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Abstract: Vitamin A is an essential nutrient required throughout life. Through its various metabolites,
vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and
repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can
result in detrimental effects which can include congenital defects, immune deficiencies, proliferative
defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to
generate appropriate levels of active retinoid metabolites despite variations in the level and format,
or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review
basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-
controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to
investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing,
and chromatin capture technologies are also discussed.

Keywords: carotenoids; homeostasis; retinoids; retinoic acid receptor; metabolism; negative feedback;
nuclear hormone receptor; transcriptional regulation

1. Introduction

Intercellular signaling relies on hormones, cytokines, neurotransmitters, autacoids
and other signaling mediators which activate specific receptor proteins. Depending on the
location of their receptor, binding of a ligand to its receptor can occur on the cell surface or
inside the cell. While surface receptors activate more rapid responses involved in sensory,
immune, and neuronal signaling cascades, intracellular receptors mediate transcriptional
changes that allow the cell to adapt to extracellular and environmental inputs by changing
its metabolism, fate, or differentiation. Hydrophilic signaling molecules (peptides, amines)
associate with receptors localized at the cell surface, consisting of ligand-gated channels,
receptor tyrosine kinases, or G protein-coupled receptors (GPCRs) which trigger a wide
plethora of intracellular signaling activities. Meanwhile, lipophilic hormones (retinoids,
sterols and other lipid signaling mediators) cross the target cell’s membrane and bind
to intracellular receptors which carry out transcriptional regulation. There are, however,
exceptions with many examples of lipophilic signaling molecules (eicosanoids, sphingosine
1-phosphate) which interact primarily with surface receptors, as well as examples of
lipophilic signaling mediators that carry out signaling activities via both surface and
intracellular receptors [1].

Nuclear hormone receptors (NHRs) represent a family of ligand-dependent tran-
scription factors which share an evolutionarily conserved modular domain architecture
(reviewed in [2,3]. The N-terminal (A/B) domain is variable and disordered and includes
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a region that interacts with various coregulators. This is followed by the DNA-binding
(C) domain which contains two zinc-finger motifs which bind specific response elements
(RE) found in enhancer regions that controls target genes. A flexible hinge domain (D)
separates the DNA-binding domain from the C-terminal ligand-binding domain (E), which
as its name implies confers ligand selectivity. A second cofactor interacting region (AF-2) is
located within the ligand-binding domain. NHRs can function as monomers, homodimers,
or heterodimers. Binding of ligand to the ligand-binding domain (E) results in a conforma-
tional change which is allosterically transmitted to the DNA-binding, cofactor recruitment
regions, and can also be imparted to domains residing with the dimeric partner.

NHRs can be classified based on their signaling mechanism [3]. Unliganded type I
receptors such as estrogen and progesterone receptors are found within the cytoplasm in
association with chaperone proteins. Upon binding ligand, type I receptors translocate to
the nucleus where they associate with inverted repeat DNA motifs as homodimers. Type II
receptors include thyroid hormone and retinoic acid receptors, which form heterodimers
with the retinoid X receptor (RXR) and are found located in the nucleus bound to DNA,
and are associated and with co-repressor and histone deacetylases (HDACs) complexes
in the absence of ligand. Binding of ligand allows type II NHR to disassociate from co-
repressor complexes and bind to co-activators, which allows for transcription of target
genes. Type III and IV receptors have similar mechanism as type I NHRs but differ in
terms of their dimerization and type of DNA response elements which they recognize. A
unified nomenclature system categorizes NHR members based on phylogenetically related
families [4].

NHR ligands are involved in both short-range and long-range signaling. Some NHR
ligands such as steroids, thyroid hormones, 1α,25-dihydroxyvitamin D3, can travel far
from their source via circulation to reach target organs and carry out endocrine signaling.
For other NHR ligands the main circulating form in serum is an inactive precursor—such
NHRs are primarily involved in short-range paracrine signaling to the same cell where
the ligand is produced (autocrine), or to neighboring cells (paracrine). Circulating forms
of various lipophilic hormones or prohormones are associated with either specific or non-
specific serum binding proteins. These carrier proteins include those involved in the
transport of thyroid hormones (transthyretin, thyroxine-binding globulin), retinol (retinol
binding protein 4), steroid hormones (corticosteroid binding globulin, sex hormone-binding
globulin), and other sterols (vitamin D binding protein). In addition, lipophilic hormones
and precursors can also associate with lipoproteins or with non-specific serum proteins
(serum albumin, alpha-fetoprotein).

Both excess and deficiency of an NHR ligand can lead to disease through alterations
in the signaling pattern of the respective NHR. To maintain the appropriate level of the
active form of the signaling mediator, a biological system needs to actively adjust the rate
of synthesis, secretion, transport, and breakdown of a hormone. The capacity to maintain
internal normalcy despite changes in the external environment is a cardinal feature of
all endocrine regulators and ensures the homeostasis of a biological system [5]. Nuclear
hormone homeostasis relies largely on negative feedback regulation. In general, pertur-
bations in hormone levels trigger adaptive changes in the expression of genes coding for
transporters, binding proteins, and synthetic and catabolic enzymes involved in hormone
metabolism. Often transcription of genes involved in hormone metabolism is regulated
directly or indirectly via the same NHR as the one targeted by the specific hormone. In the
case of NHR ligands derived from dietary precursors, as in case of vitamin A, feedback
regulation also needs to account for changes in the chemical nature, level, or absorption of
dietary precursors. We will focus here on the adaptive changes that adjust the production
of the active forms of vitamin A in response to environmental factors such as stressors,
changes in diet, and interference with vitamin A metabolism by drugs, toxins, and disease.
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2. Bioactive Vitamin A Metabolites

Vitamin A is a key nutrient in the human diet and is especially important to sustain
vision, embryonic development, immunity, and tissue repair and homeostasis. Dietary
compounds with vitamin A activity encompass both preformed all-trans-retinol (referred to
here as retinol for simplicity), and retinyl esters, as well as provitamin A carotenoids, such
as β-carotene or β-cryptoxanthin. The intake of vitamin A from either preformed vitamin
A or provitamin A carotenoids is reported as retinol activity equivalent (RAE) which is
equal to 1 µg of retinol, 12 µg of β-carotene, or 24 µg of α-carotene or β-cryptoxanthin [6].
Provitamin A carotenoids can be recognized based on having at least one unmodified
ionone ring. Yet, in some species, several naturally occurring compounds with modified
β-ionone rings can also meet some vitamin A-specific visual functions, for example, vita-
min A2 (all-trans-3,4-didehydroretinol) which is derived from all-trans-retinol and used
as a visual chromophore by freshwater fish and amphibians, and vitamin A3 (all-trans-3-
hydroxy-retinal) which is derived from xanthophyll carotenoids and is used as a visual
chromophore by insects. Synthetic and natural chemical species that carry out vitamin
A biological activities are known as retinoids [7]. Many synthetic retinoids are clinically
employed in the treatment of skin disorders and cancers. In nature, all vitamin A com-
pounds are derived through the biotransformation of carotenoids synthesized by various
photosynthetic and non-photosynthetic organisms including plants, fungi, and bacteria.
Both preformed vitamin A and provitamin A carotenoid precursors represent important
sources of vitamin A in the human diet [6].

The best understood bioactive forms of vitamin A are 11-cis-retinaldehyde and all-
trans-retinoic acid. Within the visual process, the photosensitive chromophore 11-cis-
retinaldehyde is covalently coupled to GPCRs of the opsin family (represented by melanopsin
and cone and rod opsins). Every photon of light isomerizes 11-cis-retinaldehyde to all-trans-
retinaldehyde which is recycled back to 11-cis-retinaldehyde via the visual cycle [8]. The
non-visual functions of vitamin A are accomplished via all-trans-retinoic (RA), a ligand of
the retinoic acid receptors (RAR)-α, -β, and -γ (classified NR1B1-B3, respectively) [9]. RAR
isoforms form heterodimers with the retinoid X receptors (RXR)-α, -β, and -γ (NR2B1-B3,
respectively) resulting in nine possible RAR-RXR combinations, not considering additional
isoforms derived through alternate splicing. The RA isomer, 9-cis-RA, is a potent ligand of
both RAR and RXR and can activate RXR homodimers and permissive RXR heterodimers
in certain settings [10–15]. In addition to RA and 11-cis-retinal, several other vitamin A
metabolites have also been shown to exhibit biological activities. Retro-retinoids and ring-
oxidized forms of retinol and RA, such as 14-hydroxy-4,14-retro-retinol, anhydroretinol,
4-oxo-retinoids can be detected in tissues and have been shown to carry out signaling
activities in some settings [16–25].

Retinoids containing one saturated double bond, dihydro-retinoids, represent an emerg-
ing class of potential bioactive vitamin A metabolites. Some dihydro-retinoids, are derived
enzymatically via retinol saturase (RETSAT), which stereospecifically converts all-trans-
retinol to (13R)-all-trans-13,14-dihydroretinol, which then acts as a precursor to (13R)-all-
trans-13,14-dihydroretinoic acid [26–28]. Zebrafish RETSAT can also catalyze the formation
of all-trans-7,8-dihydroretinol [29]. All-trans-13,14-dihydroretinoic acid is a selective and
potent RAR ligand in vitro, but the levels and transcriptional activity of all-trans-13,14-
dihydroretinoic acid in vivo are much lower than those seen for RA [27,30,31]. In addition,
several cis-dihydro-retinoid metabolites, such as 9-cis-13,14-dihydroretinoic acid and its
4-oxo-metabolite can be detected in vivo in significant quantities and were suggested to
act as endogenous ligands of RXR [32–37]. However, genetic evidence for a role of dihy-
dro-retinoids in the activation of RXR or other NHRs is still lacking [30,38]. For instance,
Retsat-deficiency affects a multitude of biological processes involving lipid metabolism,
immune response, and oxidative stress, yet, none of these effects appear to be mediated by
its currently known all-trans-13,14-dihydroretinol product [31,39–43].

In addition to its canonical transcriptional activities via RAR-RXR, RA can also carry
out alternate modes of signaling (reviewed in [44]). RA-RAR can result in non-genomic
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effects through activation of kinase signaling pathways such as p38 mitogen-activated
protein (MAP) kinase pathway and the PI3 kinase pathway [45–47]. Other non-genomic
activities of RA and retinol have also been implicated in regulation of metabolism, cell
growth and synaptic plasticity [48–52].

In conclusion, accumulating evidence suggests that vitamin A can operate via alternate
metabolites other than 11-cis-retinaldehyde and RA. Evidence also suggests that both
known and novel bioactive retinoid metabolites can signal via alternate pathways outside
those involved in vision or in transcriptional regulation via RAR/RXR. However, our
understanding of these alternate functions of vitamin A is limited and more support is
needed to appreciate the biological relevance of such effects [53,54].

3. Transcriptional Regulation Mediated by RAR-RXR

RA plays important roles in embryonic development and adult life (reviewed in [55].
RA is required during embryogenesis for anterior-posterior patterning and organogene-
sis [55–58]. For this reason, even modest changes in the levels of RA in embryonic tissues
can lead to developmental defects and embryonic lethality [56,59,60]. In postnatal life, RA
is required to sustain the function and regeneration of tissues [61]. Changes in tissue RA lev-
els in adults are associated with impaired immunity and reproduction, and cardiovascular,
skin, and metabolic disorders [62–66].

Activation of RAR-RXR leads to extensive changes in the transcriptional landscape and
protein composition of cells [67]. Treatment of cultured cells with RA leads to upregulation
or downregulation in the expression of thousands of transcripts (referred to as differentially
expressed genes or DEGs). A significant portion of transcript changes are also mirrored
in changes in the levels of corresponding proteins [60]. In addition, studies based on
chromatin immunoprecipitation-high-throughput sequencing (ChIP-Seq) using antibodies
directed against RAR reveal that the number of DNA sequences occupied by RAR is, in fact,
much greater in number than the number of DEGs [68,69]. The number of genes confirmed
to be regulated by RA in vivo is also considerable. Such changes in gene expression
can be seen in animals exposed to RA excess, or to inhibitors of RA formation [60]. For
example, transcriptome analysis showed that the expression of thousands of genes is
altered in embryos as a result of ablation of the gene coding for the RA synthetic enzyme
RALDH2 [70]. We will briefly review the mechanism of transcriptional activation by RAR-
RXR and we refer the reader to several recent reviews for more details regarding this
topic [55,71].

Transcriptional regulation by RA via its cognate receptors RAR-RXR operates in a
similar manner as other type II NHR and is outlined in Figure 1. Briefly, the DNA binding or
C-domain of the RAR-RXR complex typically recognize a specific response element (RARE)
which consists of direct repeats (DRs) of the RGKTCA motif separated by a spacer of one,
two or five nucleotides, and which are referred to as DR1, DR2, or DR5, respectively [72].
Despite the acceptance and use of canonical DR motifs to predict NR-binding sites, NRs
often recognize DNA sequences in a promiscuous manner, including variations in the
orientation and sequence of the hexameric motif, DRs with different spacer length (DR0)
and in some cases even half sites [73,74]. RAREs are found within cis-acting regulatory
domains of genes such as enhancers, which can be found upstream, or downstream, within
introns and often at a considerable distance from target genes. An enhancer harboring a
RARE can act bidirectionally to increase transcription of a target promoter on the same
chromosome, and there are examples where the same RARE can serve multiple genes [75].
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Figure 1. Transcriptional mechanism of RAR-RXR. RAR-RXR binds RARE element found in en-
hancer regions of target genes. Binding of RA to RAR-RXR causes the dissociation of co-repressors 
such as NCOR/SMRT and associated HDAC enzymes, and the recruitment of co-activators such as 
SRC which include HAT and histone methylase enzymes. Conversely, binding RA allows for lig-
and-induced repression of certain targets by RAR. Chromatin opening allows the initiation of tran-
scription by RNA polymerases. RAR-RXR can control the expression of its own encoding genes 
(Rara, Rarb, Rarg) or direct target genes that harbor a RARE. Many retinoid-responsive genes are 
also controlled indirectly via intermediary RA-responsive transcription factors. Created with Bio-
Render.com (accessed on 16 February 2022) 

The activity of RAR-RXR is regulated by the RA ligand. In the absence of ligand, 
RAR-RXR is associated with a co-repressor complex composed of Silencing Mediator of 
Retinoic acid and Thyroid hormone receptor (SMRT)/Nuclear Receptor Corepressor 
(NCo-R) and HDACs [76–78]. RA binding to the F, or ligand binding domain of RAR leads 
to a conformational change which allows RAR-RXR to recruit coactivators protein com-
plexes such as SRC-1 (NCOA1) and histone acetylases (HAT) which mediate chromatin 
relaxation and enhance promoter activity [79]. Different cell types express a different rep-
ertoire of RAR-RXR co-regulators which impart a cell type-specific context for RAR-RXR 
activity. In addition to ligand-dependent transactivation, ligand-bound RAR-RXR can 
also induce repression through recruitment of specific repressive complexes to the en-
hancer domains of specific gene targets [80,81] reviewed in [82]. In addition, at any given 
time, the number of gene regulatory elements occupied by RAR is much greater than the 
number of genes whose expression can be altered by RA treatment, which suggests that 
there are secondary, post-receptor mechanisms which control the activity of RA-bound 
RAR. Though, the three isoforms of RAR exhibit non-overlapping gene target and tissue 
expression patterns, deficiency of only one RAR isoform (Rara−/−, Rarb−/−, and Rarg−/−) can 
be compensated to a large extent by remaining isoforms. However, deficiency of more 
than one isoform of RAR as seen in combination knockout mice Rara−/−Rarb−/−, Rara−/−Rarg−/−, 
Rarb−/−Rarg−/− or Rara−/−Rarb+/−Rarg−/− results in lethality [83,84]. Many of the defects ob-
served in RAR combination mutants recapitulate those seen in severely RA deficient mice. 

4. Vitamin A Supplementation 
Vitamin A deficiency is a significant public health concern which, despite large scale 
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Figure 1. Transcriptional mechanism of RAR-RXR. RAR-RXR binds RARE element found in enhancer
regions of target genes. Binding of RA to RAR-RXR causes the dissociation of co-repressors such
as NCOR/SMRT and associated HDAC enzymes, and the recruitment of co-activators such as
SRC which include HAT and histone methylase enzymes. Conversely, binding RA allows for
ligand-induced repression of certain targets by RAR. Chromatin opening allows the initiation of
transcription by RNA polymerases. RAR-RXR can control the expression of its own encoding
genes (Rara, Rarb, Rarg) or direct target genes that harbor a RARE. Many retinoid-responsive genes
are also controlled indirectly via intermediary RA-responsive transcription factors. Created with
BioRender.com (accessed on 16 February 2022).

The activity of RAR-RXR is regulated by the RA ligand. In the absence of ligand,
RAR-RXR is associated with a co-repressor complex composed of Silencing Mediator of
Retinoic acid and Thyroid hormone receptor (SMRT)/Nuclear Receptor Corepressor (NCo-
R) and HDACs [76–78]. RA binding to the F, or ligand binding domain of RAR leads to a
conformational change which allows RAR-RXR to recruit coactivators protein complexes
such as SRC-1 (NCOA1) and histone acetylases (HAT) which mediate chromatin relaxation
and enhance promoter activity [79]. Different cell types express a different repertoire of
RAR-RXR co-regulators which impart a cell type-specific context for RAR-RXR activity.
In addition to ligand-dependent transactivation, ligand-bound RAR-RXR can also induce
repression through recruitment of specific repressive complexes to the enhancer domains
of specific gene targets [80,81] reviewed in [82]. In addition, at any given time, the number
of gene regulatory elements occupied by RAR is much greater than the number of genes
whose expression can be altered by RA treatment, which suggests that there are secondary,
post-receptor mechanisms which control the activity of RA-bound RAR. Though, the
three isoforms of RAR exhibit non-overlapping gene target and tissue expression patterns,
deficiency of only one RAR isoform (Rara−/−, Rarb−/−, and Rarg−/−) can be compensated to
a large extent by remaining isoforms. However, deficiency of more than one isoform of RAR
as seen in combination knockout mice Rara−/−Rarb−/−, Rara−/−Rarg−/−, Rarb−/−Rarg−/−

or Rara−/−Rarb+/−Rarg−/− results in lethality [83,84]. Many of the defects observed in RAR
combination mutants recapitulate those seen in severely RA deficient mice.

4. Vitamin A Supplementation

Vitamin A deficiency is a significant public health concern which, despite large scale
supplementation campaigns, affects the lives of millions of children and women of child-
bearing age in developing countries [85]. At the same time, mitigation of vitamin A
deficiency based on supplementation of large doses of preformed vitamin A (60,000 mcg
RAE (200,000 IU) can lead to hypervitaminosis A which leads to bone resorption and
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impaired growth in children, and to hip fractures and osteoporosis in older adults [86,87].
Even a moderately increased intake of preformed vitamin A (vitamin A from supplements
> 10,000 IU/day) can be associated with increased incidence of birth defects related to
impaired development of neural crest derived structures (neurocristopathies) [88]. This
increased incidence is particularly concerning given that current tolerable upper intake
levels for pregnant women are 9333–10,000 IU/day (recommended dietary allowance, RDA
for pregnant women is 2500–2567 IU retinol/day).

Even as β-carotene is a much safer form of vitamin A supplementation compared
to preformed retinol from the point of view teratogenicity, high β-carotene intake can
negatively interact with environmental stressors and comorbidities to result in an increased
risk of disease [89,90]. On the other hand, all retinoid-based therapies are known to carry
a high risk of toxicity and teratogenicity. These studies and clinical observations, argue
that an effective and safe retinoid therapy and vitamin A supplementation program should
ensure proper vitamin A-supported functions, but do so in a manner that safeguards against
the deleterious effects of retinoid excess. A better understanding of the regulatory feedback
processes that govern the metabolism of vitamin A is important for the development of
safer supplementation programs.

The pathways responsible for vitamin A uptake and delivery, and for the synthesis and
breakdown of RA have been the subject of several excellent recent reviews [55,91–95]. In
the current review, we will focus primarily on the mechanisms through which RA controls
its own metabolism.

5. Vitamin A Absorption

Uptake of vitamin A from the intestinal lumen conforms to the general mechanism of
lipid absorption and is outlined in Figure 2. Bile salts solubilize lipids and aid incorporation
of retinyl esters and carotenoids into mixed micelles which pass through the unstirred layer
to reach the intestinal brush border membrane. Diseases associated with impaired bile
synthesis or secretion can lead to vitamin A deficiency [96]. Pancreatic lipases hydrolyze
retinyl esters to retinol. Bile acid synthesis and secretion are both increased to promote
vitamin A uptake in mice maintained on a vitamin A deficient (VAD) diet—conversely in
vitamin A sufficiency bile acid synthesis is reduced [97].

Uptake of retinol from the intestinal lumen does not appear to require a specific
receptor but it does exploit mass action kinetics through the esterification of retinol within
brush border cells. The most important enzyme involved in retinyl ester synthesis in the
intestine as well as other tissues is lecithin:retinol acyltransferase (LRAT) which transfers
fatty acids obtained from the sn-1 position of various phospholipids to retinol [98,99].
Several other enzymes with acyl-CoA dependent transferase (ARAT) activity have also
been shown to carry out the esterification of retinol, however, but their activity appears
to play a role primarily in mammary glands and skin [100]. Genetic ablation studies
of putative ARAT enzymes have failed to show profound or specific effects on retinol
esterification [101–104]. In addition to LRAT, enterocytes also express cellular retinol
binding protein 2 (CRBP2 encoded by RBP2) which is required for delivery of retinol to
LRAT for esterification (reviewed in [94,105]). Maternal Rbp2 loss-of-function in mice results
in fetal mortality when dams are fed diets containing more moderate vitamin A levels (4 IU
of retinyl palmitate/g) [106]. Retinyl esters synthesized in enterocytes are packaged in
chylomicrons assembled through the activity of microsomal triglyceride transfer protein
(MTP) and secreted into the lymphatic circulation [104]. In peripheral tissues, chylomicrons
undergo remodeling and retinyl esters are hydrolyzed by lipoprotein lipase (LPL) and
taken up by target organs, such as eye, adipose tissue. A majority of retinyl esters remain
associated with chylomicron remnants and are cleared by the liver.
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Figure 2. The absorption and delivery of vitamin A. Vitamin A is absorbed from the lumen of the
small intestine following hydrolysis of retinyl esters (RE) and re-esterification of retinol via cellular
retinol binding protein 2 (CRBP2) and lecithin:retinol acyltransferase (LRAT). REs are secreted by
enterocytes as part of chylomicrons and circulate via the lymphatic system (green) and enter the
circulation (dashed red). Chylomicrons are hydrolyzed via lipoprotein lipase (LPL) to deliver retinol
to target tissues such as the eye, adipose tissue and placenta and return to be cleared by the liver as
remnants. Liver stores retinol as RE in HSC through the action of LRAT. When needed hepatic stellate
cells (HSC) hydrolyze RE and secrete retinol bound to retinol binding protein 4 (RBP4) in association
with transthyretin (TTR) in the circulation. RBP4 can both deliver as well as take up retinol from
tissues that express its receptor stimulated by retinoic acid 6 (STRA6). RBP4 is reabsorbed from the
proximal tubule of the kidney via lipoprotein receptor-related protein 2 (LRP-2 or megalin)–cubilin
complex. A hepatic RBP4 receptor RBPR2 may also play a role in the uptake of RBP4 by the liver.
During fasting the liver can also secrete RE in conjunction with VLDL as an alternate means to
mobilize retinol (not shown). Created with BioRender.com (accessed on 16 February 2022).

Esterification of retinol within enterocytes is responsive to vitamin A status. The
expression of Rbp2 and Lrat are both induced by RA. Together these activities sequester
retinol and retinyl esters and reduce synthesis of RA [94]. Though, no RAREs have so far
been conclusively demonstrated within the promoter of Lrat or Rbp2, several DNA regions
responsible for the induction of Lrat by RA have been identified [107]. Induction of LRAT
and CRBP2 by RA most likely occurs indirectly [107–109]. Inclusion of RA in vitamin A
supplementation approaches (VA combined with retinoic acid (VARA) elegantly exploits
the induction of LRAT by RA to increase the intestinal absorption and retention of retinol
as retinyl esters in extrahepatic tissues [110,111].

Carotenoid uptake is facilitated by several transporters shared with other lipid-soluble
vitamins and sterols such as scavenger receptor class B type 1 (SR-B1, encoded by Scarb1)
and CD36 (refs. [112–119] reviewed in [95]). A large fraction of β-carotene is cleaved
within brush border cells through the activity of beta-carotene-dioxygenase 1 (BCO1) to
afford retinaldehyde which is then reduced to retinol via the action of retinal reductases
enzymes which are members of the microsomal short-chain dehydrogenase reductase (SDR)
family. B-carotene-derived retinol can be esterified via LRAT and secreted by enterocytes in
conjunction with chylomicrons. Provitamin A carotenoids that retain only one unmodified
β-ionone group can also be converted to retinol via beta-carotene-dioxygenase 2 (BCO2)
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to produce apo-10′-carotenals, which are subsequently converted to retinaldehyde by
BCO1 [120–124]. The fraction of β-carotene which remains uncleaved in enterocytes is
incorporated into nascent chylomicrons which are secreted into the lymphatic circulation
to reach peripheral organs and can be cleared by the liver as remnants. Carotenoids can
also be found in association with other lipoprotein fractions (apoB100 and HDL) through
hepatic secretion and/or exchange [125,126].

The absorption of carotenoids is influenced by genetic polymorphisms that affect
genes involved in β-carotene uptake and by the variable nature of the food matrix com-
ponents [127]. These factors result in large variations in an individual’s ability to absorb
and convert provitamin A carotenoids to vitamin A. Despite these variations, the level of
circulating serum retinol is relatively stable. This homeostatic effect is even more evident in
the case of diets relying largely on provitamin A carotenoids to meet vitamin A needs. One
factor that contributes to the capacity to control the uptake and conversion of provitamin A
carotenoids has to do with a negative regulatory pathway which operates in the intestinal
epithelium via the intestine-specific homeobox transcription factor (ISX) [95].

Approximately 70% of the β-carotene absorbed by brush border cells is cleaved via
BCO1 to retinaldehyde which contributes to the intracellular pool of retinol. Retinol is
oxidized via yet-to-be identified SDR enzymes to retinaldehyde, and subsequently oxidized
by retinaldehyde reductases (RALDH encoded by Aldh1a) enzymes to produce RA. Within
the enterocyte RA activates RAR-RXR to induce the expression of ISX via an RARE located
within its promoter [128,129]. ISX represses the expression of both Srb1 and Bco1 and
therefore restricts the uptake and conversion of β-carotene [115,128,130,131]. Since the
levels of RA within the enterocyte are proportional to the levels of available retinol, the
ISX-mediated feedback mechanism prevents formation of unnecessary retinol in states of
vitamin A sufficiency. As a result, Isx-deficient mice have no ability to control β-carotene
uptake and conversion [115,128,130,131]. A similar feedback mechanism operates at the
fetal-maternal interface where high dietary retinol restricts β-carotene uptake by fetal
tissues [125]. The amount of retinol available for RA synthesis within enterocytes is
controlled by LRAT. Ablation of Lrat in mice leads to exaggerated feedback due to high
levels of available retinol [132]. It is important to note, that a negative feedback mechanism
does not appear to operate in the case of the intestinal uptake of dietary preformed vitamin
A (retinol, retinyl esters) which are incidentally are associated with a much higher risk of
teratogenicity and toxicity compared to provitamin A carotenoids.

6. Vitamin A Storage

Retinyl esters associated with chylomicrons are taken up by the parenchymal liver cells
and hydrolyzed to retinol which becomes associated with a cellular retinol binding protein
1 (CRBP1) [133–136]. CRBP1 plays important roles in fine-tuning vitamin A metabolism
(reviewed in [94]). First, CRBP1 protects retinol from degradation and spurious reactions
and ensures delivery of retinol to retinoid enzymes for oxidation or esterification. Secondly,
there is evidence that CRBP1 controls the rate of retinyl ester utilization. A high ratio of
apo- to holo-CRBP1 acts to inhibit LRAT and stimulate retinyl ester hydrolase activity.
Conversely holo-RBP1 induces esterification and oxidation of retinol (reviewed in [94]).
Crbp2 loss-of-function in mice only produced obvious phenotypes of retinol deficiency
when mice are not provided a vitamin A sufficient diet [106], whereas Crbp1 knockout mice
are normal and viable [137], but have reduced capacity to synthesize RA [51,138].

Hepatocytes transfer retinol to a specialized cell population called hepatic stellate cells
(HSC) [133]. In HSCs, retinol is esterified via LRAT to produce retinyl esters which are
incorporated in lipid droplets [139]. The mechanism of retinol transfer from hepatocytes to
HSCs is not clear. Similar retinyl esters storage particles as found in HSCs are also seen in
retinal pigmented epithelium (RPE), lung cells and pancreatic stellate cells [140–143]. Adi-
pose tissue, lung, kidney, and RPE also store a fraction of vitamin A. There is also evidence
for β-carotene being stored in the liver in HSCs, and that the converting enzyme BCO1 is
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expressed in both HSCs and parenchymal hepatic cells [144–146]. Therefore, provitamin A
precursors represent another potential hepatic storage mechanism for vitamin A.

Hepatic retinol stores can be mobilized upon increased demand. As needed, retinyl
esters of HSCs are hydrolyzed via several hepatic lipases and transferred to hepato-
cytes [147–152]. Hepatocytes secrete retinol bound to retinol binding protein (RBP, encoded
by RBP4), and associated with transthyretin (TTR) [153–157]. There is evidence that retinyl
esters can form in adipose tissue independently of LRAT, perhaps via an ARAT enzyme,
and that these stores can also be mobilized in times of deficiency [158]. Similarly, RBP4
can also be expressed in other tissues such as adipose tissue, but RBP4-derived from non-
hepatic sites does not play a significant role in systemic vitamin A metabolism [159,160].
However, ectopic overexpression of RBP4 in muscle tissues can rescue the delivery of
vitamin A to eye tissues when endogenous RBP4 expression is lacking [161,162].

Storage of retinol is under strict feedback regulation by RA. Expression of liver Lrat
and Rbp1 is induced by RA, thus acting to direct retinol flux toward storage in times of
vitamin A sufficiency [108,163]. Not surprisingly, vitamin A metabolism is also responsive
to regulators of liver lipid metabolism. Mechanistically, farnesoid X receptor (FXR) was
shown to influence LRAT expression and the levels of hepatic retinyl esters [96,164]. Mean-
while, RAR/RXR signaling promotes the expression of apolipoprotein C-III, represses the
expression of synthetic enzyme CYP7A1, and influences the expression of various bile acid
transporters [97,165,166] reviewed in [167]. The ramifications of the reciprocal influence of
bile and vitamin A metabolism are also relevant for understanding the role of vitamin A in
the pathological mechanisms of liver disease such as NAFLD and steatohepatitis. Retinoid
stores disappear as HSC become activated during liver disease. Activated HSC also con-
tribute to liver pathology by transdifferentiating to myofibroblasts [168,169]. However,
despite the correlation of HSC activation and loss of HSC retinyl esters stores, the causal
relationship between the two events is not clear (reviewed in [170]).

Even though the visual system recycles spent chromophore, it still requires a constant
supply of retinol precursor to maintain vision; if not, lack of supply of retinol can lead to
night blindness. Though, stimulated by retinoic acid 6 (STRA6, see below) and LRAT both
respond to RA, it is not clear if these genes are RA responsive in RPE cells. The expression
of visual cycle enzymes including LRAT, BCO1, RDH10, RDH11 and RPE65 increases with
age. There is also evidence that Lrat expression in the RPE is driven by retinoid by-products
of the visual cycle (A2E and all-trans-retinal) which activate RAR most likely via conversion
to RA [171]. The activity of LRAT in the eye is not only required for storing vitamin A but
also to form the precursor for the enzyme RPE65, the isomerohydrolase that regenerates
11-cis-retinaldehyde. The induction of Lrat by RAR via agonistic activity of RA derived from
visual cycle byproducts is not surprising, but this positive feedback could be detrimental
considering the pathology of age-related macular degeneration. An overactive visual cycle
can lead to accumulation of cytotoxic visual cycle metabolites and result in photoreceptor
death [172].

7. Vitamin A Delivery to Target Tissues

Retinol-bound RBP4 interacts with specific receptors expressed by target tissues.
STRA6 is a high affinity holo-RBP4 receptor expressed by many blood—tissue barrier sites
such as retinal pigmented cells, placenta, yolk sac, choroid plexus, and Sertoli cells [173,174].
Interaction of RBP4 with STRA6 allows for the bidirectional transfer of retinol into and out
of cells [174–179]. Liver and intestine cells do not express Stra6, but express another RBP4
receptor (RBPR2) [180]. RBPR2 is proposed to allow for the return excess of retinol via RBP4
to the liver for storage or clearance. Genetic studies suggest that RPBR2 is also required
for photoreceptor morphogenesis in zebrafish [181]. A mouse deficient in Rbpr2 (also
known as Stra6-like, Stra6l) has increased corneal opacity and hematopoietic defects [182].
Interestingly, the primate homologue of RBPR2 is encoded by two separate genes which
translate into two separate proteins with correspond to the N- and C-terminal domains of
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mouse RBPR2 [180]. It remains to be determined if primate RBPR2 proteins function as
receptors for RBP4.

The TTR-holoRBP4 complex is composed of a TTR tetramer and RBP4 found in 1:1
stoichiometry in circulation where RBP4 levels are limiting [183]. The TTR-RBP4 complex
is larger than the glomerular filtration cutoff, however, in the absence of TTR, the 21 kDa
RBP4 protein is easily filtered. As a result, TTR-deficiency results in a drastic reduction
(from 6 h to 0.5 h) in the half-life of RBP4 in serum [184]. A similar effect is induced
by fenretinide (N-(4-hydroxyphenyl) retinamide) and other agents which disrupts the
association of TTR and RBP4 [185]. Even under normal circumstances a small fraction of
RBP4 becomes free of TTR and is filtered by the kidney. There is evidence that filtered RBP4
can be reabsorbed from the proximal tubule via endocytosis carried out by low density
lipoprotein receptor-related protein 2 (LRP-2, megalin)–cubilin complex [186–188].

In addition to protein-mediated transport, a considerable fraction of vitamin A can be
transported by lipoproteins which deliver retinoids to many target tissues including the
placenta. The importance of lipoprotein-mediated RE transport is evident in both patients
and mice deficient in RBP4 (refs. [189–191] reviewed in [192]). LPL controls the binding and
hydrolysis of apo-CII bearing lipoproteins in peripheral tissues. These fractions include
intestinal-derived chylomicrons postprandially, and hepatic-derived VLDL during fasting.
Maternal–fetal transport of retinoids relies on RBP4 (both maternal and fetal-derived) as
well as lipoprotein-mediated pathways, both of which are responsive to vitamin A status
(refs. [193–195] reviewed in [196]).

The transport and delivery of vitamin A to target tissues is controlled by feed-
back regulation. Both Rbp4 expression and RBP4 protein secretion respond to vitamin
A status [155,197–201]. Meanwhile, Stra6 is induced by RA and is a direct target of
RAR [173,174,202,203]. Recent structural and biochemical evidence suggests that the intra-
cellular domain of STRA6 associates with the calcium-binding protein calmodulin. This
association is proposed to allow intracellular calcium to control the direction of retinol
transfer via STRA6 [204]. It is not clear whether regulation of STRA6 by calcium is part of a
feedback mechanism that controls the uptake or export of retinol in response to the retinoid
needs of the target cells. In contrast to Stra6, expression of Rbpr2 is negatively correlated
with levels of hepatic retinoids, serum retinol and holo-RBP4 and RA [180]. The expression
of Lrp-2 is itself also induced by RA [205].

8. Conversion of Retinol to RA

Retinol is converted to RA via sequential oxidations as depicted in Figure 3. Retinol is
oxidized to retinaldehyde by microsomal enzymes which belong to the SDR family, and
which couple retinol oxidation or retinaldehyde reduction, with the reduction of NAD or
oxidation of NADPH cofactor, respectively. The SDR family is one of the largest known
enzyme families and its members are involved in the transformation of a wide range of
substrates including various lipids, eicosanoids and steroids.

Interconversion of retinol and retinaldehyde is a critical step in the formation of RA
and in the formation and recycling of 11-cis-retinaldehyde, as part of the visual cycle. As a
result, there has been considerable effort made to identify the enzymes responsible for this
important retinoid biotransformation. Biochemical approaches, involving heterologous
expression and retinoid oxidation/reduction assays using candidate enzymes, have impli-
cated a significant number of SDR enzymes in the oxidation/reduction of retinol and retinal,
respectively (refs. [206–211] reviewed in [61,92]). However, genetic loss-of-function studies
support a role in the retinaldehyde–retinol interconversion for a more limited number of
SDRs (reviewed in [92]). Other enzymes with retinaldehyde reductase activity include
several aldo-keto reductase (AKR) enzymes and cytosolic alcohol dehydrogenases (ADHs)
belonging to the medium-chain alcohol dehydrogenase family, but their contribution to
vitamin A metabolism under physiological conditions is still not clear [212,213].
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Loss-of-function approaches have led to the identification of the two primary SDRs
responsible for the interconversion retinol to retinaldehyde during embryonic develop-
ment. Retinol dehydrogenase 10 (RDH10) is an NAD-dependent retinol oxidase whose
deletion results in embryonic lethality and a deficiency of RA [214]. Conversely, dehydroge-
nase/reductase (SDR family) member 3 (DHRS3) carries out the reduction of retinaldehyde
to retinol using NADPH [59,215]. Dhrs3-ablation also results in embryonic lethality but in
this case the lethality results from excess RA. DHRS3 and RDH10 carry out opposite activi-
ties in the conversion of retinol to retinaldehyde based on the different reduced/oxidized
ratio of their preferred dinucleotide cofactor. The developmental consequences of Rdh10
and Dhrs3 ablation involve skeletal, and cardiovascular defects [60,214,216–221]. We refer
the reader to Shannon et al. for a summary of the developmental consequences of Rdh10-
and Dhrs3-ablation in mice [56]. The embryonic lethality caused by Rdh10- and Dhrs3-
deletion can be rescued by manipulations of the retinoid content of the mother’s diet, which
demonstrates that the phenotypes observed are related to the known activities of the two
enzymes [60,222]. The roles of RDH10 and DHRS3 are non-redundant during development
and are conserved in other vertebrate species examined ([223,224]. Both RDH10 and DHRS3
are expressed in a wide variety of tissues in postnatal life, however, the contribution of
RDH10 and DHRS3 to vitamin A homeostasis outside development is not known. There
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is evidence for a role of RDH10 in postnatal vitamin A metabolism. For example, RDH10
was shown to be required for spermatogenesis and hemizygous Rdh10+/− have slightly
decreased levels of RA and increased adiposity [64,66]. Genetic studies have implicated
other SDR enzymes with retinoid oxidoreductase activity in vitamin A metabolism in adult
tissue such as skin (RDHE2 and RDHE2S), liver (RDH11), testes (RDH11), fat (RDH1), and
in the visual system (RDH5, RDH8 and RDH12) [92,225–228].

The conversion of retinol to retinaldehyde is subject to control by RA. The expression
of Dhrs3 is consistently upregulated in models of RA excess [229,230]. Though data sug-
gests that Dhrs3 is a direct target of RAR, no functional RARE has so far been demonstrated.
Meanwhile, the expression of Rdh10 is suppressed in the presence of RA excess [59]. In ad-
dition, RDH10 and DHRS3 also influence each other at protein level. A significant number
of SDRs are present as multimers, mostly homodimers and homotetramers [231]. DHRS3
and RDH10 proteins share 40% sequence identity which raises the possibility that they also
interact with one another. Indeed, studies by Adams et al. show that RDH10 and DHRS3
not only form homo-oligomers but also DHRS3-RDH10 hetero-oligomers [215,232,233].
These interactions were observed in the case of RDH10 and DHRS3 overexpressed in cells,
but there is evidence that this association persists in the case of endogenous proteins. The
model emerging from these studies suggests that association of RDH10 with DHR3 forms a
bifunctional retinoid oxidoreductive complex (ROC), which through reciprocal interactions
stabilizes and increases the activity of component proteins. By catalyzing antagonistic
reactions, the ROC ensures RA homeostasis despite fluctuations in the starting level of
retinol precursor. The ROC complex is composed of type I integral ER-resident membrane
proteins oriented towards the cytoplasm [233]. Structural modeling studies suggest that
the membrane dynamics may influence the heteromeric composition of the ROC; however,
more work is needed to untangle the mechanisms by which ROC controls the formation of
RA [233].

The second step in the conversion of retinol to RA is the irreversible oxidation of
retinaldehyde to RA which is mediated by cytosolic retinaldehyde dehydrogenase 1, 2 or 3
(RALDH1-3 encoded by Aldh1a1-3) enzymes. Of the three, RALDH2 is critical throughout
development and is responsible for RA synthetic capacity of some adult tissues such as
hematopoietic and reproductive tissues [55,234–236]. RALDH1 and RALDH3 have more
restricted expression pattern and are important for RA synthesis in tissues such as bone,
fat, and developing eye and nasal regions [65,237–242]. High levels of RA lead to reduced
expression of Raldh1 and 2 [59]. There is evidence that suppression of the expression of
Raldh1 by RA is mediated by direct RAR binding and through interactions with GADD153-
C/EBP-beta [243,244]. In addition to RALDH enzymes, there is evidence that the molybdo-
flavoenzyme aldehyde oxidase (AOX) contributes to RA synthesis in vivo [245,246]. The
cytochrome P450 enzyme CYP1B1 can also contribute to the formation of RA [247–249].
However, both AOX and CYP1B1 can oxidize a wider range of endogenous and exogenous
substrates in addition to retinoids.

9. Cellular Fate of RA and RA Breakdown

Newly formed RA is available for signaling via RAR within the same cell (cell au-
tonomously) or it can be secreted to signal to neighboring cells. Cell autonomous RA-
signaling can contribute to the feedback control mechanism that regulates vitamin A
metabolism. Paracrine RA-signaling from a RA-source cell to an RA-responder cell is
important for the morphogen functions of RA. RA patterns development through both
gradients of decreasing RA as well as through fields of RAR-signaling. RA gradients require
not only a source of RA but also a catabolic sink. On the other hand, fields of RAR signaling
need to be broken up by zones where RAR-signaling is extinguished [250–252]. Though
extracellular RA was shown to bind some non-specific plasma proteins [200], very little is
known regarding how RA moves from cell to cell and whether the intercellular movement
of RA is regulated by or require any cellular factors. Within cells, RA is bound to high
affinity cellular RA binding proteins 1 and 2 (CRABP1, 2) which play an important role in
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channeling RA towards its alternate fates of signaling or degradation (refs. [91,253–255]
reviewed in [94,256]). Both Crabp genes respond to RA either directly (Crabp2) or indirectly
(Crabp1) [108,257].

RA binding to RAR leads to RAR-RXR receptor activation. Interestingly, all three genes
coding for RA receptors are induced by RA creating a feedforward loop which, in theory,
could serve to coordinate the timing of ligand synthesis with RAR expression [72,258–263].
The termination of RAR-signaling is a poorly understood event, however, there is evi-
dence that RA binding induces ubiquitin-mediated degradation of RAR via the protea-
some [264–267].

RA oxidation involves hydroxylation of the C4 or C18 positions of the ionone ring
and is catalyzed by cytochrome p450 enzymes of the CYP26 family, namely CYP26A1,
B1, or C1. The expression of Cyp26a1-c1 displays developmental and tissue specificity,
while the CYP26 enzymes exhibit distinct preference with regard to their retinoid sub-
strate [91,268,269]. For example, CYP26A1 and B1 are responsible for the initial oxidation
to produce 4-hydroxy-RA while CYP26C1 is more efficient in clearing 4-oxo-RA [255].
Studies support transcriptional activities for ring oxidized retinoids in certain adult tissues
such as skin, and in Xenopus development [23,270,271]. However, oxidized-RA metabolites
do not seem to contribute to the developmental functions of vitamin A in mouse [53]. There
is evidence that other families of P450 enzymes including CYP2 and CYP3 families could
also contribute to RA oxidation in some settings [272–274].

A mitochondrial adrenodoxin-coupled P450 enzyme, CYP27C1 is involved in the
desaturation of the 3–4 double bond of the ionone ring of retinoids. This activity leads to
formation of 3,4-didehydroretinoids [275]. Such 3,4-didehydroretinoids include vitamin
A2 (all-trans-3,4-didehydroretinol) which is found in human skin [276], and is also an
important visual chromophore of freshwater fish and amphibians [277,278].

Genetic and pharmacologic approaches confirm that the CYP26 family enzymes act
as the primary contributor to RA degradation in vivo [279–283]. To guard against ex-
cess RA, the expression of Cyp26a1 is induced by RA which serves to restore appropriate
RA levels. This is part of an important regulatory negative feedback loop where RA in-
duces its own degradation [284–289]. HNF4A cooperates with RAR in the regulation of
Cyp26a1 [284,290–292]. However, developmentally, CYP26 enzymes play even more com-
plex roles in RA metabolism. In conjunction with their task of monitoring RA metabolism,
f CYP26 enzymes play a role in establishing RA gradients as well as RA-free zones which
are required for RA-mediated developmental processes [250,252].

Phase II metabolism and clearance of RA involves its conjugation via various glu-
curonosyltransferases which impart oxidized-RA metabolites with a higher aqueous sol-
ubility [293–296]. In addition to glucuronides of RA there is evidence that retinol can
also be glucuronidated [297]. Microbiome expressed glucuronidases play an important
role in the reactivation and enterohepatic recirculation of conjugated drugs and hormones
including isotretinoin (13-cis-RA) [298]; however, it is not clear if the microbiome plays any
role in the reactivation of retinoyl glucuronide (RAG) derived from endogenous RA under
physiological circumstances.

10. Homeostasis in Vitamin A Metabolism

Vitamin A metabolism can be affected by both genetic and environmental influences.
Despite the wide range in dietary vitamin levels and format of vitamin A precursors (pre-
formed retinol, retinyl esters and provitamin A carotenoids) organisms are ordinarily able
to achieve a relatively stable level of serum retinol. A stable level of precursor allows target
cells to derive visual chromophore, and a context-appropriate level of RA to sustain its tran-
scriptional functions. Analysis of the effect of RA treatment or VAD diet on the expression
of various retinoid genes provides a picture of adaptive responses which preserve vitamin
A homeostasis (summarized in Table 1 and depicted in Figure 3), but the evidence is still
incomplete and only available for specific tissues. Additionally, listed responses describe
transcript level, and will need to be confirmed at protein or protein activity level. Despite
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these limitations enough is known to form some preliminary conclusions. First, adaptations
to excess RA involve most retinoid biotransformations and overlap with pathways that
play a role in shaping the morphogenetic roles of RA involving:

1. upregulation of genes responsible for sequestering RA precursors such as Crbp1
and Lrat.

2. upregulation of genes responsible for opposing RA formation (Dhrs3) and the degra-
dation of RA (Cyp26a1)

3. downregulation of genes involved in the synthesis of RA (Rdh10, Raldh2)
4. downregulation of genes involved in the uptake of carotenoids (Srb1) and conversion

of β-carotene to retinaldehyde (Bco1)

The second observation is more challenging. Though retinoid genes seem to respond
to a VAD diet, a clear pattern is not apparent, and, thus far, there is no evidence of an
orchestrated response to augment vitamin A absorption or decrease its catabolism in a state
of VAD. This indeterminate response could simply be a limitation imposed by the currently
available data. Hopefully, more thorough analyses comparing the expression of retinoid
genes from different tissues of VAD animals could shed more light on how an organism
responds to VAD to promote absorption and/or mobilization of retinol from stores for
utilization by target tissues.

Even more challenging is the interpretation of the functional significance of the reg-
ulation of RBP4 receptors by RA. Evidently, Stra6 is upregulated by RA. Given its role in
bidirectional transport of retinol, it is tempting to speculate that upregulation of STRA6
by RA serves to counter systemic retinoid excess. Thereby induction of Stra6 in target
tissues would cause target tissues to take up excess retinol from serum. Could this response
potentially cause cytotoxic effects in target tissues? Alternatively, it is possible that STRA6
only responds to local excess of cellular retinol. In this case local upregulation of Stra6
causes the export of retinol from cells to serum apo-RBP4 to mitigate cellular excess. Equally
puzzling is the observed negative correlation between Rbpr2 expression and retinoid status.
Downregulation of Rbpr2 in response to RA is not coherent with the logic that liver would
serve to absorb and clear excess retinol to avoid toxicity. Clearly, more work is needed
to understand the biological impact and meaning of the regulation of RBP4 receptors by
RA. Given that the RARE responsible for the regulation of the expression of Stra6 has now
been identified, there is an opportunity to interrogate the functional significance of the
regulation of Stra6 by RA via genetic approaches.

Many retinoid genes have been shown to be upregulated or downregulated in re-
sponse to RA, but we seldomly know if the regulation by RAR is direct or indirect. This
may seem to be a trivial aspect, but it has important implications for the dynamics and
impact of RA feedback regulation. Genes that are indirectly regulated by RAR require an
intermediate transcription factor which itself is directly or indirectly regulated by RAR
(Figure 1). ISX is such an RA-induced transcription factor, which orchestrates and inte-
grated network in provitamin A carotenoid metabolism by suppressing the expression of
Bco1 and Srb1 [95]. Indeed, genetic ablation of ISX leads to dramatic increases in provitamin
A carotenoid absorption and conversion. Even so, SR-B1 is also involved in the uptake
of other vitamins and lipids like lutein, tocopherol and vitamin K [299–301], so, in theory,
there is potential that high levels of dietary preformed vitamin A could cause decreased
uptake of unrelated lipids.

For many genes known to be directly regulated by RAR (based on transcription dy-
namics, effect of translation inhibitors) a functional RARE has yet to be identified. In silico
analysis of the genomic sequence of RA-responsive genes have uncovered sequences with
similarity to DR response elements which are typically bound by RAR [302]. However, pre-
dictions based on sequence alone often fail to identify with any degree of certainty a RARE
involved in the regulation of a specific gene. Even having identified an RAR-bound site in
the vicinity of an RA-controlled gene does not guarantee that the particular RARE is re-
sponsible for the effects of RA on the expression of the neighboring gene. At the individual
gene level, the functional relevance of a response element can be investigated via in vitro
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DNA-binding, mutagenesis, and by examining the activity of reporters driven by minimal
promoters incorporating the putative RAR binding region. Genome editing/mutagenesis
of the putative RARE can provide conclusive proof that the identified element functions as
a genuine RARE in the native chromatin context [81,203,303]. Genome-wide approaches
based on mapping chromatin interactions and enhancers could serve to bridge this gap in
the future [304,305]. In such an example, an approach based on chromosome conforma-
tion capture combined with sequencing (3C-Seq) was used to analyze the enhancer-gene
relationships that shape the RXR-mediated regulation of macrophages [306]. Studies of the
regulation of RA metabolism usually tackle one factor at a time which makes it difficult to
have a coherent picture of this broad regulatory network. Studies by Parihar et al. have
examined the dynamic transcriptomics of Xenopus embryos exposed to RA or to inhibitors
of RA synthesis [307]. The study elegantly illustrated the robustness of thenetwork that
regulates retinoid homeostasis, and provides evidence that the equilibrium that keeps RA
within a narrow range of normal is derived from a dynamic correcting oscillatory behavior.

The regulatory mechanisms that govern vitamin A metabolism usually demonstrate
robustness and resilience but can sometimes be hyperactive evoking maladaptive responses
seen in cases of hormone withdrawal. Several studies of the immediate and late effects
of RA on mouse fetal development have painted a fascinatingpicture of the capacity of
the vitamin A regulatory feedback mechanism. For example, pharmacological doses of
RA result at first in vast excess of RA in target tissues, but at later timepoints the same RA
insult causes a paradoxical deficiency [308]. Moreover, some of the developmental defects
elicited by RA treatment were prevented by a subsequent dose of RA which mitigated the
RA deficiency that follows initial excess. Overcompensation was also observed following
genetic manipulation of RA metabolic enzymes and RAR receptors [309–311]. Hundreds
of studies of RA toxicity and teratogenicity have been conducted over the years on the
premise that the effects observed are a result of RA excess, when in fact, some of the effects
of RA treatment may very well reflect the ensuing deficiency of endogenous RA.

Table 1. Regulation of retinoid genes in response to RA Treatment and VAD Diet. Only retinoid genes
currently known to respond to RA are listed.

Role in Vitamin A
Metabolism Gene Name Acronym Effect of VAD on Gene

Expression Effect of RA on Gene Expression

Signaling

Retinoic acid
receptors

RARα
RARβ
RARγ

Downregulated in some
tissues of VAD rats and

quail [312,313]

Directly upregulated in response to
RA via conserved RARE

[72,258–262]

Retinoid X
receptors

RXRα
RXRβ
RXRγ

Downregulated of Rxra
and Rxrb in hearts of VAD

rats, corrected with VA
supplementation. [314]

Not clear if Rxr genes are
RAR-targets

Conversion of
provitamin A

carotenoids to retinol

B-carotene-15,15-
dioxygenase 1 BCO1 Upregulated in VAD

mice [130].

Expression is suppressed by RA via
RAR-mediated induction of the

transcription factor ISX
[115,128–132]

Storage Lecithin retinal
acyltransferase LRAT

Protein and transcript
levels of LRAT decrease
in the many tissues of

VAD animals [315–319].
There is evidence that the
magnitude and direction

of response is
tissue-specific.

Indirectly upregulated in response to
RA, suggested by fact that

upregulation pf LRAT and LRAT
activity by RA is blocked by the

translation inhibitor, cycloheximide
[163,316,320,321]. No functional RARE

sites have been identified.
A genomic region of the Lrat promoter
confers RA-inducibility and contains
binding sites for SP1 [109] and GATA

transcription factors [107]
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Table 1. Cont.

Role in Vitamin A
Metabolism Gene Name Acronym Effect of VAD on

Gene Expression Effect of RA on Gene Expression

Retinol Binding
Proteins

Cellular
retinol-binding

proteins

CRBP1
Decreased expression

of Rbp1 in VAD
rats [322–324]

Upregulated by RAR via a direct
mechanism unaffected by

cycloheximide and including a
functional RARE [108,325,326]

CRBP2
Upregulated in the

intestine of VAD
rats [324]

Not clear if regulated in response to
RA. Promoter appears to harbor a

poorly conserved response element
for RXR or HNF-4 [327,328] and
whose physiological relevance is

currently, unclear [105,329].

Retinol binding
protein RBP4

VAD causes reduced
secretion of RBP4 from
liver cells [155,200,201]

Expression induced in response to
RA [197,198] but has not been

clearly demonstrated to be via direct
mechanism or to harbor a

functional RARE.

RBP4 Receptors

Stimulated by
retinoic acid 6 STRA6

VAD causes expansion
of domains of

expression of STRA6 in
quail embryos [330].
Alternatively spliced
Stra6 mouse isoforms

are differentially
regulated by
VAD [203].

Directly induced by RA via a
functional RARE [173,174,202,203]

Retinol binding
protein receptor 2 RBPR2

Expression is inversely
correlated with liver
retinol stores [180].

Expression is downregulated by RA
or retinol treatment [180].

RA synthetic enzymes

Retinol
dehydrogenase 10 RDH10

Expression of Rdh10 is
upregulated in genetic

models of
RA-deficiency [217]

Rdh10 is negatively regulated by RA
[224,331]. B-carotene

supplementation leads to
downregulation of Rdh10 [332].

Rdh10 is downregulated in genetic
models of RA-excess [59]

Retinaldehyde
dehydrogenases 1-2 RALDH1-2

VAD causes
upregulation of Raldh1
and downregulation of

Raldh2 in rat
testes [333],

Raldh1 and Raldh2 are
downregulated in genetic models of

RA-excess in mouse [59].
Suppression of Raldh1 expression by

RA is via direct RAR
binding [243,244]

Enzymes which
prevent RA formation

or reduce RA levels

Short-chain
dehydrogenase

reductase family
member 3

DHRS3
Expression is decreased
in the liver and hearts
of VAD rats [63,229].

Directly upregulated by RA, though
a functional RARE has not been

identified [229,230].

Cytochrome P450
26 A1 CYP26A1

CYP26A1 is
downregulated in liver
and pancreatic tissues
of VAD mice [334,335].

Directly upregulated via an
identified RARE [288,289]. HNF4A

cooperates with RAR in the
regulation of CYP26A1 [284,290]

Cytochrome P450
enzymes family 2 C22 CYP2C22 Directly upregulated by RA [272]

RA binding proteins Cellular retinoic
acid-binding proteins

CRABP1
CRABP2

Crabp1 and Crabp2 are
downregulated in liver
and pancreatic tissues

of VAD mice [334]

Crabp1 is indirectly upregulated by
RA [108]. Crabp2 is directly

upregulated by RA via an identified
RARE [257].
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In conclusion, there is clear evidence for powerful feedback mechanisms that operate
via RA–RAR/RXR and which act on retinoid enzymes, binding proteins, and transporters.
The molecular mechanisms of RA feedback regulation are starting to emerge for some
pathways such as ISX [93]. At the same time, as seen in studies using time-series transcrip-
tomics in tractable models such as Xenopus [307], feedback regulation is both dynamic and
complex. Future directions in this research could involve both exploring the molecular
mechanisms of vitamin A homeostasis and seeking to gain more insight in the inter-organ
dialogue required to maintain vitamin A homeostasis.
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AKR aldo-keto reductase
CRBP cellular retinol binding protein
CRABP cellular retinoic acid binding protein
CYP cytochrome P450
DHRS dehydrogenase/reductase (SDR family) member
LRAT lecithin:retinol acyltransferase
NAD nicotinamide adenine dinucleotide
NADP nicotinamide adenine dinucleotide phosphate
NHR nuclear hormone receptor
RA all-trans-retinoic acid
RAR retinoic acid receptor
RXR retinoid X receptor
RALDH retinaldehyde dehydrogenase
RDH retinol dehydrogenase
SDR short-chain dehydrogenases reductase
TTR transthyretin
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