ITPRs/inositol 1,4,5-trisphosphate receptors in autophagy: From enemy to ally

Jean-Paul Decuypere,^{1,*} Jan B Parys,^{2,†} and Geert Bultynck^{2,†}

¹KU Leuven; Department of Microbiology and Immunology; Laboratory of Abdominal Transplantation; University Hospitals Leuven; Department of Abdominal Transplant Surgery; Leuven, Belgium; ²KU Leuven; Department of Cellular and Molecular Medicine; Laboratory of Molecular and Cellular Signaling; Leuven, Belgium;

[†]Shared last author.

Keywords: autophagic flux, autophagy, Ca^{2+} microdomains, Ca^{2+} signaling, inositol 1,4,5-trisphosphate receptor, spatiotemporal Ca^{2+} signals

Abbreviations: AMPK, adenosine monophosphate-activated protein kinase: ATP2A/SERCA, ATPase, Ca²⁺ transporting, cardiac muscle, fast twitch; BCL2, Bcell CLL/lymphoma 2; BECN1, Beclin 1, autophagy related; ER, endoplasmic reticulum; IP₃, inositol 1,4,5-trisphosphate; ITPR, inositol 1,4,5-trisphosphate receptor; LC3, microtubule-associated protein 1 light chain 3; TFEB, transcription factor EB; TGM2, transglutaminase 2; TMBIM6/BI-1, transmembrane BAX inhibitor motif containing 6; TPCN, 2 pore segment channel; WIPI1, WDrepeat domain, phosphoinositide interacting 1

© Jean-Paul Decuypere, Jan B Parys, and Geert Bultynck

*Correspondence to: Jean-Paul Decuypere; Email: jeanpaul.decuypere@cme.vib-kuleuven.be

Submitted: 10/02/2014

Revised: 07/31/2015

Accepted: 08/11/2015

http://dx.doi.org/10.1080/15548627.2015.1083666

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. **I** TPRs (inositol 1,4,5-trisphosphate receptors), the main endoplasmic reticulum (ER) Ca^{2+} -release channels, were originally proposed as suppressors of autophagy. Yet, new evidence has accumulated over recent years supporting a crucial, stimulatory role for ITPRs in driving the autophagic flux. Here, we provide an integrated view on how ITPR-mediated Ca^{2+} signaling can have a dual impact on autophagy, depending on the characteristics of the spatio-temporal Ca^{2+} signals, including the existence of ER-mitochondrial and ER-lysosomal Ca^{2+} signaling microdomains.

During evolution, cells have gradually optimized their intracellular Ca²⁺-signaling pathways into an intricate system of Ca²⁺ stores with intralumenal Ca²⁺-buffering proteins, membrane-inserted Ca²⁺ pumps and membrane-release channels and cytosolic Ca²⁺-dependent effectors, together constituting the Ca²⁺ signalosome.1 The most important intracellular Ca²⁺ store in mammalian cells is the endoplasmic reticulum (ER), where the ubiquitously expressed ITPR (inositol 1,4,5-trisphosphate receptor) acts as the main intracellular Ca²⁺-release channel.² Three isoforms (ITPR1, ITPR2 and ITPR3) contribute to the release of Ca^{2+} from the ER in response to inositol 1,4,5trisphosphate (IP₃), which is produced at the plasma membrane upon exposure of cells to extracellular signals (e.g. ATP, hormones, antibodies, growth factors, neurotransmitters). In this manner, a variety of cellular processes, including cell death and

survival, are regulated by ITPR-mediated Ca^{2+} signaling.³ To control and regulate specific pathways or proteins, physiological Ca^{2+} signals are tightly but dynamically controlled in a spatiotemporal manner, often involving subcellular Ca^{2+} microdomains.^{1,4}

ITPR-mediated Ca²⁺ signaling also influences autophagy. However, seemingly opposing concepts concerning the role of Ca²⁺ signaling and ITPRs in autophagy have been proposed, with evidence for intracellular Ca²⁺ signals activating as well as inhibiting the process.⁵ ITPRs have been proposed as important negative regulators of autophagy since suppressing ITPR-mediated Ca^{2+} signaling by the depletion of IP₃, pharmacological inhibition using the selective ITPR inhibitor Xestospongin B, or the downregulation or knockout of ITPRs, results in an elevation of autophagy markers in vitro.⁶⁻¹¹ However, other findings indicate that ITPRmediated Ca²⁺ signaling positively influences autophagic cell death in Dictyostelium,12 whereas enhanced ITPR function is critical for driving canonical MTOR (mechanistic target of rapamycin [serine/ threonine kinase])-dependent autophagy in mammalian cells exposed to nutrient starvation or rapamycin.^{13,14}

Similar to ITPRs, intracellular Ca²⁺ signaling also appears to play a dual role in autophagy, leading to apparently contradictory results.⁵ Increase of the cytosolic Ca²⁺ concentration ($[Ca^{2+}]_{cyt}$) triggered by treatment of cells with extracellular agonist ATP, the ATP2A/SERCA inhibitor thapsigargin or Ca²⁺ ionophores such as ionomycin, induce an increase in LC3-II

levels and in the number of autophagosomes.¹⁵ Such an increase in autophagic markers, however, does not necessarily imply the stimulation of autophagy, as it may represent the accumulation of autophagic vesicles due to an inhibition of the autophagic flux. Although Grotemeier et al. still observe a thapsigargin-mediated increase in LC3-II in Jurkat T cells, despite inhibition of the autophagic flux with lysosomal inhibitors,¹⁶ other experiments using lysosomal inhibitors indicate that thapsigargin and Ca²⁺ ionophores rather inhibit the autophagic flux than stimulate autophagy,^{17,18} thus thereby reducing the degradation of long-lived proteins.^{19,20} This has both been linked to an effect of thapsigargin on autophagosome-lysosome fusion,¹⁸ as well as to an impaired biogenesis of autophagosomes downstream of WIPI1-puncta formation.²⁰ Altogether, these results demonstrate that comparing autophagy in different conditions should be done with great care: treatment of the cells with either thapsigargin or ionophores leads to nonphysiological elevations in Ca²⁺ with amplitudes and spatio-temporal characteristics that are different from Ca²⁺ signals triggered by physiological agonists. Moreover, the nature and consequences of these Ca²⁺ signals are dependent on the applied concentrations of those Ca²⁺ mobilizers and the duration of the treatment. Finally, a similar Ca²⁺dependent inhibitory effect on autophagosome formation is proposed to occur downstream of the plasma membrane Ltype Ca²⁺ channels.¹⁷ Antagonists of the latter appear to induce autophagy by a mechanism involving cyclic adenosine monophosphate-dependent regulation of the IP₃ levels and calpain activation. Hence, inhibition of these Ca^{2+} signals by depleting cellular IP₃ levels with lithium chloride is proposed to activate autophagy and thereby to prevent protein aggregation in neurodegeneration.^{11,17}

Different studies using pharmacological inhibitors or ITPR-knockdown approaches⁶⁻¹⁰ also propose an inhibitory role for the ITPR and the IP₃-induced Ca^{2+} release with respect to autophagy, albeit via different mechanisms. Kroemer and coworkers propose a Ca^{2+} -independent scaffolding role for ITPRs by enhancing the formation of the antiautophagic BCL2-BECN1/Beclin 1 complex.⁷ Alternatively, Foskett and coworkers advocate the importance of ITPR-mediated Ca²⁺ oscillations that drive mitochondrial ATP production, thereby suppressing the activity of AMPK,⁸ a positive regulator of autophagy.²¹ As such, DT40 cells in which all 3 ITPR isoforms are genomically deleted display an increased AMPK activation and elevated basal autophagic flux.⁸

Although these studies indicate that ITPRs are able to inhibit basal autophagy levels, other studies reveal the requirement of ITPR-mediated Ca²⁺-release during starvation-,¹³ rapamycin-,¹⁴ or natural killer cell²²-induced autophagy in mammalian cells and during differentiation factor-induced autophagy in Dictyostelium.¹² The different outcomes and the proposed roles of the ITPR in autophagy are possibly due to a divergent role of the ITPRs with respect to basal vs. stress-induced autophagy. Indeed, our study shows that while ITPR inhibition by Xestospongin B stimulates the basal autophagic flux, it also abrogates the starvation-induced autophagic flux.¹³ In line with the latter view, a recent report by Mikoshiba and coworkers, using the tandem red/green fluorescent protein reporter RFP-GFP-LC3 in HeLa cells reveals that knockdown of ITPR1 leads to an accumulation of autophagosomes.²³ Interestingly, the autophagosomes are not randomly located (as observed after treatment with bafilomycin A₁), but are restricted to the perinuclear space. Cells in which TGM2 (transglutaminase 2), an ITPR regulator, has been knocked down, show increased ITPR-mediated Ca²⁺ signaling and display mostly autolysosomes, similar to starvation-subjected cells, indicating enhanced autophagic clearance.²³ Although further independent confirmation will be needed, these first data support a concept in which ITPR-mediated Ca²⁺ release can enhance the trafficking of autophagosomes toward lysosomes, thereby promoting the autophagic flux. In any case, all these different reports strongly advocate the need for proper analysis of the autophagic flux when using Ca²⁺ mobilizers.

Another important aspect of the complex relation between Ca^{2+} signaling and autophagy, is the fact that the ER Ca^{2+}

stores are remodeled during autophagy, and the functional properties of the ITPRs are modified by essential autophagy proteins.^{13,14,24} These findings have implications for autophagy activity, because it has already been demonstrated that autophagy is dependent on the Ca²⁺ present in the intracellular Ca^{2+} stores rather than on the extracellular Ca^{2+} .¹⁹ Nutrient starvation leads to an overall sensitization of Ca²⁺-release events from the ER, by increasing the ER Ca²⁺-store content and by promoting IP₃-induced Ca²⁺ release.¹³ The former is linked to an increased ER Ca²⁺-buffering capacity due to an upregulation of ER lumenal Ca²⁺-binding proteins concomitant with a decreased passive Ca^{2+} leak from the ER, whereas the latter is linked to a direct interaction of BECN1 with the ITPR, thereby sensitizing the channel toward lower IP3 concentration. Due to their mechanism of action, the use of compounds such as thapsigargin or Ca²⁺ ionophores will eliminate the functional consequences of these fine-tuned alterations in ER Ca²⁺ and ITPR function that are critical to drive the autophagic flux. It is interesting to note that autophagy-deficient T cells lacking ATG7 (autophagy related 7) expand their ER Ca²⁺ stores and increase ER Ca²⁺ levels by upregulating ATP2A, which may serve as a compensatory mechanism in an attempt to restore autophagic flux.²⁴

Hence, there is clear evidence that Ca^{2+} and ITPRs are able to both stimulate and suppress autophagosome synthesis as well as to both enhance and inhibit the autophagic flux. ITPRs and Ca²⁺ can execute such opposing functions due to the different spatio-temporal characteristics of Ca²⁺ signals that can be generated, each having distinct impacts on different steps in the autophagy pathway (Fig. 1). Ca^{2+} signals can vary in the cellular space: large Ca²⁺ waves can spread out over the entire cell, while local Ca²⁺ signals, including basal Ca^{2+} oscillations, can act in a specific cellular microdomain. The probably best known example for this phenomenon is the Ca²⁺ transfer between ER and mitochondria with specific proteins regulating contact-site formation and efficient Ca2+ signaling between these 2 organelles.^{25,26} This is in part achieved by the chaperone HSPA9/GRP75 (heat shock 70kDa

[mortalin]), protein 9 which physically links ITPRs to VDAC1 (voltagedependent anion channel 1), the Ca^{2+} -entry channel located at the mitochondrial outer membranes.²⁷ These contact sites are most likely responsible for the ITPR-dependent Ca²⁺induced fueling of mitochondrial ATP production and the subsequent suppression of AMPK and autophagy,^{8,26} as well as for triggering cell death by eliciting mitochondrial Ca²⁺ overload under specific conditions, and mitophagy by disturbing mitochondrial Ca²⁺ signaling.²⁶ Furthermore, it should be highlighted that changes in overall ER Ca²⁺ homeostasis can have very local effects. For instance, lowering the steady-state ER Ca^{2+} levels will limit the ITPR-driven Ca²⁺ oscillations and the local transfer of Ca^{2+} into the mitochondria, thereby compromising mitochondrial ATP production. This mechanism has been proposed to the role of explain TMBIM6/BI-1, an evolutionarily conserved celldeath suppressor²⁸ that acts as an ER Ca²⁺-leak channel,^{29,30} a sensitizer of

ITPRs,³¹ and as a positive regulator of autophagy.³² Other possible spacerestricted Ca²⁺ signals that regulate autophagy include local ITPR-mediated Ca²⁺ signals altering both phosphatidylinositol 3-phosphate-rich omegasome formation at the ER membranes *via* CAMK1 (calcium/calmodulin-dependent protein kinase 1)³³ and accumulation of the phosphatidylinositol 3-phosphate-binding protein WIPI1.¹⁶ Downstream of WIPI1, the thapsigargin-induced impairment of autophagosome biogenesis is shown to be independent of bulk $[Ca^{2+}]_{cyt}$ changes, suggesting local Ca²⁺ variations account

Figure 1. The various possible mechanisms of Ca²⁺-ITPR-mediated control of autophagy. Constitutive ITPR-mediated Ca^{2+} release into mitochondria inhibits a proximal step in the autophagy pathway by fueling mitochondrial energetics and ATP production and limiting AMPK activity. The ER Ca²⁺-leak channel TMBIM6 can impede ATP production by lowering the steady-state ER Ca^{2+} concentration and thus reduce the amount of Ca^{2+} available for transfer into the mitochondria. ITPRs can also function as scaffolding molecules, thereby suppressing autophagy independently of their Ca²⁺-release activity by promoting the interaction of BCL2 with BECN1 and thus preventing the formation of the active class III phosphatidylinositol 3-kinase (PtdIns3K) complex. ITPR-mediated Ca^{2+} release can also be enhanced by BECN1 and TMBIM6 and dampened by TGM2, thereby influencing omegasome formation (possibly through PtdIns3K activation) and autophagosome maturation/trafficking. ITPR-mediated Ca²⁺ release can also influence the lysosomal Ca²⁺ concentration and lysosomal Ca²⁺ release through TPCNs, likely influencing lysosomal fusion events, or through MCOLN1, influencing autophagic and lysosomal gene transcription through a pathway involving PPP3/calcineurin and TFEB. TPCNs reciprocally also influence ITPRs via a Ca²⁺-induced Ca²⁺-release mechanism. Autophagosome synthesis, maturation and fusion are also affected by Ca²⁺-mobilizing agents such as thapsigargin (that inhibits the ER Ca²⁺ pump ATP2A) and Ca²⁺ ionophores that increase the cytosolic Ca²⁺ concentration ($[Ca^{2+}]_{cyt}$). IP₃ production and the subsequent IP₃-mediated Ca²⁺ release can also be regulated by a feed-back loop involving calpain activation by L-type Ca²⁺ channel-mediated Ca²⁺ entry or the activation of P2RY (purinergic receptor, G-protein coupled). The black circles represent Ca^{2+} ions, with thick black arrows indicating the direction of the Ca²⁺ fluxes. Green arrows indicate stimulatory effects, red lines inhibitory ones.

for this effect of thapsigargin.²⁰ Moreover, lysosomes have recently emerged as novel Ca^{2+} stores that generate Ca^{2+} signals and that functionally interact with the ER Ca^{2+} -handling mechanisms in a bidirectional way.^{34–36} Close association of lysosomes with the ER enables rapid exchange of Ca^{2+} between these organelles, allows the ITPRs to influence the lysosomal Ca^{2+} concentration and subsequently Ca^{2+} release through lysosomal nicotinic acid adenine dinucleotide phosphate (NAADP)-dependent 2 pore segment channels (TPCNs), whereas NAADP-dependent Ca^{2+} release can stimulate ITPRs via Ca²⁺-induced Ca²⁺ release. Interestingly, activation of TPCNmediated Ca²⁺-signaling inhibits autophagosome-lysosome fusion events by alkalinizing lysosomal pH through an unknown mechanism.³⁷ Underscoring the importance of lysosomal Ca²⁺ in autophagy, a very recent report demonstrates that nutrient starvation promotes Ca²⁺ release from the lysosomes through the Ca²⁺ channel MCOLN1/TRPML1 (mucolipin 1).³⁸ This Ca²⁺ results in the activation of the protein phosphatase PPP3/calcineurin (protein phosphatase 3) in a microdomain around the lysosomes, and the subsequent dephosphorylation of TFEB, a major transcription factor coordinating lysosomal biogenesis. Dephosphorylated TFEB accumulates in the nucleus, promoting the transcription of genes involved in autophagy and the production of lysosomes.³⁸ Finally, Ca^{2+} signals from the ER or lysosomes could influence fusion events more directly, since autophagosome maturation is regulated by the Ca^{2+} -binding proteins ANXA1/annexin A1 and ANXA5.³⁹

From all these studies, it is clear that there is an intimate interplay between autophagy and Ca^{2+} signaling from the ER, including via the ITPR channel, likely involving a tight control of the frequency and amplitude of Ca²⁺ signals in space and time. Furthermore, ITPRs and Ca²⁺ signaling not only affect autophagy, but reciprocally ITPRs and Ca²⁺ signaling are modulated by the autophagy process in general and by essential autophagy proteins in particular. Hence, considering the complex interrelation between ITPRs and Ca^{2+} signaling in autophagy, it can be questioned whether the direct pharmacological targeting of these Ca²⁺-release channels holds potential as a future therapy in autophagy-dependent diseases. However, interesting possibilities lay within the fine-tuning of the Ca²⁺-flux properties of the channels such as the ITPRs by affecting its dynamic regulation via associated proteins, as has been successfully done with respect to associated anti-apoptotic BCL2 proteins.40,41 For example, BECN1 is recruited by ITPRs during starvation-induced autophagy and sensitizes the ITPRs to low levels of IP3 (Fig. 1).¹³ In contrast, TGM2, a protein that induces protein crosslinking, counteracts enhanced ITPR-mediated Ca²⁺ signaling during autophagy stimulation.² Modulating regulatory proteins acting on the ITPRs could thus fine-tune the ITPRmediated Ca²⁺ signals in cells undergoing autophagy, thereby enhancing or reducing the autophagic flux as appropriate. For example, an increase in covalent posttranslational modifications of ITPR1 mediated by TGM2, resulting in a dampened ITPR1 activity, is already found in animal Huntington disease models and in primary B lymphocytes obtained from Huntington patients.²³ Limiting TGM2 activity could in those conditions enhance the ITPR-mediated Ca^{2+} release, stimulate the autophagy pathway and thus increase the autophagy-mediated degradation of mutant HTT (huntingtin). The advantage of such an approach will be that it may not lead to general elevations in cytosolic Ca^{2+} concentration, which has been linked to autophagy inhibition and an impaired clearance of aggregate-prone proteins in neurodegenerative diseases.¹⁷

In conclusion, identifying the molecular determinants underlying the formation of multiprotein complexes between the ITPRs and associated regulatory proteins may thus provide new therapeutic avenues to modulate autophagy in the context of human pathologies.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

- Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4:517–29; PMID:12838335; http://dx.doi.org/10.1038/nrm1155
- Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca²⁺ release channels. Physiol Rev 2007; 87:593–658; PMID:17429043; http://dx. doi.org/10.1152/physrev.00035.2006
- Ivanova H, Vervliet T, Missiaen L, Parys JB, De Smedt H, Bultynck G. Inositol 1,4,5-trisphosphate receptorisoform diversity in cell death and survival. Biochim Biophys Acta 2014; 1843:2164–83; PMID:24642269; http://dx.doi.org/10.1016/j.bbamcr.2014.03.007
- Berridge MJ. Calcium microdomains: organization and function. Cell Calcium 2006; 40:405–12; PMID:17030366; http://dx.doi.org/10.1016/j.ceca. 2006.09.002
- Decuypere JP, Bultynck G, Parys JB. A dual role for Ca²⁺ in autophagy regulation. Cell Calcium 2011; 50:242–50; PMID:21571367; http://dx.doi.org/ 10.1016/j.ceca.2011.04.001
- Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgó J, Díaz J, Lavandero S, Harper F, et al. Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 2007; 14:1029–39; PMID:17256008
- Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, et al. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 2009; 16:1006–17; PMID:19325567; http://dx.doi.org/10.1038/cdd.2009.34
- Cardenas C, Miller RA, Smith I, Bui T, Molgo J, Muller M, Vais H, Cheung KH, Yang J, Parker I, et al. Essential regulation of cell bioenergetics by constitutive InsP₃ receptor Ca²⁺ transfer to mitochondria. Cell 2010; 142:270–83; PMID:20655468; http://dx.doi. org/10.1016/j.cell.2010.06.007
- Khan MT, Joseph SK. Role of inositol trisphosphate receptors in autophagy in DT40 cells. J Biol Chem 2010; 285:16912–20; PMID:20308071; http://dx.doi. org/10.1074/jbc.M110.114207
- Wong A, Grubb DR, Cooley N, Luo J, Woodcock EA. Regulation of autophagy in cardiomyocytes by Ins

(1,4,5)P₃ and IP₃-receptors. J Mol Cell Cardiol 2013; 54:19–24; PMID:23137780; http://dx.doi.org/ 10.1016/j.yjmcc.2012.10.014

- Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170:1101–11; PMID:16186256; http://dx.doi.org/10.1083/jcb.200504035
- Lam D, Kosta A, Luciani MF, Golstein P. The inositol 1,4,5-trisphosphate receptor is required to signal autophagic cell death. Mol Biol Cell 2008; 19:691–700; PMID:18077554; http://dx.doi.org/10.1091/mbc. E07-08-0823
- Decuypere JP, Welkenhuyzen K, Luyten T, Ponsaerts R, Dewaele M, Molgo J, Agostinis P, Missiaen L, De Smedt H, Parys JB, et al. Ins(1,4,5)P₃ receptor-mediated Ca²⁺ signaling and autophagy induction are interrelated. Autophagy 2011; 7:1472–89; PMID:22082873; http:// dx.doi.org/10.4161/auto.7.12.17909
- Decuypere JP, Kindt D, Luyten T, Welkenhuyzen K, Missiaen L, De Smedt H, Bultynck G, Parys JB. mTOR-Controlled autophagy requires intracellular Ca²⁺ signaling. PloS One 2013; 8:e61020; PMID:23565295; http://dx.doi.org/10.1371/journal. pone.0061020
- Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 2007; 25:193– 205; PMID:17244528; http://dx.doi.org/10.1016/j. molcel.2006.12.009
- Grotemeier A, Alers S, Pfisterer SG, Paasch F, Daubrawa M, Dieterle A, Viollet B, Wesselborg S, Proikas-Cezanne T, Stork B. AMPK-independent induction of autophagy by cytosolic Ca²⁺ increase. Cell Signal 2010; 22:914–25; PMID:20114074; http://dx.doi.org/ 10.1016/j.cellsig.2010.01.015
- Williams A, Sarkar S, Cuddon P, Trofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4:295–305; PMID:18391949; http://dx. doi.org/10.1038/nchembio.79
- Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42:731–43; PMID:21700220; http://dx.doi.org/ 10.1016/j.molcel.2011.04.024
- Gordon PB, Holen I, Fosse M, Rotnes JS, Seglen PO. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 1993; 268:26107– 12; PMID:8253727
- Engedal N, Torgersen ML, Guldvik IJ, Barfeld SJ, Bakula D, Saetre F, Hagen LK, Patterson JB, Proikas-Cezanne T, Seglen PO, et al. Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy 2013; 9:1475–90; PMID:23970164; http://dx.doi.org/10.4161/auto.25900
- Zhao M, Klionsky DJ. AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab 2011; 13:119–20; PMID:21284977; http://dx.doi.org/ 10.1016/j.cmet.2011.01.009
- Messai Y, Noman MZ, Hasmim M, Janji B, Tittarelli A, Boutet M, Baud V, Viry E, Billot K, Nanbakhsh A, et al. ITPRI protects renal cancer cells against natural killer cells by inducing autophagy. Cancer Res 2014; 74:6820–32; PMID:25297632; http://dx.doi.org/ 10.1158/0008-5472.CAN-14-0303
- Hamada K, Terauchi A, Nakamura K, Higo T, Nukina N, Matsumoto N, Hisatsune C, Nakamura T, Mikoshiba K. Aberrant calcium signaling by transglutaminasemediated posttranslational modification of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2014; 111(38):E3966–75; PMID:25201980; http:// dx.doi.org/10.1073/pnas.1409730111
- 24. Jia W, Pua HH, Li QJ, He YW. Autophagy regulates endoplasmic reticulum homeostasis and calcium

mobilization in T lymphocytes. J Immunol 2011; 186:1564–74; PMID:21191072; http://dx.doi.org/ 10.4049/jimmunol.1001822

- Marchi S, Patergnani S, Pinton P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim et Biophys Acta 2014; 1837:461–9; PMID:24211533; http://dx.doi.org/ 10.1016/j.bbabio.2013.10.015
- Rimessi A, Bonora M, Marchi S, Patergnani S, Marobbio CM, Lasorsa FM, Pinton P. Perturbed mitochondrial Ca²⁺ signals as causes or consequences of mitophagy induction. Autophagy 2013; 9:1677–86; PMID:24121707; http://dx.doi.org/10.4161/auto.24795
- Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca²⁺ channels. J Cell Biol 2006; 175:901–11; PMID:17178908; http://dx. doi.org/10.1083/jcb.200608073
- Xu Q, Reed JC. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol Cell 1998; 1:337–46; PMID:9660918; http://dx.doi.org/10.1016/S1097-2765(00)80034-9
- Bultynck G, Kiviluoto S, Henke N, Ivanova H, Schneider L, Rybalchenko V, Luyten T, Nuyts K, De Borggraeve W, Bezprozvanny I, et al. The C terminus of Bax inhibitor-1 forms a Ca²⁺-permeable channel pore. J Biol Chem 2012; 287:2544–57; PMID:22128171; http://dx.doi.org/10.1074/jbc. M111.275354
- Bultynck G, Kiviluoto S, Methner A. Bax inhibitor-1 is likely a pH-sensitive calcium leak channel, not a H⁺/ Ca²⁺ exchanger. Sci Signal 2014; 7:pe22;

PMID:25227609; http://dx.doi.org/10.1126/scisignal. 2005764

- 31. Kiviluoto S, Schneider L, Luyten T, Vervliet T, Missiaen L, De Smedt H, Parys JB, Methner A, Bultynck G. Bax inhibitor-1 is a novel IP₃ receptor-interacting and -sensitizing protein. Cell Death Dis 2012; 3:e367; PMID:22875004; http://dx.doi.org/10.1038/cddis. 2012.103
- 32. Sano R, Hou YC, Hedvat M, Correa RG, Shu CW, Krajewska M, Diaz PW, Tamble CM, Quarato G, Gottlieb RA, et al. Endoplasmic reticulum protein BI-1 regulates Ca²⁺-mediated bioenergetics to promote autophagy. Genes Dev 2012; 26:1041–54; PMID:22588718; http://dx.doi.org/10.1101/gad. 184325.111
- 33. Pfisterer SG, Mauthe M, Codogno P, Proikas-Cezanne T. Ca²⁺/calmodulin-dependent kinase (CaMK) signaling via CaMKI and AMP-activated protein kinase contributes to the regulation of WIPI-1 at the onset of autophagy. Mol Pharmacol 2011; 80:1066–75; PMID:21896713; http://dx.doi.org/10.1124/mol.111.071761
- Morgan AJ, Davis LC, Wagner SK, Lewis AM, Parrington J, Churchill GC, Galione A. Bidirectional Ca²⁺ signaling occurs between the endoplasmic reticulum and acidic organelles. J Cell Biol 2013; 200:789–805; PMID:23479744; http://dx.doi.org/10.1083/jcb.201204078
- Kilpatrick BS, Eden ER, Schapira AH, Futter CE, Patel S. Direct mobilisation of lysosomal Ca²⁺ triggers complex Ca²⁺ signals. J Cell Sci 2013; 126:60–6; PMID:23108667; http://dx.doi.org/10.1242/ jcs.118836
- Lopez-Sanjurjo CI, Tovey SC, Prole DL, Taylor CW. Lysosomes shape Ins(1,4,5)P₃-evoked Ca²⁺

signals by selectively sequestering Ca²⁺ released from the endoplasmic reticulum. J Cell Sci 2013; 126:289–300; PMID:23097044; http://dx.doi.org/ 10.1242/jcs.116103

- Lu Y, Hao BX, Graeff R, Wong CW, Wu WT, Yue J. Two pore channel 2 (TPC2) inhibits autophagosomallysosomal fusion by alkalinizing lysosomal pH. J Biol Chem 2013; 288:24247–63; PMID:23836916; http:// dx.doi.org/10.1074/jbc.M113.484253
- Medina DL, Di Paola S, Peluso I, Armani A, De Stefani D, Venditti R, Montefusco S, Scotto-Rosato A, Prezioso C, Forrester A, et al. Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nat Cell Biol 2015; 17:288–99; PMID:25720963; http://dx.doi.org/10.1038/ncb3114
- Ghislat G, Knecht E. New Ca²⁺-dependent regulators of autophagosome maturation. Commun Integr Biol 2012; 5:308–11; PMID:23060949; http://dx.doi.org/ 10.4161/cib.20076
- Zhong F, Harr MW, Bultynck G, Monaco G, Parys JB, De Smedt H, Rong YP, Molitoris JK, Lam M, Ryder C, et al. Induction of Ca²⁺-driven apoptosis in chronic lymphocytic leukemia cells by peptide-mediated disruption of Bcl-2-IP₃ receptor interaction. Blood 2011; 117:2924–34; PMID:21193695; http://dx.doi.org/ 10.1182/blood-2010-09-307405
- 41. Akl H, Monaco G, La Rovere R, Welkenhuyzen K, Kiviluoto S, Vervliet T, Molgó J, Distelhorst CW, Missiaen L, Mikoshiba K, et al. IP₃R2 levels dictate the apoptotic sensitivity of diffuse large B-cell lymphoma cells to an IP₃R-derived peptide targeting the BH4 domain of Bcl-2. Cell Death Dis 2013; 4:e632; PMID:23681227; http:// dx.doi.org/10.1038/cddis.2013.140