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Neuronal excitability of the brain and ongoing homeostasis depend not only on intrin-
sic neuronal properties, but also on external environmental factors; together these
determine the functionality of neuronal networks. Homeostatic factors become critically
important during epileptogenesis, a process that involves complex disruption of self-
regulatory mechanisms. Here we focus on the bioenergetic homeostatic network regulator
adenosine, a purine nucleoside whose availability is largely regulated by astrocytes.
Endogenous adenosine modulates complex network function through multiple mech-
anisms including adenosine receptor-mediated pathways, mitochondrial bioenergetics,
and adenosine receptor-independent changes to the epigenome. Accumulating evidence
from our laboratories shows that disruption of adenosine homeostasis plays a major
role in epileptogenesis. Conversely, we have found that reconstruction of adenosine’s
homeostatic functions provides new hope for the prevention of epileptogenesis. We will
discuss how adenosine-based therapeutic approaches may interfere with epileptogenesis
on an epigenetic level, and how dietary interventions can be used to restore network
homeostasis in the brain. We conclude that reconstruction of homeostatic functions in the
brain offers a new conceptual advance for the treatment of neurological conditions which
goes far beyond current target-centric treatment approaches.

Keywords: adenosine, glial cells, ketogenic diet, mitochondrial bioenergetics and physiology, DNA methylation,
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INTRODUCTION
Epileptogenesis is a complex process that not only involves changes
in neuronal excitability and circuitry, but also changes in glial
physiology and in the homeostatic environment in which neu-
rons need to survive and to function properly (Kunz, 2002; Borges
et al., 2003; David et al., 2009; Ravizza et al., 2011; Devinsky et al.,
2013). Characterized by abnormal and excessive neuronal firing,
each seizure represents a rapid loss of homeostatic equilibrium,
with altered energy and molecular gradients, and a correspond-
ing interruption of normal behavior and consciousness. Because
having a seizure can increase the likelihood of future seizures,
seizures themselves contribute to epileptogenesis. Similarly, con-
ditions that can precipitate epilepsy – such as traumatic brain
injury, and diseases in which epilepsy can be comorbid – such as
Alzheimer’s disease, are accompanied by a chronic loss of homeo-
static function. Therefore, the loss of homeostasis associated with
epilepsy is found acutely during the seizure or precipitating event,
and also during the chronic process of epileptogenesis.

Unfortunately, the pursuit of neurocentric therapeutic targets
did not yield any antiepileptogenic therapies to date (Loscher and
Brandt, 2010). In contrast, a revised understanding of epilepsy as
a complex syndrome of disrupted network homeostasis may yield
novel therapeutic avenues to halt, disrupt, or even reverse the pro-
cess of epileptogenesis. Key elements to consider with the goal of

restoring network homeostasis are glial function and metabolism.
Akin to seizures themselves, which have negative acute and chronic
effects, restoring homeostasis can benefit acute brain function and
avert the progressive process of epileptogenesis.

Glial cells play a major role in the homeostatic state of the
brain by regulating the ambient concentration of synaptic neu-
rotransmitters; modulating the permeability of the blood brain
barrier (BBB) through astrocyte–endothelial interactions; regulat-
ing cerebral blood flow; and microglial control of brain immunity.
Thereby, glial cells directly influence brain function on multiple
levels including neuronal excitability and synaptic transmission;
delivering energy substrates from the periphery; and recovery
from injury or infection (Eulenburg and Gomeza, 2010; Kofler and
Wiley, 2011; Petzold and Murthy, 2011; Santello et al., 2012). As a
consequence, disruptions to normal glial cell function as observed
in neurological disorders with a gliotic pathology has widespread
deleterious ramifications that contribute to disease progression
and maintenance through changes in synaptic activity, BBB per-
meability, brain immunity, and inflammation (Carmignoto and
Haydon, 2012; Coulter and Eid, 2012; Kovacs et al., 2012).

Within human epileptic foci the most prominent pathological
finding is gliosis, with reports of reactive astrocytes, microglia,
glial scars, and/or gliomas being present (Kallioinen et al., 1987;
Kurzwelly et al., 2010; Butler et al., 2013). Pathological glial cells
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have been associated with a spectrum of different neurologi-
cal diseases that result in epilepsy including mesial temporal
lobe epilepsy with hippocampal sclerosis (mTLE), focal cortical
dysplasia (FCD), tuberous sclerosis complex (TSC), and Ras-
mussen’s encephalitis (Sosunov et al., 2008; Malmgren and Thom,
2012; Butler et al., 2013). Concurrent with a gliotic pathology,
studies from both epileptic patients and rodent models for epilepsy
have identified abnormal glial cell activity as a contributing factor
to seizures and/or epileptogenesis.

Alongside gliosis, it is increasingly appreciated that epilepsy is a
global dysregulation involving metabolic dysfunction (DiMauro
et al., 2002; Kunz, 2002), and, furthermore, that metabolic
dysfunction is common in neurological disorders including neu-
rodegenerative (Sas et al., 2007) and psychiatric disorders (Rezin
et al., 2009). The ketogenic diet, developed as a treatment for
epilepsy nearly 100 years ago, is a highly successful metabolic
strategy now moving broadly into translational work for a variety
of neurological disorders. Multiple lines of evidence suggest that
key mechanisms underlying the acute anticonvulsant effects of a
ketogenic diet may be adenosine acting via KATP channels. These
findings highlight the potential for altered metabolism restoring
and maintaining homeostasis in the central nervous system (CNS),
and have implications for exploring the prevention and treatment
of neurological disorders using strategies other that traditional
neurocentric approaches.

Here we outline homeostatic therapeutic strategies with a
focus on adenosine, an endogenous bioenergetic homeostatic
regulator; multiple lines of evidence suggest that adenosine home-
ostasis is a key factor in preventing and stopping seizures. This
review will first discuss glial mechanisms of epileptogenesis with
emphasis on disruptions of adenosine homeostasis. Based on
these mechanisms, we identify glia-centric therapeutic strategies
that treat epilepsy through restoring normal brain homeostasis.
We then highlight recent evidence regarding the role of adeno-
sine in the process of epileptogenesis and describe metabolic
therapy via a ketogenic diet, which may restore adenosine
homeostasis.

GLIAL MECHANISMS IN EPILEPTOGENESIS
Historically epilepsy research has predominantly focused on dis-
ruptions to normal neuronal function as the primary etiology.
However, there is a substantial amount of evidence that implicate
glial dysfunction as a major contributing factor to epileptoge-
nesis (Figure 1). Astrocytes regulate or modulate a number
of neuronal functions including excitability, synaptic transmis-
sion, and plasticity. As a consequence, the presence of reactive
astrocytes, as found in patients with mTLE, FCD, and TSC,
disrupts normal neuronal activity that either promotes epilep-
togenesis or decreases seizure threshold (Sosunov et al., 2008;
Miyata et al., 2013). Multiple mechanisms by which reactive astro-
cytes may directly modulate neuronal activity at the synaptic cleft
have been proposed. These include, but are not limited to (i)
increases in neuronal excitability caused by decreased adenosine
tone; increased synaptic glutamate levels; changes in the extra-
cellular space (ECS) volume and K+ ion concentration; and (ii)
modulation of synaptic transmission through glutamate, adeno-
sine triphosphate (ATP), adenosine, gamma-aminobutyric acid

FIGURE 1 | Epilepsy-associated alteration of astrocyte-based

homeostatic functions. Summary of key pathophysiological alterations of
astrocytes as found in animal models of epilepsy and/or in human epilepsy.
For details, please refer to main text.

(GABA), or D-serine from astrocytes (Devinsky et al., 2013). While
multiple glial mechanisms of epileptogenesis have been investi-
gated, disruption of adenosine homeostasis has consistently been
identified as sufficient for seizure generation and has proven to be
an effective therapeutic target for seizure suppression and stop-
ping disease progression (Boison, 2013). Here we will further
review the supporting data from human epilepsy and rodent mod-
els of epilepsy that pertain to astroglial-mediated disruptions in
synaptic transmission as a mechanism for epileptogenesis, with a
more thorough discussion of adenosine homeostasis in epilepsy
to follow.

GLUTAMATE HOMEOSTASIS
Reactive astrocytes cause neuronal hyperexcitability through
increased synaptic glutamate and K+ levels and decreased ECS
volume. Decreased astrocyte-mediated glutamate uptake and glu-
tamate to glutamine conversion have been proposed to increase
synaptic glutamate in the gliotic hippocampus (Cavus et al., 2005).
Increased levels of synaptic glutamate may in part be attributed
to reduced expression of glutamate transporters within reactive
astrocytes. High affinity glutamate transporters (2–90 μM) are
concentrated on the astrocyte membrane and are integral to main-
taining a low glutamate tone within the synaptic cleft. Thus, a
decrease in astrocyte glutamate transporters may increase neu-
ronal hyperexcitability and decrease seizure threshold. A patient
diagnosed with spontaneous seizures was found to have a mutation
in the human gene SLC1A3, resulting in decreased EAAT-1 protein
expression and reduced capacity for glutamate uptake (Jen et al.,
2005). A substantial decrease in both astrocyte glutamate trans-
porters, EAAT-1 and EAAT-2, has also been identified in resected
mTLE hippocampi (Sarac et al., 2009). However, this finding has
not been reproduced in other studies (Tessler et al., 1999; Eid et al.,
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2004). Research with transgenic mice further implicates dereg-
ulation of astrocyte-mediated glutamate uptake as a contributing
factor to epilepsy. A mouse model of TSC with progressive epilepsy
was found to have decreased glutamate/aspartate transporter
(GLAST) and glial glutamate transporter 1 (GLT-1) protein lev-
els (genetic equivalents to EEAT-1 an EAAT-2, respectively) and
glutamate transporter currents (Wong et al., 2003). In addition,
GLT-1 and GLAST knockout mice have a decreased pentylenete-
trazol (PTZ) seizure threshold. The GLT-1 knockouts also exhibit
spontaneous lethal seizures and have increased levels of synaptic
glutamate (Tanaka et al., 1997; Watanabe et al., 1999). Downreg-
ulation of glutamine synthetase (GS) within reactive astrocytes
has also been postulated as a potential cause for the increased
synaptic glutamate tone observed in the epileptic hippocampus
(Eid et al., 2004). GS primarily resides in the astrocyte cyto-
plasm and is responsible for the ATP-dependent conversion of
glutamate to glutamine. GS protein and enzymatic activity are pro-
foundly decreased, 40 and 38%, respectively, in the hippocampus
of mTLE patients with the greatest reduction observed in prolifer-
ating astrocytes (Eid et al., 2004). Causative evidence that reduced
GS activity is sufficient for epileptogenesis is from a pharmacolog-
ical study with rats that developed seizures and neuropathology
reminiscent of mTLE when chronically infused with the GS in
inhibitor methionine sulfoximine (Wang et al., 2009). Further-
more, a mutation in the gene encoding GS has been linked to child
with epilepsy (Haberle et al., 2011).

WATER AND POTASSIUM HOMEOSTASIS
The state of neuron excitability is also tightly coupled to the
ECS volume and associated K+ homeostasis (Schwartzkroin et al.,
1998). More specifically, hypoosmolarity treatment reduces the
ECS volume and increases neuron excitability and epileptiform
activity; while hyperosmolarity treatment has the reverse effect.
Aquaporin 4 (AQP4) is a water transport channel that is expressed
within glial cells and which is integral to regulating ECS volume
and implicated in epileptogenesis (Binder et al., 2012). AQP4 is
normally localized to both the perivascular endfeet and within
perisynaptic processes of astrocytes where it permits the bidirec-
tional flow of water from the ECS to the blood (Nielsen et al., 1997;
Rash et al., 1998; Nagelhus et al., 2004). In human mTLE brain
specimens, AQP4 is redistributed primarily to the perisynaptic
processes, which has been hypothesized to be a contributing factor
of hyperexcitability through dysregulating water and K+ home-
ostasis (Eid et al., 2005). Research with transgenic AQP4 knockout
mice support this hypothesis as they have increased ECS volume
and are less susceptible to PTZ-induced seizures (Binder et al.,
2004a,b). Glial-mediated water flow is also tightly coupled to K+
transport from the ECS through the inward rectifying K+ channel,
Kir4.1, that is colocalized with AQP4 on the astrocyte mem-
brane (Hsu et al., 2011). Similar to ECS volume, changes in the
K+ concentration influence neuronal excitability with millimolar
increases in ECS K+ exacerbating epileptiform activity (Feng and
Durand, 2006). Human polymorphisms in KCNJ10, the gene that
encodes Kir4.1, are associated with epilepsy and a glial specific
deletion of Kir4.1 in mice reduces K+ clearance from the synaptic
cleft (Heinemann et al., 2000; Haj-Yasein et al., 2011). Dysregu-
lation of AQP4 might also be linked to cholinergic imbalances

in epilepsy, since overexpression of synaptic acetylcholinesterase
has been associated with overexpression of AQP4 (Meshorer et al.,
2005)

GLIOTRANSMITTER HOMEOSTASIS
Aside from increasing neuronal excitability, astrogliosis disrupts
synapse homeostasis through dysregulation of transmitter release
from astrocytes. The list of transmitters proposed to be released
by astrocytes includes glutamate, D-serine, ATP, adenosine, and
GABA (Devinsky et al., 2013). In regards to adenosine home-
ostasis, astrocytes express two types of equilibrative nucleoside
transporters, which mediate transport based on the concentra-
tion gradient of adenosine (Baldwin et al., 2004; Gray et al., 2004;
Guillen-Gomez et al., 2004; Peng et al., 2005; Alanko et al., 2006).
Adenosine in synapses of CA1 pyramidal neurons can be generated
in response to high frequency stimulation that induces a Ca2+-
mediated release of ATP from astrocytes through either vesicular
transport or hemichannels (Cotrina et al., 1998; Zhang et al., 2003;
Pascual et al., 2005; Kang et al., 2008) or the direct release of adeno-
sine from neurons (Lovatt et al., 2012). Once in the synaptic cleft
ATP is rapidly converted to adenosine by a series of ectonucleoti-
dases (Zimmermann, 2000). Ca2+ waves within astrocytes have
also been linked to glutamate and D-serine release. Within the
epileptic brain Ca2+ signaling may regulate the glutamate-induced
paroxysmal deporalization shift, which is the intracellular analog
to the interictal spike (Tian et al., 2005). However, results from a
separate study suggest that astrocytes may initiate seizures and not
contribute to interictal activity (Gomez-Gonzalo et al., 2010).

GROWTH FACTORS
Status epilepticus (SE) can induce a wide range of growth fac-
tors, neurotrophins, and transcription factors (Grabenstatter
et al., 2012). Increased brain-derived neurotrophic factor (BDNF)
in particular has been linked to epileptogenesis (Grabenstat-
ter et al., 2012). In neurons, BDNF was shown to activate the
Janus kinase/signal transducer and activator of transcription
(JAK/STAT) pathway, cyclic adenosine monophosphate (cAMP)
response element binding protein (CREB), inducible cAMP early
repressor (ICER), and early growth response factors (Egrf) that
induce a shift in the expression of specific subunits of the GABAAR
as well as the expression levels of N-methyl-D-aspartate receptors
(NMDARs; Roberts et al., 2006; Lund et al., 2008; Kim et al., 2012).
In astrocytes, activation of the trkB receptors by BDNF has been
linked to the development of astrogliosis, a mechanism that is
also influenced by transactivation of the TrkB receptor through
the adenosine A2AR (Brambilla et al., 2003). Whereas the role of
growth factors on neuronal function is well documented, growth
factor-dependent mechanisms that contribute to epileptogene-
sis via the disruption of glial homeostatic functions are not well
established.

BLOOD BRAIN BARRIER
The breakdown of the BBB leading to albumin extravasation has
directly been linked to epileptogenesis (Heinemann et al., 2012).
Albumin is a potent astroglial activator through stimulation of
transforming growth factor beta (TGF-β) signaling and activa-
tion of the SMAD-2/5 pathway (Ivens et al., 2007; Cacheaux
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et al., 2009). BBB disruption also triggered expression changes
of genes associated with the TGF-β pathway, early astrocyte
activation, inflammation, and reduced buffering for glutamate
and K+ (Cacheaux et al., 2009; David et al., 2009). The reduced
buffering capacity of transformed astrocytes for glutamate and
K+ appears to be most critical during repetitive activation. Exper-
imental blockade of TGF-β signaling following BBB disruption
decreased those transcriptional responses and prevented epilepto-
genesis. BBB disruption has been demonstrated in patients with
posttraumatic epilepsy (Tomkins et al., 2008) and in patients with
brain tumors who developed epilepsy (Marchi et al., 2007). Thus,
pathogenetic neurovascular interactions which involve astroglial
dysfunction, changes in the immune response, and gene expres-
sion changes that promote neuronal hyperexcitability may play
a critical role in epileptogenesis. Consequently, BBB disrup-
tion might constitute a valuable biomarker for the prediction of
epileptogenesis following an insult to the brain.

IMMUNOLOGICAL RESPONSES
Inflammatory processes play important roles in the pathogenesis
of epilepsy (Aronica et al., 2012). Molecules linked to inflamma-
tory reactions, such as TNF-α or prostaglandins, control the release
of glutamate from astrocytes (Rossi and Volterra, 2009). The
activation of pro-inflammatory pathways, such as the interleukin-
1/Toll-like receptor (IL-1R/TLR) pathway, appear to be involved
in the precipitation and recurrence of seizures in rodent mod-
els of epilepsy (Vezzani et al., 2011a). Importantly, components
of these pathways were found to be overexpressed in surgically
resected specimens from human TLE (Ravizza et al., 2008). Acti-
vation of the IL-1R/TLR pathway can increase excitability of the
brain by the induction of post-translational changes in voltage-
and ligand-gated ion channels. Among the endogenous ligands
are danger signals, such as high mobility group box 1 (HMGB1),
which can be released from injured or activated cells (Vezzani et al.,
2011b). HMGB1 is the endogenous ligand of TLR4 and normally
bound to chromatin. However, HMGB1 can be released into the
ECS following either cell damage or neuronal hyperexcitability.
The pro-epileptogenic role of HMGB1 is supported by recent data
showing that blockade of the TLR4 pathway significantly delays
seizure onset (Maroso et al., 2010). Likewise, engineered mice with
defects in the IL-1R/TLR signaling pathway are intrinsically resis-
tant to seizures (Vezzani et al., 2011b). Intriguingly, activation of
the IL-1R/TLR pathway may alter the permeability properties of
the BBB via the production of cytokines and prostaglandins, pro-
moting brain extravasation of albumin (Cacheaux et al., 2009).
Thus, inflammatory processes and disruption of the BBB might
form a self-perpetuating vicious cycle supporting chronic hyper-
excitability of the brain via compromised astrocyte function on
multiple levels.

ADENOSINE – A HOMEOSTATIC NETWORK REGULATOR
The purine ribonucleoside adenosine has early evolutionary ori-
gins and likely played already a role in prebiotic evolution (Oro
and Kimball, 1961). Importantly, adenosine is not only part of
the energy metabolite ATP but also of RNA, the nucleic acid
thought to be at the origin of life (Lahav, 1993; Dworkin et al.,
2003; Robertson and Joyce, 2012). While ATP reflects the energy

pool in the environment, RNA reflects the metabolic activities
of a cell. Thus, adenosine assumes a central place between energy
availability and metabolic demands and has therefore been termed
a retaliatory metabolite (Newby et al., 1985). It is fair to assume
that adenosine played an early evolutionary role as key bioen-
ergetic network regulator central to the energy homeostasis of
a cell. The early evolutionary principle to conserve energy was
likely a rise in adenosine as a consequence to ATP depletion and
to use the increase in adenosine as a negative feedback regula-
tor to attenuate all cellular activities that consume energy. This
early evolutionary principle is omnipresent in all living systems
and in every human organ. In the brain, epileptic seizures cause
a rapid drop in energy, which results in the generation of adeno-
sine levels that can exceed the baseline level more than 40 times
(During and Spencer, 1992); it is this rise in adenosine that acts as
endogenous terminator of seizures and which is responsible for the
postictal refractoriness that normally follows a seizure (Lado and
Moshe, 2008). Consequently, adenosine augmentation therapies
constitute a promising avenue for seizure control (Boison, 2007).
Seizure suppression by adenosine depends on the activation of G-
protein coupled adenosine A1 receptors (Fredholm et al., 2005);
however, new evidence suggests that adenosine retains important
adenosine receptor-independent regulatory functions, which are
based on interactions with mitochondrial bioenergetics, interfer-
ence with biochemical enzyme reactions, and epigenetic functions.
Thereby adenosine assumes a unique role as homeostatic network
regulator.

ADENOSINE RECEPTOR-DEPENDENT PATHWAYS
A number of adenosine’s actions are mediated by a group of spe-
cific receptors, G protein-linked transmembrane proteins of the
P1 family, distinguished from the P2 ATP receptor family. Four
members of the P1 class have been cloned in mammals: A1R, A2aR,
A2bR, and A3R (Fredholm et al., 2011), and not surprisingly, given
the ancient biological origin of adenosine, homologous genes have
been found in numerous other animal groups (Sazanov et al.,
2000; Petersen et al., 2003; Dolezelova et al., 2007; Boehmler et al.,
2009; Malik and Buck, 2010). These receptors have biochemical
specificity as each acts through a particular set of G proteins to
influence second messengers: for the classical second messenger
cAMP, A1R and A3R activation inhibits its production, whereas
A2aR and A2bR activation are stimulatory (Fredholm et al., 2011).
Other second messengers such as diacylglycerol, inositol triphos-
phate, and Ca2+ are also modulated. Each receptor presents a
distinct pharmacology, and each has a particular distribution in
tissues and cell types. For instance, A1Rs are expressed most highly
in brain, whereas A2bRs and A3Rs have their highest expression in
the periphery (Dixon et al., 1996). Within the brain, A1Rs are
widespread with particularly high levels in the limbic system,
whereas A2aRs are expressed mostly in the basal ganglia (Dixon
et al., 1996).

Adenosine can have powerful receptor-mediated effects on
synaptic transmission in the brain (Fredholm et al., 2011). Presy-
naptic A1Rs inhibit synaptic release of most, if not all, neuro-
transmitters, with an apparently greater effect on excitatory trans-
mission. Thus, if adenosine levels are raised sufficiently, synaptic
transmission can be blocked altogether. On the postsynaptic side,
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A1Rs hyperpolarize membranes by opening inwardly rectifying
K+ channels. These combined A1R effects strongly dampen the
synaptic network, and undoubtedly play a major role in the effica-
cious anticonvulsant effect of adenosine and A1R agonists (Boison,
2007). The effect of A2aRs on network excitability is less clear,
and more anatomically restricted, but if seizures reflect brain net-
work imbalance, then one seizure model suggests that A1Rs and
A2aRs may cooperate to promote homeostasis (De Sarro et al.,
1999).

MITOCHONDRIAL BIOENERGETICS
Mitochondria generate ATP via oxidative phosphorylation, and
this is the main pathway for generating this critical cell energy
molecule. Regarding the relationship between adenosine and ATP,
intracellular adenosine is dephosphorylated from AMP by cytoso-
lic 5′-nucleotidase and is converted back to AMP via adenosine
kinase (ADK). The adenosine-AMP cycle is linked to ADP and
ATP with adenylate kinase. Thus, adenosine is linked tightly to
energy metabolism. Whereas mitochondrial uncouplers decrease
ATP and increase adenosine (via net dephosphorylation of ATP),
mitochondrial enhancers, or other strategies, which enhance ATP
also appear to increase adenosine. Therefore, improving mito-
chondrial bioenergetics has the potential to offer dual benefits
of improving metabolic dysfunction and restoring adenosine
homeostasis.

Adenosine triphosphate is released from various pathways
including vesicular release (Coco et al., 2003; Pascual et al., 2005),
gap junction hemichannels (Kang et al., 2008) and chloride chan-
nels (Anderson et al., 2004), and hydrolyzed to adenosine by a
series of ectonucleotidases (Zimmermann, 2000). Interestingly
astrocytes express all types of ATP-releasing proteins and are
capable of releasing ATP from these pathways simultaneously
(Garre et al., 2010). After ATP is dephosphorylated, extracellular
adenosine is salvaged into the intracellular space by equilibrative
nucleoside transporters and/or concentrative nucleoside trans-
porters (Latini and Pedata, 2001). However, it has also been
reported that these nucleoside transporters release adenosine with
various types of metabolic stress (Lloyd et al., 1993; Frenguelli
et al., 2007). Adenosine-AMP cycles and bidirectional adenosine
uptake and release via nucleoside transporters maintain adeno-
sine homeostasis. Therefore, changes in extracellular adenosine
due to adenosine and/or ATP release can alter adenosine receptor
signaling described above, and experimentally increasing intracel-
lular adenosine or ATP concentration can increase the activity of
adenosine receptors (Brundege and Dunwiddie, 1996; Kawamura
et al., 2010).

Taken together, adenosine’s role in maintaining homeostasis
interacts directly with mitochondrial bioenergetics and energy
metabolism (Newby, 1984; Newby et al., 1985; Sommerschild
and Kirkeboen, 2000). The intracellular concentration of ATP is
nearly 50 times higher than that of AMP (Arch and Newsholme,
1978) and about 10,000 times higher than that of adenosine
(Pazzagli et al., 1995; Delaney and Geiger, 1996). Thus, minor
decreases in intracellular ATP leads to a large rise of intra-
cellular adenosine level. Thus, various excitatory stimuli cause
decreased brain energy and a subsequent increase in adeno-
sine (Shepel et al., 2005). It has been reported that increases in

intramitochondrial AMP cause adenosine production in the puri-
fied mitochondria, and thus extramitochondrial adenosine levels
increase in a time-dependent manner, suggesting a concentration-
dependent adenosine output from mitochondria by diffusion or
facilitated diffusion (Raatikainen et al., 1992). Conversely, the
cytosolic adenosine formation with a balance of cytoplasmic
ADK and cytosolic 5′-nucleotidase might influence mitochondrial
adenosine production and affect mitochondrial bioenergetics.
This interpretation is supported by a severe mitochondrial pathol-
ogy in ADK knockout mice (Boison et al., 2002). As a “retaliatory
metabolite”adenosine is thought to be one of the key links between
neuronal network homeostasis and mitochondrial bioenerget-
ics with both adenosine receptor-dependent and -independent
pathways.

EPIGENETICS
Modifications to the epigenome that include changes in DNA
methylation, histone tail modifications, and incorporation of his-
tone variants are mechanisms by which network homeostasis can
be dramatically altered and consequently change the entire gene
expression profile of a tissue. There are a number of epilepsy-
associated neurological diseases that are directly attributed to
primary genetic mutations and result in secondary deregulation
of the epigenome (Kobow and Blumcke, 2011). Gene promoters
from mTLE patients are characterized by altered DNA methyla-
tion patterns and decreased DNA methyltransferase (Dnmt) gene
expression (Kobow et al., 2009; Zhu et al., 2012).

Biochemically, DNA methylation is intricately linked to S-
adenosylmethionine (SAM)-dependent transmethylation reac-
tions (Figure 2). SAM donates a methyl group to unmethylated
cytosines in DNA. Following methyl group donation, SAM is
converted to S-adenosylhomocysteine (SAH). SAH is further
hydrolyzed to adenosine and homocysteine (HCY). Adenosine is
cleared by ADK-mediated phosphorylation to AMP, and HCY is
converted to methionine in a folate-dependent manner. Impor-
tantly, DNA methylation is dependent on the continuous removal
and subsequent equilibrium constants of SAH, adenosine and
HCY (Lu, 2000; Boison et al., 2002). Thus, an accumulation of
adenosine prevents the biochemical conversion of SAM to SAH
and therefore inhibits DNA methylation.

Humans with ADK deficiency caused by a missense mutation
in the ADK gene have disruptions to the transmethylation path-
way with increased methionine and SAH levels. Furthermore,
they have abnormal liver function; encephalopathy; and severe
progressive neurological deficits (Bjursell et al., 2011). Transgenic
mice with an ADK knockout also have disruptions in the trans-
methylation pathway with decreased blood adenine levels and
increased HCY levels and the fatal liver disease neonatal hep-
atic steatosis (Boison et al., 2002). Peripheral changes in the
transmethylation pathway are conserved within the brain. We
recently found that hippocampal adenosine levels regulate the
global DNA methylation status by shifting the equilibrium con-
stant of the transmethylation pathway; thereby either increasing
(high ADK and low adenosine) or decreasing (low ADK and high
adenosine) methylation. These adenosine dependent changes in
DNA methylation are receptor-independent and can be evoked
by either a single pharmacological bolus of adenosine (icv) or in
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FIGURE 2 | Adenosine tone regulates the transmethylation pathway.

Pathways in blue reflect steady state pathways, whereas pathways in red
show pathway shifts induced by alteration of adenosine homeostasis.
Physiological baseline: DNA methylation of cytosine residues is mediated
by the transmethylation pathway. S-adenosylmethionine (SAM) donates a
methyl group, which is added to cytosine residues by DNMT. In the process
SAM is converted to S-adenosylhomocysteine (SAH). SAH is further
converted to adenosine (ADO) and homocysteine (HCY) by the enzyme
S-adenosylhomocysteine hydrolase. ADO is phosphorylated to AMP by the
enzyme adenosine kinase (ADK). HCY is converted to methionine and
subsequently back to SAM. DNA methylation is dependent on the constant
removal of the obligatory endproducts ADO and HCY. Phase I (epileptogenic
trigger): we hypothesize that the injury and/or SE induced decrease of ADK
and surge of ADK (Clark et al., 1997; Gouder et al., 2004; Pignataro et al.,
2008) shifts the equilibrium constant of the transmethylation pathway to
SAH. The increased SAH prevents SAM donation of a methyl group to DNA.
Reduced DNA methylation permits the transcription of early
epileptogenesis genes. Phase II (epileptogenic condition): increased ADK
within reactive astrocytes reduces adenosine tone to pathologically low
levels. Low adenosine tone shifts the biochemical pathway to favor SAM
conversion to SAH; thereby, DNA methylation will be increased.
Pathological hypermethylation of DNA is present in resected hippocampi of
mTLE with hippocampal sclerosis patients (Kobow et al., 2009).

response to endogenous changes in ADK expression or activity
(Williams-Karnesky et al., 2013). As an obligatory endproduct of
transmethylation, the adenosine tone non-specifically drives the
transmethylation pathway by regulating substrate availability; with
site specific DNA methylation mediated by DNMT1, 3a or 3b
complexes (Goll and Bestor, 2005; Caiafa et al., 2009; Feng et al.,

2010; Zampieri et al., 2012). Consequently, the adenosine tone
does not regulate site specific DNA methylation, but instead the
homeostasis of the DNA-methylome.

THE ADENOSINE KINASE HYPOTHESIS OF EPILEPTOGENESIS
As outlined above, glial pathologies play important roles in epilep-
togenesis. Astrocytes form the major metabolic reuptake route
for synaptic adenosine and control the availability of extracellular
adenosine via expression changes of the astrocyte-based enzyme
ADK, which phosphorylates adenosine to AMP and thereby drives
the influx of adenosine into the astrocyte through equilibra-
tive transporters (Boison, 2013). Using transgenic approaches
and adenosine microelectrode biosensors we previously demon-
strated that ADK expression levels in astrocytes directly control
the levels of tissue adenosine under baseline conditions (Ether-
ington et al., 2009). During epileptogenesis the adenosine/ADK
system undergoes biphasic changes that might be instrumental in
epileptogenesis and seizure generation (Figure 2).

PHASE I OF ADENOSINE DYSREGULATION
Injuries to the brain such as trauma, stroke, or SE trigger an acute
surge in adenosine, which is accompanied by transient downregu-
lation of ADK (Clark et al., 1997; Pignataro et al., 2008). The initial
injury and the associated surge in adenosine can trigger several
mechanisms possibly implicated in epileptogenesis, among which
the induction of A2AR expression in glial cells appears to play
a prominent role. In primary cultures of glial cells lipopolysac-
charide (LPS) was found to induce A2AR mRNA and protein
expression with a peak at 48 h after treatment (Saura et al., 2005).
Likewise, in microglial cells and astrocytes of the mouse substan-
tia nigra 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
induced the expression of A2ARs within 24 h after intoxica-
tion. The proliferation of astrocytes and thereby the development
of astrogliosis is in part regulated by the ratio of the differ-
ent adenosine receptors expressed on the astrocyte membrane.
Importantly, the increased activation of A2ARs by an injury-
associated surge in adenosine can increase astrocyte proliferation
and activation, whereas the blockade of A2ARs prevented the
induction of astrogliosis by BDNF, which is a known transac-
tivator of the A2AR (Hindley et al., 1994; Brambilla et al., 2003;
Rajagopal et al., 2004). In addition, important immune func-
tions of the brain are under the control of adenosine homeostasis
(Hasko et al., 2005, 2008). Via simultaneous activation of A1

and A2A receptors adenosine was shown to stimulate the pro-
liferation of naïve microglial cells (Gebicke-Haerter et al., 1996),
whereas the A2A receptor-dependent upregulation of cyclooxy-
genase 2 (COX-2) and the release of prostaglandin E2 (PGE2)
were shown to mediate additional pro-inflammatory effects of
adenosine (Fiebich et al., 1996). Multiple inflammatory processes,
which have been linked to epileptogenesis (Ravizza et al., 2011)
could be triggered by an injury-induced surge in adenosine.
Recent findings also demonstrate that increased levels of adeno-
sine induce hypomethylation of hippocampal DNA as described
previously by shifting the equilibrium constant of the transmethy-
lation pathway (Williams-Karnesky et al., 2013). The reduced
methylation of CpG rich promoter regions could induce the tran-
scription of epileptogenesis genes, suggesting a novel mechanism
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whereby an acute injury-induced surge in adenosine could trigger
epileptogenesis.

PHASE II OF ADENOSINE DYSREGULATION
Astrogliosis is a pathological hallmark of the human and experi-
mental epileptic brain and has consistently been associated with
overexpression of ADK resulting in adenosine deficiency (Li
et al., 2008; Aronica et al., 2013). Adenosine deficiency in human
epilepsy has directly been identified via the analysis of microdial-
ysis samples. A 25% reduction of adenosine in the epileptogenic
versus the contralateral control hippocampus was found (During
and Spencer, 1992). In our prior work we provided the following
evidence linking expression levels of ADK to seizure propensity:
during epileptogenesis increased ADK expression and emergence
of spontaneous electrographic seizures coincided both temporally
as well as spatially (Li et al., 2008). The transgenic overexpression
of ADK (40% increase) in the brain of mice triggered sponta-
neous electrographic seizures (Li et al., 2008), whereas a transgenic
approach that reduced ADK expression in cortex and hippocam-
pus of mice (40% reduction) rendered those animals resistant to
seizures and resistant to epileptogenesis (Li et al., 2008). These
data demonstrate that ADK provides a molecular link between
astrogliosis and increased neuronal excitability.

In addition, the epileptogenic hippocampus is characterized by
increased DNA methylation. This hypermethylated state forms the
basis of the methylation hypothesis of epileptogenesis, which sug-
gests that seizures by themselves can induce epigenetic chromatin
modifications and thereby aggravate the epileptogenic condition
(Kobow and Blumcke, 2011). Hypermethylation of DNA can be
triggered by a variety of mechanisms, however, the mechanisms
underlying the gradual increase in DNA methylation status dur-
ing the course of epileptogenesis are not well characterized and
largely the subject of speculation (Kobow and Blumcke, 2012).
The epigenetic drift hypothesis suggests that a gradual shift in
the ratio of active DNA demethylation and de novo methylation,
triggered by a precipitating injury and modified by environmen-
tal and intrinsic factors leads to increased DNA methylation,
altered gene expression, and an altered (e.g., seizure) pheno-
type (Feil and Fraga, 2011). We propose that overexpression of
ADK in the epileptogenic hippocampus and resulting adeno-
sine deficiency drives the biochemical transmethylation pathway
and thereby increases the methylation rate of the hippocam-
pal DNA. It is important to note that adenosine affects DNA
methylation in a non-cell-autonomous manner and thereby is
uniquely positioned to effect homeostasis of the DNA-methylome
on a global scale within the hippocampal formation (Williams-
Karnesky et al., 2013). Through this mechanism, astrogliosis and
associated overexpression of ADK could contribute to contin-
ued epileptogenesis through maintenance of a hypermethylated
state of hippocampal DNA. Conversely, reduction of DNA
methylation through therapeutic adenosine augmentation may
provide a rational therapeutic approach for the prevention of
epileptogenesis.

ANTIEPILEPTOGENIC THERAPIES
Several lines of evidence suggest that adenosine might prevent
epileptogenesis. Transgenic mice with an engineered reduction

of ADK expression in forebrain were found to be resistant to the
development of epilepsy, even when the epileptogenesis-triggering
SE was coupled with transient blockade of the A1R (Li et al., 2008).
Similarly, adenosine-releasing stem cells – implanted into the
hippocampal formation after triggering epileptogenesis – dose-
dependently attenuated astrogliosis, suppressed ADK increases,
and attenuated development of spontaneous seizures (Li et al.,
2008). Using an independent therapeutic approach, the transient
delivery of adenosine by intraventricular silk for only 10 days
provided long-lasting (beyond adenosine release) antiepilepto-
genic effects in the rat kindling model of epilepsy (Szybala et al.,
2009). More recent findings, as will be discussed in more detail
below, suggest that the antiepileptogenic effects of adenosine are
based on an epigenetic mechanism. Since dietary interventions
have been shown to increase adenosine signaling in the brain
(Masino et al., 2011), dietary manipulations such as the ketogenic
diet might likewise hold promising therapeutic potential for the
prevention of epileptogenesis.

EPIGENETIC THERAPIES
As mentioned previously, DNA methylation has been highlighted
as a component of the methylation hypothesis of epileptogene-
sis (Kobow and Blumcke, 2011). Consequently, DNA methylation
inhibitors might be of therapeutic value to either treat epilepsy
by restoring non-pathological epigenetic homeostasis. Unfor-
tunately, the use of DNMT inhibitors for treating epileptic
patients must be approached with caution due to target related
complications or side effects. As an alternative to conventional
pharmacological DNMT inhibitors focal adenosine therapy may
serve as an effective epigenetic medicine. Recently, we described
a novel antiepileptogenic role for adenosine; whereby a tran-
sient adenosine augmentation therapy administered to epileptic
rats after the onset of spontaneous recurrent seizures not only
suppressed seizures during active adenosine release, but also
prevented further disease progression that lasted long after the
therapy was suspended. Adenosine-dependent changes in DNA
methylation were pinpointed as an underlying mechanism for the
antiepileptogenic properties of this adenosine therapy. Adenosine
treatment was found to restore normal DNA methylation levels in
the otherwise hypermethylated hippocampus of the epileptic rat.
More specifically, genome wide analysis using a methylated DNA
immunoprecipitation (MeDIP) array revealed that out of the 125
genes which showed increased DNA methylation in epilepsy, 66
also showed reduced DNA methylation after adenosine therapy in
treated epileptic rats. Interestingly, multiple targets that function
to either interact with DNA or play a role in gene transcription
and translation (PolD1, Polr1e, Rps6kl1, Snrpn, Znf524, Znf541,
Znf710) responded to adenosine therapy with a decrease in the
DNA methylation status of their respective promoters. Conse-
quently, these targets are poised as likely candidates to mediate
adenosine-dependent changes in major homeostatic functions
(Williams-Karnesky et al., 2013).

DIETARY INTERVENTIONS
Dietary therapies for epilepsy can be useful in cases where med-
ications and other treatments are ineffective. The most obvious
application is for epilepsies associated with specific inborn errors

Frontiers in Cellular Neuroscience www.frontiersin.org July 2013 | Volume 7 | Article 109 | 7

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-07-00109” — 2013/7/16 — 12:28 — page 8 — #8

Boison et al. Glial cell homeostasis and epileptogenesis

of metabolism that can be treated by removing or adding specific
dietary components. Such disorders include dysfunctions of the
enzymes phenylalanine hydroxylase, argininosuccinate synthetase,
guanidinoacetate methyltransferase, 3-methylcrotonyl-CoA car-
boxylase, antiquitin, or various enzymes and transporters for
metabolizing different classes of lipids (Papetti et al., 2012). Such
disorders range from somewhat to extremely rare.

For more common forms of epilepsy, one effective dietary
treatment is also the simplest: no diet at all. Fasting has been
known to alleviate convulsions since antiquity. Some of the first
work in the modern era on this topic was done by Geyelin in
the 1910s (Geyelin, 1921). In working with grand mal and petit
mal patients of various ages, he found that 22 out of 26 subjects
were seizure-free after 10 days of fasting, with many experienc-
ing beneficial effects after just 2 days of fasting. Furthermore, two
subjects remained seizure-free for a year after the end of fast-
ing, suggesting the potential for epigenetic and antiepileptogenic
effects. Yet fasting has a number of problems, including the dif-
ficulty of maintaining a fast and being necessarily time-limited.
Also, fasting would be contraindicated in patients that have other
health problems besides epilepsy, growing children, and adults
with very low body mass index.

Fasting forces a metabolic shift in which the liver metabolizes
fatty acids into ketone bodies, which in the absence of sufficient
glucose can be used as fuel by other tissues, particularly the brain,
which is glucose-dependent. Hypothesizing that the antiseizure
effects of fasting were due to this state of ketosis, in the 1920s
Wilder began to use in his epileptic patients a strict modified diet
which also produces ketosis (Wilder, 1921; Wilder and Winter,
1922). This ketogenic diet, low in carbohydrate, high in fat, with
moderate-to-low protein, thus reproduces a major metabolic effect
of fasting while still allowing food and was found to be an effective
anticonvulsant in children and adults (McQuarrie and Keith, 1927;
Baborka, 1930). Similar to fasting, initial reports also suggested an
antiepileptogenic potential of a dietary approach, but there has
been little research to follow up on using controlled studies.

The ketogenic diet was a fairly common epileptic treatment
until the synthesis of phenytoin and other effective anticonvul-
sant drugs in the 1930s, which were easier to implement than a
strict diet. Notably, anticonvulsant drugs often have sedative and
cognitive side effects that the ketogenic diet lacks (Gupta et al.,
2001; Drane and Meador, 2002). Thus, the ketogenic diet became
a rare treatment, until a slow resurgence began in the 1990s in its
use mostly for drug-refractory pediatric epilepsy. Often the diet
now is supplemented with medium-chain triglycerides, which are
absorbed quickly and metabolized easily to ketones. Good success
rates were reported in retrospective (Kinsman et al., 1992; Hassan
et al., 1999) and prospective studies (Freeman et al., 1998; Vining
et al., 1998).

The first randomized, controlled study of the ketogenic diet
clearly demonstrated a beneficial effect (Neal et al., 2008). These
studies often showed efficacy equal to anticonvulsant drugs and
while seizures worsened as a whole in patients on anticonvul-
sant medications they improved as a whole in the group on
the diet. While a subset of the children on the ketogenic diet
became seizure-free, this did not occur in the group receiving
standard therapy with anticonvulsants. Even though this study

was randomized and controlled, blinded studies of the ketogenic
diet present obvious difficulties; one attempt, with mixed results,
has been published (Freeman et al., 2009).

Multiple lines of evidence suggest that a ketogenic diet can
increase ATP or mitochondrial biogenesis (Bough et al., 2006),
and that it may exert anticonvulsant effects via adenosine (Masino
et al., 2011). Further validation of these findings could identify the
metabolic shift, which accompanies a ketogenic diet (or fasting),
as a key strategy to increase adenosine and restore homeosta-
sis. Along those lines, and as noted above, the potential for the
ketogenic diet to restore homeostasis and offer antiepileptogenic
activity deserves additional research, particularly as this dietary
therapy is pursued for diverse neurological indications in which
epilepsy is often comorbid.

CONCLUSIONS AND OUTLOOK
Homeostasis has long been recognized as a core physiological prin-
ciple, and the CNS depends critically on maintaining its milieu,
including ion gradients, temperature, pH, and cell energy, as
well as also regulating transcription and translation to ensure
proper function. Chronic disruption of either its environment (the
milieu) or its adaptive response to its environment (transcription
and translation) results in a loss of CNS homeostasis and patho-
logical dysfunction. It becomes clear that complex neurological
syndromes, such as epilepsy, which are not only defined by a dom-
inant symptom (i.e., a seizure), but also by a growing number of
associated comorbidities, can best be explained by the disruption
of network homeostasis. Disruption of network homeostasis will
lead to the dysregulation of several molecular pathways (e.g., those
dependent on K+, glutamate, and adenosine homeostasis) simul-
taneously. It becomes clear that conventional drugs with a mode of
action that is restricted to only one target or pathway might be suf-
ficient to block a symptom (e.g., a seizure), but are unlikely to affect
a neurological condition on the network level. Novel therapeu-
tic interventions based on adenosine, epigenetic mechanisms, or
dietary interventions might hold promise to affect network home-
ostasis as a novel conceptual strategy to treat and prevent epilepsy
on the network level. For future therapy development it is impor-
tant to note that adenosine augmentation has no known adverse
effects. In preclinical toxicity studies of intrathecal adenosine in
dogs, no side effects were observed with intrathecal adenosine
infused chronically for 26 days (Chiari et al., 1999). Likewise,
intrathecal adenosine was tested in humans in escalating doses of
up to 2 mg without any adverse effects (Eisenach et al., 2002a,b).
Importantly, suprahippocampal implants of adenosine-releasing
cells demonstrated a robust pro-cognitive effect in mice (Shen
et al., 2012), suggesting that therapeutic adenosine augmentation
might combine anticonvulsant with cognition-enhancing effects.
Whereas seizure suppression in chronic epilepsy would require
continuous long-term augmentation of adenosine, e.g., by gene
therapy, cell grafts, or dietary intervention, preventing disease pro-
gression in the early stages of epilepsy might require only the tran-
sient delivery of adenosine. Adenosine-releasing silk might be an
attractive therapeutic candidate due to the bioresorbable proper-
ties of this biopolymer. Those and related approaches are currently
in preclinical development and molecular pathways stimulated by
adenosine augmentation are currently under intense investigation.
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