.028

9 log-Alpha-AP (Index 21) 0.08

11 Beta-ML (Index 20) 0.324

12 log-Slope-MP (Index 27) �0.478

17 log-Power-ML (Index 37) 0.404

19 PF95-AP (Index 42) 0.186

39 log-LNG (Index 17) 0.629

– log-Power (Index 34) 0.413

– log-MV (Index 70) 0.629

Universal index

– Angle (Index 6) �0.056

– Slope-L-ML (Index 9) 0.039

– Slope-L-AP (Index 12) �0.096

– PF50-ML (Index 38) 0.086

– PF50-AP (Index 41) 0.035

– Flattening (Index 73) �0.041
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specific indices were more significantly correlated with

body parameters than the universal indices, implying that

biomechanics of each individual, rather than neural con-

trol, characterizes the individual-dependent features of

postural sway. In this section, we discuss how our statisti-

cal index classification can be interpreted, that is, how the

indices associated with the fast/very fast and the slow

dynamics of sway were classified as individual-specific

and universal, respectively.

Robustness of the statistical classification

Before addressing physiological interpretations of our

results, here we discuss robustness of our statistical classi-

fication, i.e., how our assumptions, numbers for decision

criteria used in our statistical analysis would affect the

results.

Criterion for normality test

In this study, we used a criterion to pass the normality

test for each index such that intrasubject set of values of

the index is normally distributes for more than 70% of all

subjects. We have confirmed that other threshold values

for this criterion, including 80% and 60% for example,

did not alter the main result of the classification. More

specifically, the use of 80% resulted in three additional

indices (Indices 41, 43 and 51) included in the set of nor-

mally distributed indices, and the use of 60% excluded

three indices (Indices 38, 45 and 47) from the set of nor-

mally distributed indices. However, those six affected

indices have not been included in the candidates of indi-

vidual-specific index, and thus we conclude that the

results of our classification are independent of this thresh-

old parameter.

The threshold for selecting the candidates of
universal index

We used the threshold value (the threshold distance from

the origin of the plane on the VM-VV plane) 0.35 to

select six candidates of the universal index. We have con-

firmed that other threshold values, including 0.3 and 0.4

for example, did not alter the main result of the classifica-

tion. More specifically, the use of 0.3 as the threshold

value excluded three indices (indices 12, 38 and 41) from

the universal indices. However, the index 9, one of the

remaining three universal indices (indices 6, 9 and 73),

still characterizes the slow sway component, which causes

no changes in our physiological interpretation of the clas-

sification. The use of 0.4 as the threshold value included

three additional universal indices (indices 7, 8 and 35)

into the universal group. However, the indices 7 (Mean-

cross-ML) and 8 (Mean-cross-AP) characterize the num-

bers of CoP zero-crossing, and their values were about

40, corresponding to the frequency of CoP motion with

about 0.3 Hz that falls in the range of the slow compo-

nent. Moreover, Index 35 represents PF50 that also char-

acterizes the slow component. Thus, once again, the use

of threshold value 0.4 did not cause any change in our

physiological interpretation. In this way, the main result

of this study shows robustness against the choice of the

threshold value for selecting the universal indices in the

VM-VV plane.

The threshold for the correlation analysis

We used the threshold value 0.8 for selecting indices that

were correlated with the candidates of individual-specific

indices to improve our classification. We have confirmed

that other threshold values, including 0.9 and 0.7 for

example, did not alter the main result of our classifica-

tion. More specifically, the use of 0.9 as the threshold

value excluded six indices (indices 20, 21, 27, 34, 37 and

42) from the set of revised individual-specific indices. All

of them characterize the fast and/or the very fast compo-

nents of sway. However, the remaining set of individual-

specific indices still include those representing the fast

and the very fast components of sway, and thus the use

of threshold value 0.9 did not cause any change in our

physiological interpretation. Similarly, the use of 0.7 as

the threshold value included eight additional indices

(Indices 25, 28, 30, 36, 43, 47, 55 and 63) into the indi-

vidual-specific group. However, once again, all of them

characterize the fast and/or the very fast components,

which causes no changes in the main result of this study.

Slow and fast sway dynamics

We start our discussion by focusing on specific frequency

components of sway patterns during quiet standing. It

has been clarified that each of CoP-ML and CoP-AP pat-

terns contain three characteristic frequency components: a

slow (either nonoscillatory or oscillatory) component

(Kiemel et al. 2006; Nomura et al. 2013), a fast damped-

oscillatory component (Kiemel et al. 2006), and a very

fast oscillatory component representing the anti-phase

coordinated trunk-leg movement (Creath et al. 2005; Su-

zuki et al. 2012). Zatsiorsky and Duarte (Zatsiorsky and

Duarte 1999) termed the slow and the fast components

(~0.16 Hz and ~0.67 Hz, respectively, for their experi-

mental subjects) as “rambling” and “trembling”, respec-

tively. Creath et al. (2005) showed that the trunk and the

leg segments during quiet standing exhibited antiphase

oscillation particularly in the frequency above 1 Hz

(1.0–5.0 Hz), which was predominantly related to the
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mechanical characteristics of a double-inverted-pendu-

lum-model of the standing body. We deemed such anti-

phase oscillations as the very fast components highlighted

in this study. The main contribution of this study is that

our purely statistical analysis revealed one-to-one corre-

spondences between those mechanistically interpreted

three types of sway dynamics (one associated with the

slow component, the other two associated with the fast

and the very fast components) and our statistically classi-

fied three types of sway indices. More specifically, the

slow, the fast and the very fast components might corre-

spond, respectively, to the major factor characterizing the

universal indices and the two major factors characterizing

the individual-specific indices.

The mechanism of how the fast damped-oscillatory

component is generated can be understood simply by

considering the standing body as an inverted pendulum.

In this simple model, the upright posture is unstable

equilibrium point of saddle-type, with stable and unstable

modes, i.e., stable and unstable manifolds (Bottaro et al.

2008; Asai et al. 2009). Feedback control is thus indis-

pensable for stabilizing the upright equilibrium, for which

a proportional-derivative feedback controller (with feed-

back delay time) has been considered in most previous

studies (Johansson et al. 1988). If a gain of the derivative

feedback controller is not too large relative to a gain of

the proportional feedback controller, then the system

exhibits damped-oscillatory dynamics with small ampli-

tude. Typical frequency (resonant frequency) of this oscil-

lation is faster than the remaining major slow component

within a range of frequency 0.5–1.0 Hz (Kiemel et al.

2006) or 0.67 Hz in the study of Duarte et al. (Zatsiorsky

and Duarte 1999). Since the frequency of the fast oscilla-

tory component is determined by the individual body

parameters, it is reasonable for the indices that character-

ize the fast oscillation in the range of 0.5–1.0 Hz to be

classified as individual-specific in this study.

Recent studies have revealed double-inverted-pendu-

lum-like behaviors during quiet standing (e.g., Creath

et al. 2005; Hsu et al. 2007; Sasagawa et al. 2014). It is

becoming a common view that the ankle and hip strategy

(Horak and Nashner 1986) are implemented not only in

response to perturbations, but also during quiet stance

along with a mixed strategy (Creath et al. 2005; Suzuki

et al. 2012). Spectral analysis of powers and co-phases of

trunk and leg movement (Creath et al. 2005) and eigen-

frequency analysis of mechanical, nonactively-controlled

double-inverted-pendulum model (Suzuki et al. 2012)

during quiet standing have shown that in-phase and anti-

phase oscillations between upper and lower links with

about 0.5 Hz and 1.5–2.0 Hz, respectively. Those evi-

dences support the idea that neural control may not be

the primary determinant of the coordinated postural sway

patterns, but they might arise from the biomechanical

dynamics of a double-(multi-link)-inverted-pendulum-like

body. Since these frequencies of in-phase and antiphase

coordinated patterns are determined by the individual body

parameters (including parameters for multiple links as well

as passive joint viscoelasticity), the indices that characterize

the fast oscillation in the range of 0.5–1.0 Hz, which might

correspond to the in-phase coordination, and the very fast

oscillation in the range of 1.0–2.5 Hz, which might corre-

spond to the antiphase coordination, were classified as

individual-specific in this study.

The slow component can be considered as either no-

noscillatory (Kiemel et al. 2006) or oscillatory (Nomura

et al. 2013). However, in either case, it might be associ-

ated with exponential decay back to equilibrium while

being continually perturbed by noise during quiet upright

stance. It accounts for the majority of sway variance, and

this fact is characterized by the indices PF50-ML and

PF50-AP (the universal indices 44 and 47). That is, the

larger the power of slow dynamics, the smaller the values

of PF50 as mention in the result section. Thus, these two

universal indices are associated with the power of the

slow dynamics, though indirectly.

Mechanisms of how the slow component is generated

are less understood. Zatsiorsky and Duarte (1999)

hypothesized that the slow dynamics are due to a slowly-

migrating reference point defined by a central command.

Kiemel et al. (2002, 2006) hypothesized that the slow

dynamics are caused by estimation errors of the postural

state. The origin of slow dynamics in one type of inter-

mittent control proposed by Loram et al. (2011) might be

similar to the one by Kiemel et al., but Loram et al. con-

sider that the state estimations and resulting neural inter-

ventions are carried out intermittently by the central

nervous system. An alternative view of the slow dynamics

has been provided by the double-power-law behavior of

postural sway at low and high-frequency regimes, which

are considered to be associated, respectively, with closed-

loop and open-loop postural control (Collins and De

Luca 1994). The power-law behavior at the low-frequency

regime is characterized by the universal indices as the

indices Slope-L-ML and Slope-L-AP (indices 9 and 12),

meaning that these two universal indices quantify the

slow dynamics. There are several versions of mathematical

models, referred to as intermittent control models, which

can account for the double-power-law behaviors at the

low-frequency regime (Collins and De Luca 1993; Bottaro

et al. 2008; Asai et al. 2009; Milton et al. 2009; Suzuki

et al. 2012; Nomura et al. 2013). Although the models by

Collins and De Luca or by Milton et al. and the other

models assume substantially different mechanisms of sta-

bilization, both of them consider basically that the switch-

ing between open-loop and closed-loop dynamics are
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responsible for the double-power-law behaviors at the

low-frequency regime.

In this way, the indices quantifying slow dynamics,

including Slope-L-ML and Slope-L-AP (indices 9 and 12),

were identified as universal, suggesting that the neural

control inherent for stabilizing upright posture is

expressed as the universal characteristics of postural sway

as we expected at the beginning of this study. As Kiemel

et al. (Kiemel et al. 2006) stated, characterizing the slow

process may hold the key to determining the underlying

basis of balance problems in populations with poor bal-

ance control. Note, however, the current study cannot

provide any evidence that is useful for arguing which

model is more physiologically plausible as a neural con-

trol strategy employed by the central nervous system.

What is interesting of this study is that nonmechanistic,

purely statistical analysis of a set of sway data could reach

the sway-index-classification that is quite consistent with

the mechanistic interpretations on the origins of postural

sway.

Remarks and limitations of the current
study

The first remark is associated with the characterization of

sway using the sway area. In this study, the index log-Area

(index 3) characterizing sway area and the index RMS

(indices 67, 68 and 69) were classified into neither universal

nor individual-specific indices. This means that the sway

area and RMS are not much informative, neither for char-

acterizing neural control nor for subject-dependent biome-

chanics during quiet standing in healthy young subjects.

This is rather surprising because these indices are very pop-

ular and widely used in research and clinical applications

for evaluating postural stability (e.g., Krishnamoorthy et al.

2002; Raymakers et al. 2005; Seigle et al. 2009).

There are two possible explanations of this counter-intu-

itive result. One explanation may be attributed to the limi-

tation of the population of subjects addressed by this study,

namely healthy young men, and specific features of the

experimental protocol such as the fact that only the open-

eyes condition was considered. That is, the homogeneity of

subjects and the single-standing condition might have elim-

inated age-dependency (Seigle et al. 2009), standing-condi-

tion-dependency (Raymakers et al. 2005), and disease-

induced changes (Schieppati et al. 1994) of sway area.

Thus, the identification of universal and individual-speci-

ficity indices performed by this study should be strictly

applied only to the healthy young adults, although an

extension of the method to other populations could use-

fully take our results as an informative starting point.

The other reason is associated with the reliability

(robustness) of sway area (and also RMS) estimation.

Indeed, the sway area might be individual-specific per

se, rather than universal as can be observed by the fact

that the location of Index 3 point in the VM-VV plane

(Fig. 5) is relatively closer to the area for the individual-

specific indices than that for the universal indices. How-

ever, for the purpose of individual characterization, sway

area measured by 95% confidence ellipse might not be

suitable. This is because determination of 95% confi-

dence ellipse is too sensitive to large excursions that take

place rarely in CoP trajectory. For example, suppose a

case in which a subject exhibiting small sway area for

most of the standing trials shows a single event of large

excursion deviated away from the usual sway area inci-

dentally. Such a rare event may occur only once in a

single trial or even rarely in multiple trials. Despite the

rareness of such events, it can easily make the area of

95% confidence ellipse large, which makes the individual

variances (intrasubject variances) bigger, hindering the

index of sway area from being the individual-specific. In

fact, the indices of log-Power and log-Power-ML (Indi-

ces 34 and 37) quantifying the sway power between 0.15

and 5.0 Hz were identified as the individual-specific,

despite of the fact that these are the frequency-domain

correspondences of the sway area, where the band-lim-

ited integration might filter out the power of rare

events.

The second remark is associated with the indices of

Angle and Flattening that were identified as universal,

other than the slow-component-related indices. These two

indices characterize the shape of 95% confidence ellipse,

and universality of these two indices might reflect the fact

that the CoP tends to fluctuate in the AP direction, rather

than in the ML direction, in most of the subjects. How-

ever, 95% confidence ellipse might not be robust for the

same reasons proposed above. Thus these two universal

indices might not be as informative as the slow-compo-

nent-related universal indices.

The third remark is about the indices associated with

the mean CoP velocity, including log-LNG (Index 17),

log-MV (Index 70), log-MV-ML (Index 71), and log-MV-

AP (Index 72). All of these indices were classified as indi-

vidual-specific indices. It is worth mentioning that, as

shown in Table 4, the correlation coefficients between

each of these indices and the moment of inertia were

quite high, about 0.6. In particular, the correlation was

highest for log-LNG and log-MV at about 0.63. This

result implies that the indices associated with the mean

CoP velocity are merely representing body parameters of

subjects (Teasdale et al. 2007). That is, the heavier the

weight and the taller the height, the larger the values of

these indices, despite of the fact that these indices have

often been employed in a number of neurophysiological

and neurological studies.
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Finally, it is interesting to mention an additional exper-

iment that was carried out, in which some of the subjects

were recruited for additional sway measurements during

one day (4 trials at 5 different times) about two months

after the experiments analyzed in this study. In this addi-

tional experiment, 20 CoP data were acquired from each

subject. We used indices values calculated from these

additional data as novel test data, and examined whether

they could be correctly discriminated by the optimal lin-

ear classifier obtained in the current study. The error rates

for this test were quite low (smaller than about 20%) for

all the participating subjects. This means that the individ-

ual-specific features of sway are likely to persist at least

on a mid-term time horizon.
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(A1)Appendix

The linear classifier for individual
discrimination

Configuration of the linear discriminant functions is

formulated as follow. For a set of q indices, values of the

k-th index included in the q indices for trial i from sub-

ject-p was denoted here by z
ðkÞ
i;p , (i = 1, 2, ���, n = 60). The

q-dimensional index vector for the i-th trial in subject-p,

zi,p(q), is denoted by

zi;pðqÞ ¼ z
ðkð1ÞÞ
i;p ; z

ðkð2ÞÞ
i;p ; :::; z

ðkðqÞÞ
i;p

� �T
; (5)

where k(1), k(2), ��� , k(q) represent the index num-

bers of the q selected indices. The individual sample

mean vector of q-dimensional vectors for subject-p is

denoted by �zpðqÞ. The total sample mean vector of

q-dimensional vectors across subjects is denoted by �zðqÞ.
The individual sample covariance matrix of q-dimensional

vectors for subject-p is denoted by Sp(q). The total sample

covariance matrix of q-dimensional vectors across subjects

is denoted by S(q) and is calculated as follows:

�zpðqÞ ¼ �zðkð1ÞÞp ;�zðkð2ÞÞp ; :::;�zðkðqÞÞp

� �T
¼ 1

n

Xn
i¼1

zi;pðqÞ (6)

�zðqÞ ¼ �zðkð1ÞÞ;�zðkð2ÞÞ; :::;�zðkðqÞÞ
� �T

¼ 1

15

X15
p¼1

�zpðqÞ (7)

SpðqÞ ¼ 1

n� 1

Xn
i¼1

zi;pðqÞ � �zpðqÞ
� �

zi;pðqÞ � �zpðqÞ
� �T

(8)

SðqÞ ¼ 1

N � 15

X15
p¼1

ðn� 1ÞSpðqÞ: (9)

The sum of squared within-group (intrasubject) devi-

ations, denoted by W(q), represents the degree of vari-

ability of the individual sample zi,p(q) with respect to

the corresponding individual sample mean vector. The

sum of squared between-groups (intersubject) devia-

tions, denoted by B(q), represents the degree of separa-

tion between individual sample mean vectors of any

two subjects. The total sum of squared deviations from

the total sample mean vector across subjects, denoted

by T(q), represents the variance of q-dimensional index

vectors (total variation). These matrices are defined as

follows

WðqÞ ¼ ðN � 15ÞSðqÞ (10)

BðqÞ ¼
X15
p¼1

Xn
i¼1

�zpðqÞ � �zðqÞ� �
�zpðqÞ � �zðqÞ� �T

(11)

WðqÞ ¼
X15
p¼1

Xn
i¼1

zi;pðqÞ � �zðqÞ� �
zi;pðqÞ � �zðqÞ� �T

: (12)

The total variation T(q) can then be represented as the

sum of W(q) and B(q):

TðqÞ ¼ WðqÞ þ BðqÞ (13)

The (q�1)-dimensional hyperplane, or linear discrimi-

nant function, which optimally discriminates each indi-

vidual, can be obtained by maximizing B(q) and

minimizing W(q). By equation (13) and the fact that

T(q) is constant for the given set of data, determining the

discriminant function that minimizes W(q) is equivalent

to determining the discriminant function that maximizes

B(q). Therefore, the optimal linear discriminant function

can be obtained by maximizing the ratio between B(q)

and W(q) or minimizing W(q).

For a given q-dimensional index vector z(q) to be

discriminated as either from subject-p or subject-p0, the
optimal linear function that discriminates subject-p from
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subject-p0is denoted by L
ðpp0Þ
WðqÞðzðqÞÞ, and it can be

expressed as

L
ðpp0Þ
WðqÞðzðqÞÞ
¼ �zpðqÞ � �zp0ðqÞ
� �TðN � 15ÞW�1ðqÞzðqÞ
� 1

2
�zpðqÞ � �zp0 ðqÞ
� �TðN � 15ÞW�1ðqÞ �zpðqÞ þ �zp0ðqÞ

� �
:

(14)

In this way, the (q�1)-dimensional hyperplane is param-

eterized by W(q) (Rencher 1992). If L
ðpp0Þ
WðqÞðzðqÞÞ� 0, the

index vector z(q) was identified as the one from the

subject-p. If L
ðpp0Þ
WðqÞðzðqÞÞ\0, otherwise, z(q) was identi-

fied as the one from the subject-p0. The optimal linear

function that discriminates any combination of p and p0

was obtained similarly. The linear classifier that can clas-

sify any given q-dimensional index vector into one of 15

subjects correctly as much as possible was obtained as a

set of such optimal discriminant functions.

(A2)Appendix

The AIC-based stepwise method

Step 1. Obtain a linear classifier using q indices

The linear discriminant functions that use a tentatively

selected set of q indices are calculated, in which the opti-

mal linear classifier L
ðpp0Þ
WðqÞðzðqÞÞ that discriminates subject-

p from subject-p0 for a novel sample index vector z(q) is

given by equation (14). In the case of q = 1 for initial set-

ting of the iteration, an index z(k(1)) is selected arbitrarily

from k(1) = {1, 2, ��� , M} where M is the number of

normally distributed indices, and the linear discriminant

functions L
ðpp0Þ
Wð1Þðzð1ÞÞ are obtained.

Step 2. Add a new useful index to the current q
indices

A new index z(k(q + 1)) that has not been included in

the member of q-dimensional index vector is selected,

and introduced into the current q indices to define a

new set of (q + 1) indices. For the new (q + 1) indices,

the optimal linear classifier is obtained as

L
ðpp0Þ
Wðqþ1Þðzðqþ 1ÞÞ for discriminating a novel (q + 1)-

dimensional sample index vector z(q + 1) = (z(k(1)), z(k

(2)), . . ., z(k(q)), z(k(q+1)))T as in equation (14). The AIC

of the linear classifier that optimally discriminates arbi-

trary combinations of two subjects by the set of q indi-

ces is denoted by

AIC

�
L
ðpp0Þ
WðqÞ

�p;p0¼15

p;p0¼1

 !
; (15)

and the amount of change in the values of AIC caused by

the addition of z(k(q+1)) can be expressed as

DAICðzðkðqþ1ÞÞÞ

¼AIC

�
L
ðpp0Þ
WðqÞ

�p;p0¼15

p;p0¼1

 !
�AIC

�
L
ðpp0Þ
WðqÞ

�p;p0¼15

p;p0¼1

 !

¼�Nlog
jWðqþ1Þj=jWðqÞj
jTðqþ1Þj=TðqÞj

	 

�2ð15�1Þ

(16)

where |A| representing the determinant of a matrix A.

The inequality ΔAIC(z(k(q + 1))) > 0, i.e., decrease in

the AIC value, means improvement in the performance

of the linear classifier by the addition of z(k(q + 1)),

whereas ΔAIC(z(k(q + 1))) < 0 means pejoration in the

performance. ΔAIC(z(k(q + 1))) are examined for all pos-

sible selections of k(q + 1). The index z(k(q + 1)) that

takes a positive and maximal value of ΔAIC(z(k(q + 1)))

among the examined k(q + 1), if it exists, is employed

as the (q + 1)-th index used for the linear discriminant

analysis. In this case, Step 2 is completed, and proceed

to Step 3. If the maximum value of obtained ΔAIC(z(k
(q + 1))) cannot be positive for any possible choice of

z(k(q + 1)), the current set of q indices is considered as

the optimal, and proceed to Step 4, where the selection

of indices completes.

Step 3. Eliminate a useless index

An index denoted by z(del), except the newly added index

z(k(q + 1)) in Step 2, is selected, and eliminated from the

current set of (q + 1) indices. The amount of change in

AIC value by the elimination of z(del), denoted by ΔAIC
(z(del)), is calculated in a similar way to Step 2. ΔAIC
(z(del)) is evaluated for all possible selections of z(del). The

index z(del) that takes a negative and minimum value of

ΔAIC(z(k(q + 1))) among the examined indices, if it exists,

is eliminated from the current set of (q + 1) indices, and

proceed back to Step 2. If the minimum value of ΔAIC
(z(k(q + 1))) cannot be negative for any choice of elimi-

nated indices, no indices are eliminated, and proceed

back to Step 2.

Step 4. Complete the indices selection

Selection of indices for determining the optimal linear

classifier completes.
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