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Abstract

US image registration is an important task e.g. in Computer Aided Surgery. Due to tissue

deformation occurring between pre-operative and interventional images often deformable

registration is necessary. We present a registration method focused on surface structures

(i.e. saliencies) of soft tissues like organ capsules or vessels. The main concept follows the

idea of representative landmarks (so called leading points). These landmarks represent

saliencies in each image in a certain region of interest. The determination of deformation

was based on a geometric model assuming that saliencies could locally be described by

planes. These planes were calculated from the landmarks using two dimensional linear

regression. Once corresponding regions in both images were found, a displacement vector

field representing the local deformation was computed. Finally, the deformed image was

warped to match the pre-operative image. For error calculation we used a phantom repre-

senting the urinary bladder and the prostate. The phantom could be deformed to mimic tis-

sue deformation. Error calculation was done using corresponding landmarks in both

images. The resulting target registration error of this procedure amounted to 1.63 mm. With

respect to patient data a full deformable registration was performed on two 3D-US images of

the abdomen. The resulting mean distance error was 2.10 ± 0.66 mm compared to an error

of 2.75 ± 0.57 mm from a simple rigid registration. A two-sided paired t-test showed a p-

value < 0.001. We conclude that the method improves the results of the rigid registration

considerably. Provided an appropriate choice of the filter there are many possible fields of

applications.

Introduction

Ultrasound imaging (US) is real-time, non-invasive and less expensive than many other clini-

cal imaging methods. However, the images are often noisy, contain several typical artefacts

and are affected by soft-tissue deformation caused by the application of the US-scan itself. All

these factors can contribute to difficulties in the comparison of images of the same object at

different times or from different positions i.e. the registration of US images [1]. In order to
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improve monitoring and diagnostics using standard US technologies there is a certain demand

for finding better ways to compare and fuse corresponding images.

Deformable image registration is applied additionally to rigid image registration techniques

as described in [1–3]. Within the last few years, different approaches for deformable image reg-

istration were established. It is assumed that deformations are elastic movements of tissue

caused by external forces, weight displacements or muscular activity. All models have therefore

to be applied in a way that the resulting displacement field represents a situation that is physio-

logically plausible and must preserve tissue topology. An overview of recent methods for US

registration including many deformable approaches can be found in [1].

Three main approaches can be distinguished: geometric models derived from physical

models, geometric models derived from interpolation and knowledge based transformations.

There are physical models using the theory of elasticity [4], viscosity [5] or diffusion [6].

In interpolation theory deformation is assumed to be known exactly and assigned to fidu-

cial data. Images are deformed according to these fiducial data depending on their distance.

For regions far away the influence of the fiducial data points vanishes. Among a large family of

interpolation methods, elastic splines, radial basis functions and piecewise affine models

should be mentioned. Elastic Body Splines were introduced by Davis et al. [7]. Splines repre-

sent a local deformation with well defined differentiable connection conditions to neighboring

elements [8]. Apart from the preservation of topology these methods require defined forces

which sufficiently represent reality. Kohlrausch et al. [8] assumed that forces decrease with

their distance to landmarks according to Gaussian functions. Yang et al. [9] applied parame-

trized mathematical functions (radial base functions) to describe deformation. Piecewise affine

models extend rigid registration techniques by assigning affine transformations to local points

[10, 11]. Deformations are given by adapting the parameters of the affine transformation by a

local linearisation.

The method used in the present work can be seen a mixture of different geometric models

[12]. The calculation of the deformation field is based on landmarks that describe saliencies

like organ boundaries or vessels using plane fits to previously defined structures. In contrast to

spline based techniques, planes are locally assigned to linearise the organ surface without any

boundary condition to the neighborhood. Since the focus is set on surfaces, the method is

knowledge based as well and only suitable for tissue regions where saliencies can be found.

However, this limitation is compensated by the simplicity of the method since the calculation

is straight forward and non iterative.

We evaluated our registration method based on [12] using a US phantom and an abdomi-

nal 3D-US volume of a volunteer. A detailed analysis of the target registration error (TRE) was

developed.

Materials and methods

The work flow of the complete registration process including the calculation of the TRE is

shown in Fig 1. It was divided into four main parts.

First, a rigid registration is applied to avoid large offsets which could not be corrected by the

deformable registration only.

Second, the US images were preprocessed to emphasize important structures such as edges

and corners (see the appropriate subsection on Image preparation). These structures were then

used for the subsequent deformable registration.

Third, the deformable registration was applied. For this step saliencies in the images were

used. It was assumed that the images contained structures that could clearly be identified as

surfaces (e.g. vessels and organs such as the urinary bladder).

Deformable registration of 3D ultrasound volumes
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Finally, the whole registration was quantified by calculating the TRE before and after the

warping process. If successful, the TRE is expected to be considerably smaller than before.

Rigid registration

The metrics implemented were normalized cross correlation (NCC) and mutual information

(MI). The latter showed better results and was used for all rigid registrations subsequently [3].

We used a multi-level optimizer which sampled down the input volumes to coarser resolutions

for the early stages of the registration. The Insight Segmentation and Registration Toolkit ITK

(Kitware, Inc. NY, USA) was used for registration and Qt4 (The Qt Company, Finland) for the

user interface.

Image preparation—Importance images

Image preprocessing followed a method described in [12] where the importance images were

generated. In the following we denoted the pre-operative image as fixed image If(x, y, z) and

the interventional image as deformed image Id. First, a gradient filter was applied to emphasize

edges and define surfaces. This resulted in gradient images gradf,d. In a next step, corners were

Fig 1. Work flow showing the deformable registration process and the error evaluation.

https://doi.org/10.1371/journal.pone.0213004.g001

Deformable registration of 3D ultrasound volumes
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emphasized. Corners correspond to the second derivative, therefore a Laplacian operator was

applied. Since taking the derivative increases noise, a Gaussian smoothing filter was applied

before the Laplacian. The resulting images were stored as Laplacian (of Gaussian) images

LoGf,d.

After this step three values were assigned to every voxel: the gray value itself, the gradient at

the voxel location and the Laplacian of Gaussian. The importance images Impf,d were built up

as a weighted sum:

Impf ;d ¼ If ;d wgray þ gradf ;d wgrad þ LoGf ;d wLoG ð1Þ

The scalars wi are weights that control the contributions of grey values and derivatives of

the importance images. The image preparation was completed by a windowing process. This

last step suppressed minor image details and emphasized saliencies.

Deformable registration and warping

Fig 2 shows the process for correction of deformations which corresponds to step 3 in Fig 1.

This process can be divided into four steps:

(a) Leading points—Landmarks. Representative landmarks, the leading points (LPs), rep-

resenting boundaries in the image were found in the importance images by thresholding (step

3a in Fig 2).

If the voxel value at a certain position PLP = P(x, y, z) exceeded a certain threshold the point

was considered to be representative and marked as LP, provided no further LP existed in a cer-

tain neighborhood. PLP was marked as leading point if |PLP − LP|> ε 8LP, with LP a leading

point which had previously been set. This restriction avoided that a region fulfilling the thresh-

old conditions was filled with an excessive number of LPs. Therefore, the threshold parameter

defined where the LPs were set and ε defined the density of leading points.

This was done for the fixed and the deformed image and the resulting two point sets were

used to calculate the deformation.

(b) Matching. For the calculation of the deformation it was assumed that larger (rigid)

translations and rotations have been already compensated by the rigid registration and that

emerging curvatures were small.

The matching process is illustrated in Fig 3. Each LPfix in the fixed image was assigned to a

LPdef in the deformed image. To find the corresponding LPdef for a given LPfix only a spherical

neighborhood ε with radius r and center LPfix was taken into account. In Fig 3 the candidate

LPdef were illustrated as dark asterisks and were located on a boundary surface. As only small

curvatures were assumed this surface could locally be fitted by a plane. The normal vector n of

this plane was also indicated in the sketch. The corresponding LPcorr was then determined as

that LPdef on the plane which was closest to the orthogonal projection point (shown as a

doughnut in Fig 3).

LPfix and LPcorr defined the displacement vector representing the local deformation at this

point. This procedure was performed for all LPfixs which finally resulted in a set of displace-

ment vectors vLP

n ≔~vLP
ðLPfix;nÞ.

(c) Deformation field. To calculate the deformation field a displacement vector

vi ¼~vðxiÞ had to be derived for each voxel xdef,i = (xi, yi, zi) in the deformation image from

the vectors assigned to the LPs. As deformation of tissue in a certain region was considered as

an elastic response to a force, the deformation field had to be continuously differentiable.

Moreover, the local movements (i.e. |vi|) were restricted by physiological constrains. In the

present approach, deformation was derived from the movement of saliencies. Therefore, the

local displacements vi had to fulfill the following conditions:

Deformable registration of 3D ultrasound volumes
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• Voxels xi in the neighborhood of the boundaries were deformed similar to the boundary

itself. Moving vectors close to a leading point had to be similar to the moving vector of the

LP itself: j vi j�j v
LP

n j.

• The influence of a LP should decrease with the distance to the voxel.

Fig 2. Detailed work flow for step 3. (3a) calculation of leading points (LPs) for each image. (3b) finding

corresponding LP and create a list of corresponding points. (3c) calculation of a deformation field i.e. displacement

vectors for each voxel. (3d) warping the deformed image.

https://doi.org/10.1371/journal.pone.0213004.g002

Deformable registration of 3D ultrasound volumes
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• The influence of the LPs should tend to zero for voxels that are located outside of the

deformed region.

• The influence of each vLP

n to a vi should be proportional to a summation of the influences of

each LP pair.

This was accomplished by calculating the local displacements as:

vi ¼
1

N

XN

n¼1

a e� jx
LP
n � xi j=s

2vLP

n ð2Þ

Fig 3. Matching process. A plane was fitted to leading points of the deformed image (dark asterisks) in a certain neighborhood to a leading point in

the fixed image (circles). The new corresponding leading point LPcorr was the point on the plane closest to the orthogonal projection point (dough nut)

in the fixed image.

https://doi.org/10.1371/journal.pone.0213004.g003

Deformable registration of 3D ultrasound volumes
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The parameters α and σ allowed to control the weighting. α denotes an absolute value for

the strength of the displacement and σ controls the range of displacement i.e. the region of

interest (ROI).

(d) Warping. Given the complete deformation field the deformed image was warped. The

new position xw of each voxel was calculated by

xwi ¼ xi þ vi ð3Þ

The warping process was a reverse mapping process: in the deformed image a new gray

value was calculated for every voxel. If a voxel position xi was the destination of more than

one moved voxel the new gray value was chosen to be the gray value of the closest LP

ðxw ¼ min j xw
k � xi jÞ.

Error calculation

For calculation of the TRE representative points found on the surface (or saliences, respec-

tively) were used. To find corresponding points in all, the fixed, deformed and warped images,

lines were defined [13]. In short, the salience was displayed on each slice as an intersection

curve. Lines were introduced parallel to the y-axis in a defined but constant distance. Along

these lines an intensity profile could be recorded (see Fig 4). If the surface to be analyzed was

the brightest object in the observed ROI, the intersection point between line and curve defined

the target point.

This was done for all three images (fixed, deformed and warped) and resulted in three point

sets: fSf

ig; fS
d

i g; fS
w

i g. The index i identifies corresponding points. If the error was found to be

zero (i.e. the warping was perfect), the corresponding points in the fixed and the warped image

were located at the same position. The total error which was assumed to be the TRE was

Fig 4. Calculation of the TRE. Defining lines y0 to y1 through an image slice (right) provided a function of gray values

along the line (left). Intersection points (pale blue) with the structure were determined by finding the maximum of the

function.

https://doi.org/10.1371/journal.pone.0213004.g004

Deformable registration of 3D ultrasound volumes
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calculated as:

TREf!w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðSf

i � Sw

i Þ
2

s

ð4Þ

This formula was also applied to the fixed and to the deformed point sets by replacing Sw

i by

Sd

i in Eq 4 which defined the TREf!d (i.e. the error of the rigid registration without warping).

Additionally, we calculated a mean distances error (Errmd) and the corresponding standard

deviation between fixed and deformed ðErrmd
f!dÞ and fixed and warped images ðErrmd

f!wÞ by aver-

aging the Euclidean distances between the fiducials. To test for significant improvement

between simple rigid registration and warping process a (two sided) t-test was applied.

Phantom experiments

The complete warping process was evaluated using a phantom that represented the lower

abdominal area and mimicked the urinary bladder and the prostate in a plastic tank (Fig 5).

This phantom has already been used in [14]. The bladder was represented by an inflatable bal-

loon. A prostate-shaped polystyrene object of approximately 110 cc was glued to the bladder

balloon. The bladder was chosen to be the target structure (ROI) as its boundaries showed a

clearly identifiable salience. The tank was filled with water mixed with ethanol (5% solution) to

obtain the speed of sound equal to human tissue.

Patient evaluation

With respect to patient data abdominal 3D-US images were taken. A blood vessel therein was

used as the target saliency. Slight deformations of the target were caused by varying the contact

pressure of the transducer.

Fig 5. The image shows a sketch and a photo of the prostate/abdominal phantom used in the evaluation. The

balloon representing the bladder can be changed in size. The tank was filled with a 5% ethanol solution to adjust the

speed of sound to human tissue.

https://doi.org/10.1371/journal.pone.0213004.g005

Deformable registration of 3D ultrasound volumes
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All images were taken with a 3D-US device (General Electrics Volusion E8) and a 4MHz

3D transducer. The 3D-US images had a resolution of 255 x 255 x 120 voxels with a pixel spac-

ing of 0.375 mm/voxel in all directions.

Results

Phantom data

The image preprocessing resulted in importance images of the fixed and the deformed image

as seen in the upper and lower left images in Fig 6. Images A and C of this Fig 6 show appropri-

ately windowed importance images of the fixed and the deformed image of the US phantom.

In images B and D the LPs are displayed with red dots. As can be seen, the LPs are concen-

trated on the most dominant structure of the image which in this case is the balloon’s surface.

The parameters for the importance image according to Eq 4 were set to wgray = 0.51, wgrad =

0.40 and wLoG = 0.51. The windowing was carried out with a lower threshold of 10% and a

upper threshold of 91%. For the calculation of the LPs a threshold of 50% and an excluding

radius of ε = 4.18 mm were applied which resulted in a satisfying density of LPs. In the plane

fitting process the radius was set to r = 5.38 mm. The Gaussian weights were chosen to be α =

150, σ = 2.5 (see Eq 2).

The result of the deformable registration for the phantom is shown in Fig 7. For a visual

judgment of the registration quality we used checkerboard images of the structure where most

of the LPs were found (Fig 6). Image A in Fig 6 shows a checkerboard image of the fixed and

Fig 6. Image preprocessing and landmark calculation (phantom data). Image A: The windowed importance image

of the fixed image. Image B: The fixed image with leading points assigned. Image C: The windowed importance image

of the deformed image. Image D: The deformed image with LPs assigned.

https://doi.org/10.1371/journal.pone.0213004.g006

Deformable registration of 3D ultrasound volumes
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the deformed image after the rigid registration. On the right hand side, image B in Fig 6, the

additional warping process was applied to the deformed image. Compared to simple rigid reg-

istration the balloon’s surface is now properly registered. The TRE according to Eq 4 calculated

using 150 automatically selected points (see Fig 4) was TREf!d = 5.79 mm for the simple rigid

registration and TREf!w = 2.02 mm for the warping.

The mean errors were computed to Errmd
f!d ¼ 5:69� 1:08 mm and Errmd

f!w ¼ 1:77� 0:97 mm.

A two-sided paired t-test showed a p-value < 0.001. The data can be found in the supporting

information section S1 Dataset.

Patient data

For the patient data a Canny edge filter was applied prior to the creation of the importance

images. In Fig 8 the resulting LPs on the patient image including the blood vessel are shown.

Like with the phantom data (Fig 6), the LPs are found on the most prominent structure of the

image.

Fig 7. Deformable registration with phantom data. Image A: Checkerboard of the fixed and the deformed image

after rigid registration. Image B: Checkerboard of the fixed and the warped image. The effect of warping (i.e. the

correction of the deformation) can clearly be seen.

https://doi.org/10.1371/journal.pone.0213004.g007

Fig 8. Leading points. Image A shows the leading points in the fixed image, image B shows the leading points in the

moving image. These points were used for the warping process.

https://doi.org/10.1371/journal.pone.0213004.g008

Deformable registration of 3D ultrasound volumes
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Fig 9 shows the result of the warping process with patient data. The fixed image is painted

red, the deformed image green. On the left hand side (marked with ‘A’) an overlay of the fixed

and deformed image after rigid registration is displayed. On the right hand side (denoted as ‘B’)

the merged fixed and warped images are shown. The TREs were calculated from 107 fiducials

(intersection points between lines and the structures marked manually, as defined in section

‘Error calculation’) and amounted to TREf!d = 2.82 mm and TREf!w = 2.21 mm. The mean

distance errors were found to be Errmd
f!d ¼ 2:75� 0:57 mm and Errmd

f!w ¼ 2:10� 0:66 mm.

The p-value for the two sided t-test was< 0.001. The data can be found in the supporting infor-

mation section S2 Dataset.

Discussion

Our multi-resolution approach has shown significant improvements of the TRE in both evalu-

ations, the phantom and the patient study. Furthermore, the errors found were in good accor-

dance with [12] where registrations between liver images were performed. Due to the higher

contrast in some parts of the images, we were able to evaluate more target points compared to

[12]. In [15], the accuracy and variability of rigid and non-rigid registrations of transrectal

3D-US images of the prostate were evaluated. Different surface- and intensity-based rigid and

nonrigid registration algorithms based on thin-plate splines and B-splines were evaluated. The

pre-registration TRE was 7.36 ± 4.17 mm compared to a TRE of 1.96 ± 0.85 mm after non-

rigid registration. Nevertheless, no significant difference between rigid and non-rigid registra-

tion was found. In contrast, De Silvas et al. [16] were able to reduce the TRE by 4.75 mm com-

pensating prostate motion induced by the biopsy procedure. Their intensity-based 2D-3D

rigid registration algorithm optimized the normalized cross-correlation metric using Powell’s

method. Rivas et al. [17] applied a non-rigid US registration on brain images where a deforma-

tion occurred due to a resection of brain tumors. The deformation was modeled with free-

form cubic B-splines. Their registration algorithm reduced the mean TRE from an initial value

of 3.7 mm to 1.5 mm. A similar approach related to the presented registration method is given

by the determination of geometric moment invariants for each point in the image [18, 19]

where attribute vectors are determined from local spatial intensity histograms. Their method

was applied to magnetic resonance (MR) images and has proven to be robust and reliable. The

transfer of this method to US images would be challenging due to the huge amount of speckle

artifacts.

Fig 9. Deformable registration with patient data. The fixed image (red) is overlaid with the deformed image (green).

Image A shows an overlay before, image B after the warping.

https://doi.org/10.1371/journal.pone.0213004.g009
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In previous studies we have already applied 3D-3D US registrations on prostate images.

In [3], a rigid 3D-US/3D-US registration was used for patient alignment in tele-therapy.

Although the resulting TRE was acceptably small, the development of a deformable registra-

tion has already been suggested there. In a follow-up study [14], three different deformable

registration methods were compared using cone beam CT image data. Although deformable

registration methods improved the outcome over a rigid registration for lung cases and in a

phantom study, no significant improvement was found for the prostate study.

We suppose potential applications in US guided biopsies, ethanol injection therapies and

radiofrequency ablations [20] of the liver [21]. Intra-operative 3D US imaging can provide

information for real-time update of tool positions, instruments or catheters during an inter-

vention. As liver metastases are often not visible in US images [22], several attempts exist to

display or merge a US image with its corresponding high-quality CT (or MR) volume. Lange

et al. [23] used a vessel-based non-rigid registration for their 3D ultrasound guidance in liver

surgery where segmented vessel centerlines were used.

In radiotherapy, the correct alignment of the patient is an important requirement for treat-

ment success. One reliable and radiation-free method of capturing images of soft tissue (e.g.

for prostate irradiation) applicable for patient positioning involves 3D ultrasound [3, 24, 25].

For patient alignment, a 3D ultrasound image is taken before each treatment fraction and then

registered with a pre-interventional US image taken at the planning CT site. Although such

systems have shown successful clinical applications, tissue deformation is still an obstacle with

respect to accuracy and should be considered in the positioning process. As the prostate as

well as the urinary bladder exhibits well distinguishable tissue surfaces, our method would be

applicable considering appropriate filtering.

Limitations

The novelty of the method lies in the combination of calculating landmarks and the way the

saliencies are matched. As it turned out this method provides good functionality for simple

saliencies. It is capable for the correction of deformation for certain regions e.g. regions that

clearly provide surface structures. These conditions are given when vessels or the urinary blad-

der are imaged [3, 26–28]. In this sense, our approach is limited to topologically simple high

contrast surfaces. Further work will focus on the extension to more complex structures, for

instance tissue surfaces with large local curvatures and a complex topology. For this extension

non linear regression using polynomial surfaces instead of planes had to be introduced.

Alternatively, appropriate structures such as blood vessels nearby the regions of interest

could be chosen, provided the target region shows a movement similar to these vessels. As

such vessels are found in various regions of the body, the variety of possible applications ranges

from laparoscopy in the abdomen [29] to optical coherence tomography (OCT) imaging of

human skin [30] and human eye [31]. In these cases, the LPs define surfaces which allow for

fitting local planes with low TREs. Consequently, other structures can be chosen for this proce-

dure if their saliencies are prepared by appropriate filters before the LP determination is

started. In our experiments, the Canny edge filter revealed to be an excellent choice for blood

vessels. Therefore, an intensive evaluation of filters for a given—or desired—structure to be

registered has to be carried out in future applications. Another parameter depending on the

structures in the image and considerably effecting registration quality, is the threshold of the

importance image. This value changes the number of LPs and consequently also influences

registration time [12].

Another limitation of our approach are shadow artifacts in US images. In such images LPs

can not be created and it is not possible to define a reliable deformation within the shadowed

Deformable registration of 3D ultrasound volumes
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regions. The deformation field has to be estimated from the adjacent LPs. Therefore, the reli-

ability of such an estimation depends on the distance of the shadow regions to the next reliable

LPs.

Conclusion

We found the method to work reliable and improve the registration accuracy significantly for

both the phantom and the patient images. As discussed above there are many possible fields of

applications where the method can be used, provided an appropriate choice of the filter.
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