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Abstract

With the advent of next-generation sequencing technologies, large data sets of

several thousand loci from multiple conspecific individuals are available. Such

data sets should make it possible to obtain accurate estimates of population

genetic parameters, even for complex models of population history. In the analy-

ses of large data sets, it is difficult to consider finite-sites mutation models

(FSMs). Here, we use extensive simulations to demonstrate that the inclusion of

FSMs is necessary to avoid severe biases in the estimation of the population

mutation rate h, population divergence times, and migration rates. We present a

new version of Jaatha, an efficient composite-likelihood method for estimating

demographic parameters from population genetic data and evaluate the useful-

ness of Jaatha in two biological examples. For the first application, we infer the

speciation process of two wild tomato species, Solanum chilense and Solanum pe-

ruvianum. In our second application example, we demonstrate that Jaatha is

readily applicable to NGS data by analyzing genome-wide data from two south-

ern European populations of Arabidopsis thaliana. Jaatha is now freely available

as an R package from the Comprehensive R Archive Network (CRAN).

Introduction

In recent years, a great number of reports on whole-

genome data sets have followed the advent of next-generation

sequencing (NGS) technologies (e.g., pyrosequencing, Mar-

gulies et al. 2005). Examples are the introduction of the

human 1000 genomes project (1000 Genomes Project Con-

sortium 2010) and the 1001 genomes project of Arabidopsis

thaliana (Weigel and Mott 2009; Cao et al. 2011). Though

less extensive in number of genomes, sequenced whole-gen-

ome data are available from several other organisms,

including Drosophila (Begun et al. 2007), mouse (Keane

et al. 2011), and Escherichia coli (Lukjancenko et al. 2010).

The available vast amounts of data enable us to estimate

parameters of complex models with greater precision

(Lascoux and Petit 2010; Keinan and Clark 2012). These

models accommodate the biological information relevant

to the study organism to shed light on evolutionary

processes, such as speciation (The Heliconius Genome

Consortium 2012). Furthermore, detailed models can be

prerequisites for inferring natural selection (e.g., Clotault

et al. 2012). The necessity to account for demography first

was pointed out due to its “selection-mimicking” effects

on genetic variability (Robertson 1975; Andolfatto and

Przeworski 2000; Teshima et al. 2006; Siol et al. 2010).

For the estimation of parameters of species divergence

in the isolation-with-migration framework (Hey and

Nielsen 2004), various approaches have been imple-

mented, including Markov chain Monte Carlo methods

such as LAMARC (Kuhner 2006), MIMAR (Becquet and
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Przeworski 2007), IM, and subsequent developments of

the latter (Hey and Nielsen 2004, Hey and Nielsen 2007;

Hey 2010; Choi and Hey 2011). A hidden Markov model

was introduced by Mailund et al. (2011) to estimate the

divergence time and recombination rates along an align-

ment of two genomes excluding gene flow. More flexible in

the underlying demographic model are approaches such as

the diffusion approach oaoi (Gutenkunst et al. 2009), the

composite-likelihood method of Garrigan (2009), and

approximate Bayesian computation (ABC) methods (e.g.,

Beaumont et al. 2002; Beaumont and Balding 2004; Bazin

et al. 2010).

The assumption of an infinite-sites mutation model

(ISM) is critical for the computation of the likelihood in

many classical and recent population genetic approaches

(Kimura 1969; Watterson 1975; Gutenkunst et al. 2009;

Chen 2012). Apart from rare exceptions, likelihood com-

putations are only possible under this assumption. Accord-

ing to the ISM, all mutations that have occurred along the

sequences since the most recent common ancestor of the

sample affect a new site; therefore no single position can

mutate twice. However, it is not uncommon to observe

three or four nucleotides segregating at a single site in data

sets, indicating a clear violation of ISM. A widely used

approach is to exclude these sites from further analyses.

This procedure may be reasonable if only a few positions

show multiple hits. Moreover, not all double hits will be

visible in the sequence alignments, and neglecting them

biases estimates of the population mutation parameter h.
Desai and Plotkin (2008) concluded that if h per site

exceeds 0.05, neglecting back mutations and multiple

mutations (in the following termed neglecting finite sites)

will increase the false positive rate in tests for selection.

Multiple mutations can have several effects on parame-

ter estimations. For example, migration rates may be

overestimated because independent mutations at the same

nucleotide position can be interpreted as a migration

event. Likewise, back mutations (reversals) on long

branches could cause these branches to appear shorter.

This will affect estimates of divergence times and popula-

tion growth. If a parallel mutation occurs on the branch

leading to the outgroup, the ancestral state will be mis-

identified which can affect the determination of ancestral

and derived states.

Mutation rate heterogeneity between sites can com-

pound the problem of multiple hits by increasing the rate

of undetected double hits, thereby leading to a mis-estima-

tion of h and other parameters. Rogers and Harpending

(1992) showed that based on the shape of the distribution

of the number of sequence polymorphisms, it is possible to

estimate the timing and extent of population expansion.

They applied this approach to study human mitochondrial

data but assumed infinite sites. Subsequently, several

authors noted that the ISM assumption is not met in the

case of mitochondrial data (e.g., Lundstrom et al. 1992;

Aris-Brosou and Excoffier 1996; Schneider and Excoffier

1999). Furthermore, Aris-Brosou and Excoffier (1996)

observed that mutation rate heterogeneity affects the num-

ber of segregating sites in a way similar to a recent popula-

tion expansion. Using an ISM while neglecting rate

heterogeneity can lead to deviations in parameter estima-

tion up to 20% in a simple expansion model and can have

a severe effect on the estimation of confidence intervals

(Schneider and Excoffier 1999). In A. thaliana, models that

include variable mutation rates fit better than models with-

out (Franc�ois et al. 2008).
MCMC-based programs like IM (Hey and Nielsen

2004) or LAMARC (Kuhner 2006) have not only the

advantage of using considerably more information from

the sequence data than summary statistics-based methods

but can also include finite-sites mutation models (FSM) in

their estimation. Well-known examples of FSMs from

simple to more complex models are Jukes Cantor (JC),

Kimura-2-parameter, Felsenstein 81, Hasegawa Kishino

Yano (HKY), and the general time reversible (GTR) model

(Jukes and Cantor 1969; Kimura 1980; Felsenstein 1981;

Hasegawa et al. 1985; Tavar�e 1986). A limitation of “full-

data” methods, such as IM and LAMARC, is, however,

that it is difficult to extend them to population demo-

graphic models outside their intended range. Moreover,

full-data methods are computationally very demanding,

which makes them inappropriate for large NGS data sets.

In Naduvilezhath et al. (2011), we introduced the com-

posite-likelihood method Jaatha, which estimates demo-

graphic parameters of two recently diverged species from

polymorphism data. Similar to the ABC approach (e.g.,

Beaumont et al. 2002; Leuenberger and Wegmann 2010),

Jaatha uses simulations for a range of parameter values to

assess how the summary statistics (SS) depend on the

parameters of the demographic model. Although Jaatha is

flexible regarding the demographic model, simulating the

entire parameter space a priori is only feasible with a

maximum of four model parameters. For more complex

demographic scenarios, estimating four parameters is too

limiting. Here, we present a new version of Jaatha that

has no strict limitation on the number of parameters of a

user-defined speciation model. The main modification

compared to the previous version is that after an initial

coarse search, the program applies an adaptive strategy to

launch simulations for regions of the parameter space that

are most relevant for the observed data set (Fig. 1).

Using simulated data, we investigate the effects of

assuming the ISM when the data are generated under an

FSM. We find that assuming an ISM in the presence of

FSM can lead to an overestimation of the divergence time

and the migration rates and an underestimation of h.
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Parameter estimations improve considerably when a

finite-sites sequence simulator (such as Seq-Gen by Ram-

baut and Grassly 1997) is included in the method. In this

case, Jaatha can provide accurate estimates of FSM

parameters such as the mutation rate heterogeneity.

To demonstrate the improvements in the new version

of Jaatha, we reanalyze the example data set used in Nadu-

vilezhath et al. (2011). It consists of DNA alignments from

seven genes of the wild tomato species Solanum chilense

and S. peruvianum (Fig. 2). A fraction of the polymorphic

sites (7.3% or 70 positions) showed three or four different

nucleotides across the sampled sequences including the

outgroup sequences, and therefore two or more muta-

tional events must have occurred at these sites. This high

number of affected sites suggests that we should account

for back mutations and double hits when analyzing the

Solanum data. Although strong hybridization barriers exist

between these species and hybrids have not been observed

in the natural habitat (R. Chetelat, personal communica-

tion), our previous analysis of the seven genes yielded

significant nonzero interspecific migration rates for all

models (Naduvilezhath et al. 2011).

In simulations, we show that migration rates can be

severely overestimated by assuming the ISM. With the

new versions of Jaatha, we were able to explore two alter-

natives for observing the apparent gene flow between S.

chilense and S. peruvianum: (1) The signature of migra-

tion between species could be due a gradual decrease in

gene flow after divergence (“Decreasing Migration”

model, see below) or (2) The signature of migration is an

artifact of neglecting FSM. Using a simulation-based like-

lihood-ratio test, we show that migration rates are still

significantly different from zero if we take multiple hits

into account.

Since Jaatha needs relatively few initial simulations, the

analysis of large NGS data is possible. As a proof of con-

cept, we apply Jaatha to a genome-wide data set of two

southern European A. thaliana populations and a Siberian

population, which served as an outgroup. Our results

suggest that the southern European populations have split

long before the last ice age. This is in contrast to the pro-

posal in Sharbel et al. (2000) of a more recent split in

these populations during the last glacial maximum in

Europe.

Material and Methods

Demographic models

In our basic model (Fig. 3), we consider two populations

P1 and P2 of sizes N1 and N2=q9N1. The populations

emerged s94N1 generations ago from a joint ancestral

population of size (s1+s2)9N1. Both populations can

experience a size change: P1 from size s19N1 to its pres-

ent day size N1 and P2 from size s29N1 to N2. When s1=1
(or s2=q), no size change occurs in P1 (P2). A symmetric

migration rate m between the species is assumed, which is

(A)

A
(B)

A

(C)

A

B

(D)

B

A
C

Figure 1. Refined search strategy in Jaatha 2.0. (A) Box A is a cube

in the parameter space that is placed around the initial estimate ~pb

(9). smain parameter combinations (bullets) are sampled from box A

and are used for simulations, which are then (B) used to refine the

parameter estimation (black 9). (C) Box B is placed around the

refined parameter estimate and new simulations are launched with

parameter combinations sampled from box B. These simulations are

combined with the previous ones to further refine the parameter

estimations. (D) As the current parameter estimation moved out of

box A, only simulations according to parameter combinations sampled

in box B and in box C are used for the next iteration. Simulation

results from box A (gray) are deleted.

Figure 2. Solanum peruvianum and Solanum chilense. Leaf morphology of two focal species S. peruvianum from LA2744 (Sobroaya, Chile) and

S. chilense from LA2884 (Ayaviri, Chile).
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scaled with 4N1, such that on average each generation

m=4 ¼ m
4N1

� N1 individuals replace inhabitants of the

other population. The population mutation parameter is

defined as h=4N1l, where l is the mutation rate per locus

per generation. In Section S1.1, we give the command

line to simulate population genetic data according to this

model for the program ms (Hudson 2002), which is a

backward-time coalescent simulator, and specify the

parameter ranges that we used. We will now introduce

several models that are nested in the basic model. An

overview of these models along with the results is given

in Table 2, in which parameter values that are fixed in a

particular model are shown bold.

The models “Constant” and “Fraction-Growth” contain

four parameters: h, divergence time s, present day popula-

tion size ratio q, and migration rate m. In both models,

s1=1 is fixed. In the model “Constant”, we fixed s2=q;
therefore, population size changes in P2 after the split are

not permitted. In the model “Fraction-Growth”, s2 is fixed

to 0.05 and the population size of P2 is allowed to change.

The following models were fit to the tomato data: In the

model “FixedS2”, four main parameters are estimated h,
q, s, and m. The parameters s1 and s2 are fixed to 1 and

0.3, respectively, implying a size change in P2 only. The

model “NoMig” differs from the model “FixedS2” in that

m is not estimated but fixed to 0. In the model “Single-

GrowMig”, the parameter s2 is estimated in addition to

the ones described for the model “FixedS2”, thus allowing

for a size change in P2. In the model “BothGrowNoMig”,

the migration rate m is set to 0, and s1 is included into

the parameter space compared to “SingleGrowMig”. In

the model “BothGrowMig”, two parameters, s1 and s2, are

estimated in addition to the four main ones.

As an example of a model with seven parameters,

we assessed the accuracy of the parameter estimation in

the “Decreasing Migration” model (Fig. 4). The model

“Decreasing Migration” is different from the basic model

in that the migration rate m between both populations

decreases in two steps from m to zero. The time span fol-

lowing the split of both populations in which gene flow

occurs is denoted sm. At time s0 þ 1
2 sm before present,

the migration rate is set to half of its value. s0 denotes

the time point at which gene flow has decreased to zero.

The ms command line is given in Section S1.2.

New version of Jaatha

The aim of Jaatha is to estimate a set of n parameters of

a speciation model of two species P1 and P2 from a data

set D of homologous DNA sequences sampled from y1
gametes from P1 and y2 from P2. We summarize the data

set D with a set of SS from the two-dimensional joint site

frequency spectrum (JSFS) J. The JSFS counts the number

of single-nucleotide polymorphisms (SNPs) in D for

which the derived allele occurs in each population, for

example J[a,b]=jab=5 which means that there are 5 posi-

tions in D at which the derived allele is found in exactly

a individuals of P1 and in b individuals of P2. On the

JSFS, we define a set of SS S ¼ ðS1; . . .; SnSSÞ, where

SiðJÞ ¼
P

ða;bÞ2Ai

jab and A1; . . .;AnSS is a partition of

Present

Figure 3. Basic demographic model. In this speciation model, a

single ancestral population splits into two populations P1 and P2. All

size ratios are relative to N1, h = 4N1l and l is the mutation rate per

generation per locus. P1 grows exponentially after the split from the

size ratio s1 to its present size and shrinks if s1>1. P2 starts

immediately after the split with a size ratio of s2 and grows or shrinks

exponentially to reach the present day size ratio of q. Besides the size

ratios q, s1, and s2 between the two populations, the model is

parameterized by the population mutation rate h, the divergence time

s, and the symmetric migration rate m. The last three parameters are

scaled with 4N1 following the parameterization in Hudson’s ms

program (Hudson 2002).

Present

m
m

Figure 4. “Decreasing Migration” model. Seven parameters of this

model were estimated: population mutation rate h, divergence time s,

size ratio between the present day population sizes q, starting size of

P1 and P2 relative to N1 immediately after the split s1 and s2,

symmetric migration rate m following the split, and two times, s0 and

sm. Characterizing the migration behavior from the past to the

present, directly after the split during the time span sm there was

symmetrical gene flow between the two populations at rate m. At

time 0.59sm, migration decreases to 0.59m. During the most recent

time span, s0, there was no migration between the populations. All

population sizes are relative to that of P1.
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A={0,…,y1}9{0,…,y2}∖{(0,0),(y1,y2)}. In the following,

we use nSS=23. For the partition, we chose the high- and

low-frequency polymorphisms to be binned in a similar

fashion because polymorphism at sites with mutations on

the branch leading to the outgroup affect those in partic-

ular. An example of the Ai, descriptions with y1=y2=10
can be found in Figure S3. Since Jaatha draws parameter

values uniformly from the log-scaled parameter space, the

following parameter values are specified on log scale, and

the same holds for the set of true parameter values p=(p1,
…,pn). Jaatha is a composite-likelihood method, which

means that the likelihood is approximated by assuming

unlinked SNPs (Kim and Stephan 2000; Hudson 2001;

McVean et al. 2002). Hence, our SS are Poisson distrib-

uted. Thus, we can compute the composite likelihood for

a parameter combination p̂ by

Ls1;...;snSS ðp̂Þ ¼ PðS1 ¼ s1; . . .; SnSS ¼ snSS jp ¼ p̂Þ

¼
YnSS
i¼1

PðSi ¼ sijp ¼ p̂Þ ¼
YnSS
i¼1

k̂iðp̂Þsi � e�k̂iðp̂Þ

si!
;

(1)

where k̂iðp̂Þ is our estimate for the expected value ESi.

Here, L is a composite likelihood because dependencies

between the SS are neglected. For the calculation of k̂iðp̂Þ,
we first simulate data sets in a specific parameter space B
for which we calculate the SS Ŝ. We then fit to each of

the bSi a Poisson generalized linear model (GLM) with log

link using the glm() function in R (R Development Core

Team 2009). This GLM describes how the expectation

values of bSi depends on the log-scaled parameters p̂ in B.
The parameter values p̂ in B that maximize the approxi-

mate Poisson probability Ls1;...;snSS ðp̂Þ (eq. 1) of S are

determined with the optim() function in R using the opti-

mization procedure of Byrd et al. (1995).

The new version of Jaatha consists of an initial and a

refined search: Initially, we fit GLMs to data simulated

for large regions of the parameter space to find promising

starting points for the subsequent refined optimization

procedure. In the following paragraphs, we give a more

detailed explanation of the two phases and the settings

that can be specified by the user.

1 Initial Search: Finding good starting positions. First, we

divide the parameter space into equally sized blocks by

dividing each parameter range ½minpi ;maxpi � into k

intervals such that we obtain kn blocks with minpi and

maxpi being the minimum and maximum of the

parameter range for parameter pi and i ∈ [1,n]. Within

each block using Hudson’s ms (Hudson 2002), we sim-

ulate sini data sets of nloc loci with, on the log scale uni-

formly (in the following simply uniformly drawn)

drawn parameter values. For all data sets, we calculate

SS and fit a GLM to each SS. With these GLMs within

each block, we can find the parameter combination

that maximizes the score of the observed SS. Each of

the kn blocks provides a single best parameter combina-

tion. Out of this list, nRP starting positions (default

nRP=10) points with the highest score Zf~p1; . . .; ~pnRPg
are selected for the in-depth-search.

2 Refined Search: Finding nRP best point estimates. For

b ∈ {1,…,nRP} do:

(a) Assembling a list L of best parameter estimates

starting from ~pb (Fig. 1): Around ~pb, we perform

a Jaatha step to obtain ~p0b: First, we define a block

B~pb ¼ ½~pb � r; ~pb þ r�, where ri=r for all i ∈ 1,…,n.

Within this block B~pb , we simulate smain data sets

of nloc loci with uniformly chosen parameters from

within this block (corner points in addition), cal-

culate SS, fit GLMs as described above, and esti-

mate a new optimal parameter combination ~p0b.
We then run a Jaatha step for a parameter range

around ~p0b to find ~p00b . For the GLM fitting to find

~p00b , we only reuse simulations of previous blocks if

~p0b falls within the block, otherwise the simulations

are deleted from memory (Fig. 1D). Especially for

the FSM runs, this is necessary to reduce the

amount of memory usage. This procedure is iter-

ated until the score of the new parameter combi-

nation has not changed by more than e in any of

the last tstop steps. The maximum number of steps

can be specified as another stopping criterion

(tmax) which was necessary in particular when e
was small such that the score did not seem to con-

verge. Throughout this phase, we keep a list (L)
of nB parameter combinations with the highest

scores. There is an option to weight simulations of

blocks with wi, where w ∈ [0,1] and i states how

many iterations ago the simulation was performed.

(b) Evaluation of the parameter estimates in L: After
phase 2 (a) has finished, the parameter combina-

tions stored in L will be used to perform sfinal
independent simulations for each of them to cal-

culate the composite-likelihood of each parameter

combination (using eq. 1) with

k̂iðp:Þ ¼
Xsfinal
j¼1

Si;j;

where p: 2 L and Si,j is the i-th SS of the j-th

simulation. The parameter combination with the

highest likelihood will then be reported as the

result for b.

Since we start the detailed search for each of the nRP
refine points, Jaatha will report nRP parameter combi-

nations in total. The Jaatha results in the following

always represent the parameter combination with the

overall highest likelihood.
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Another option that can be set by the user is exth,

which specifies whether h is excluded from the parameter

range from which the random values are chosen for the

simulations. If this option is set, h is fixed to the value of

5 for the simulations, which reduces the dimensions of

block B by one, while the other parameters are calculated

as described above. h is then estimated separately of the

other parameters as in Naduvilezhath et al. (2011). Note

that this approach is based on an ISM heuristic.

An implementation of the algorithm can be down-

loaded as an R package (R Development Core Team

2009) from http://evol.bio.lmu.de/_statgen/software/jaa-

tha/ or from CRAN (http://cran.rproject.org/web/pack-

ages/jaatha/index.html). An intensive simulation study to

optimize Jaatha settings was carried out. The description

and results are included in the Section S2.

Example data sets

Solanum data set

S. chilense and S. peruvianum are diploid perennial

plants that inhabit the Western Coast of South America.

All S. chilense and S. peruvianum analyses were per-

formed on the seven loci of average gap-free length of

1264 bp with a total of 954 SNPs from on average 44

alleles per locus of S. chilense and 43 alleles per locus of

S. peruvianum (Arunyawat et al. 2007; St€adler et al.

2008). The outgroup sequence for all genes was S. och-

ranthum, which diverged from the ancestor �5.8 to 13.6

million years ago (L. Rose, unpubl. data). In all FSM-

estimations with the Solanum loci, we use the “Solanum

configuration”. We define the “Solanum configuration”

as follows: The nucleotide frequencies p(.) are set to

those observed in the S. chilense and S. peruvianum data

set: pðAÞ ¼ 0:26, pðCÞ ¼ 0:20, pðGÞ ¼ 0:22, and pðTÞ ¼
0:32. We used ti/tv=2 for the simulations. (A value of ti/

tv=1.6 is observed when the S. chilense and S. peruvianum

are compared to the outgroup sequence.) The divergence

time factor T (explained in the following) is set to 2

and the sample sizes to 44 and 43. When the Γ-shape
parameter a was not estimated by Jaatha, it was set to a

value of 0.7, which is the average value suggested by

Modeltest 3.7 (range from 0.46 to 1.09 in analyses of

the Solanum genes; Posada and Crandall 1998). The

transition–transversion ratio ti/tv is defined as the ratio

of expected numbers of transitions and transversions

such that, for example, ti/tv=0.5 for the Jukes Cantor

model (Jukes and Cantor 1969). For both the simulation

studies and the simulations for the analyses of the

tomato data, the ancestral states of each site were

inferred from outgroup sequences simulated based on a

divergence time of T9s from the present. The shape

parameter a of the Γ-distribution models how the muta-

tion rate varies across the sites (the scale parameter b of

the Γ-distribution is fixed to 1/a). Small values of a cor-

respond to greater rate heterogeneity between sites (for

the chosen parameter range for a see Section S1.3).

To test whether migration rate was significantly differ-

ent from zero, we followed a likelihood ratio testing

approach with null model having no gene flow (as

mentioned by Hey 2006). For this, we calculated

the composite log-likelihood ratio ‘LR, that is ‘LR¼
log Lð“FixedS2þC”Þ

Lð“NoMigþC”Þ

� �
¼ logðLð“FixedS2þC”ÞÞ� logðLð“No

MigþC”ÞÞ, where L is the composite likelihood of the

specified model. This yielded a ‘LR of � 14 for the Sola-

num data. Since we used composite likelihoods, we could

not apply a v2 approximation to calculate P-values but

instead used a simulation procedure (Naduvilezhath et al.

2011). We tested how often we would observe a ‘LR as

high or higher if the data were simulated under the

assumption of no gene flow. We simulated 200 sequence

files with the best “NoMig+Γ” parameter estimates for the

Solanum loci under the “Solanum configuration”, a recom-

bination rate per locus of 25, and sequence length of 1250

bp. These data sets were then analyzed in the same way as

the Solanum data: We used the “FixedS2+Γ” and

“NoMig+Γ” model to calculate the ‘LR of the best param-

eter estimates. The Jaatha settings for these analyses were

the same as for the Solanum data (J7 for the “FixedS2+Γ”
model and the “NoMig+Γ” model) but with nRP=10 for

the “FixedS2+Γ” model. In Naduvilezhath et al. (2011) we

also performed a likelihood-ratio test comparing two

FSMs, which showed significant evidence for gene flow.

The difference of the analysis conducted here to the previ-

ously used FSM model was that a and ti/tv were not fixed

but estimated from the Solanum data as well.

For the best fitting model “FixedS2+Γ”, we constructed

bias-corrected bootstrap confidence intervals as described

by Efron and Tibshirani (1993). We simulated 100 boot-

strap data sets of 7 loci with the recombination rate q=5
per locus per 4N1 generations, which was the lowest value

of q estimated for the tomato loci (Naduvilezhath et al.

2011, Suppl.). Increasing q would make the confidence

intervals narrower because the data will be more unlinked

and thus decrease the variances of the SS. Therefore, our

confidence intervals are conservative. The other simula-

tion details were set as in the composite-likelihood ratio

test. In Naduvilezhath et al. (2011) we demonstrated with

a seven loci meta-bootstrap analysis that bootstrap confi-

dence intervals have an accurate coverage probability. To

reduce run time, we fixed a to 2.5, which is the Solanum

estimate under this model.

3652 ª 2013 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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Arabidopsis thaliana data set

As a NGS application, we analyzed A. thaliana genome

sequences from 12 individuals from Italy, 12 individuals

from Spain, and 5 individuals from Novosibirsk presented

in Cao et al. (2011). We used loci for which homologous

sequences were available from all three populations (for

accession numbers see Table 1). After filtering out miss-

ing, ambiguous, and nonpolymorphic positions, we

obtained more than 1.1 million SNPs. We divided them

into three groups based on the level of selective pressure

that we assume they experience. The first group (FS) con-

sisted of first and second codon positions and UTRs,

whereas the second one (Th) consisted of third codon

positions. The last category (NC) contained noncoding

positions (introns and intergenic regions). If a SNP could

be assigned to more than one group – for example,

because of overlapping genes – we assigned it to the more

conserved group. We applied Jaatha to the complete data

set, as well as to each group separately, using an HKY

model with estimated base frequencies and ti/tv ratio

(Jaatha setting J17) as well as an ISM (Jaatha setting J18).

We assumed a demographic model with a split between

the two southern European populations and subsequent

migration, a constant mutation rate, equal and constant

population size of each of the contemporary populations,

and the ancestral one. The Siberian population was used

as an outgroup.

Results

Relationship between the number of
sampled loci and the ability to estimate
population genetic parameters

We investigated the effect of the number of loci sampled

on the ability to accurately recover estimates of the popu-

lation genetic parameters under the “Decreasing Migra-

tion” model. Data were simulated for seven loci matching

the “Solanum configuration” (see above) with an HKY+Γ
model and for 200 (ISM-) loci (for details of parameter

ranges and ms command see Section S1.2). On these data

sets we applied Jaatha assuming an ISM, therefore

neglecting the fact that the data were generated under an

FSM. The simulated data sets were analyzed with Jaatha

setting J1 (Table S1 with nRP=16).
In Figure 5, we show that Jaatha can estimate seven

parameters accurately if enough loci are available. In the

case of seven loci, great uncertainty is associated with all

parameter estimates, especially large values of s0 were dra-
matically underestimated (always ≤0.7, Fig. 5D). The cor-

responding value for sm is typically overestimated and

reaches the upper limit of the parameter range of sm,
such that the estimate of the divergence time s0+sm is

quite accurate, even for seven loci (Fig. 5F). For the case

of 200 loci, the more recent time s0 can be estimated

more accurately than sm. We observed no obvious con-

nection to migration rate. The estimation errors of s0 and
sm were negatively correlated (Fig. 5I). When sufficiently

many loci are available, the parameters h, q, and s can be

estimated quite confidently; with slightly more fluctuation

in accuracy, s0 and the starting sizes after the split of both

populations, s1 and s2 can also be estimated. The influ-

ence of different settings on the accuracy and run time of

Jaatha has been extensively studied under a simple demo-

graphic model. The analyses and results are presented in

Section S2.

Violations of the infinite-sites model cause
overestimation of divergence time and
migration rates

We conducted the following simulation study to assess

the quality of the estimations and to determine which

parameters were most affected if we neglect back muta-

tions and double mutations and analyze the data under

infinite-sites (IS) assumptions: Using ms (Hudson 2002),

we constructed genealogies based on 100 loci under the

“Constant” and “Fraction-Growth” model (see Section

S1.1). To simulate the evolution of nucleotide sequences

for these genes, we used Seq-Gen (Rambaut and Grassly

1997) under a HKY + Γ model with the “Solanum config-

uration”, with transition–transversion ratio ti/tv and the

outgroup divergence time factor T variable (Hasegawa

et al. 1985). For the simulation study, we tested three val-

ues of ti/tv: 1, 2, and 5. Five values for the Γ-shape
parameter a were chosen: 0.2, 0.3, 0.5, 0.7, and 1 (The

estimated a found in the literature for genes from vascu-

lar plants ranges between 0.18 and 0.78 and for ti/tv

between 2.6 and 5.3 (Soltis et al. 2002).). For explanations

of ti/tv, T, and a see above. Hence in total, we simulated

data under 15 HKY models (3 values of ti/tv, 5 of a).
Additionally with each model, three different values for T

were chosen (1.5, 3, and 6) to see if they had an impact

on the results. To account for possible variation in the

Table 1. Accession numbers of examined Arabidopsis thaliana sam-

ples.

Sample Accession Numbers

Italy Agu-1, Cdm-0, Don-0, Fei-0, ICE49, ICE50, Leo-1,

Mer-6, Ped-0, Pra-6, Qui-0, Vic-0

Iberia ICE91, ICE92, ICE93, ICE97, ICE98, ICE102, ICE104,

ICE106, ICE107, ICE111, ICE112, ICE120

Outgroup ICE127, ICE130, ICE134, ICE138

Cao et al. (2011) for further reference.
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sequences for each genealogy, five data sets were simu-

lated (repetitions). The value of h for the simulated data

sets ranged from 1.25 to 125 per locus (0.001–0.1 per site;

for other parameter ranges see Section S1.1). Jaatha

defines a nucleotide to be derived when it is different

from the outgroup sequence. In total, we analyzed 27,000
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Figure 5. Parameter estimation under the “Decreasing Migration” model with 7 loci is imprecise but improves with additional loci. Results with

simulated data (7 ( ) and 200 ( ) loci) and tomato loci ( with FSM, with ISM) with the “Decreasing Migration” model with seven

parameters. In the case of 7 loci, when sm is estimated to be >15 ( ), parameter estimates are particularly imprecise. (D) Further, s0 is never

estimated to be greater than �0.7, a behavior that does not occur when 200 loci are used. (F) The divergence time s is calculated by s0+sm and

is more precisely estimated than s0 and sm separately. (I) In the 200 loci case, if s0 is not calculated correctly the estimates of s0 and sm correlate

negatively such that their sum equals the divergence time s again.
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data sets with four methods of a previous verison Jaatha

0.2 (described in Tellier et al. 2011) under the assumption

of an ISM to estimate four parameters. Thus, we carried

out 1.089105 Jaatha runs (all combinations of 15 HKY

models, 3 values of T, 2 demographic models, 100 data

sets, 3 repetitions, and 4 Jaatha methods). This large

number of runs was only feasible because we applied Jaa-

tha 0.2, which allows us to reuse the simulation results of

the first phase. In Figures 6, S5, and S6 the average over

the repetitions are plotted.

As values of the true population mutation rate h
increased, h was increasingly underestimated (e.g., Fig.

6A). The estimation accuracy for the size ratio q was the

least sensitive to increasing values of h (Fig. 6B), although

for high true values of h, q was overestimated by up to

50% in the “Fraction-Growth” model. The parameter esti-

mation of divergence time s and the migration rate

m were affected the greatest as true h (hence the rate of

multiple hits) increased. Both parameters were overesti-

mated by up to three orders of magnitude (Figs. 6C and

D). As h increased, all estimations had higher variances.

The misestimation of s and h was particularly severe for

low values of a, the mutation rate heterogeneity parameter.

Neglecting finite sites affected the misestimations of the

parameters in the two demographic models “Fraction-

Growth” and “Constant” differently (cp. Figs. 6 and S5).

The overestimation of the divergence times was greater

under the “Fraction-Growth” model than under the

“Constant” model; however, the ability to properly esti-

mate the migration rate was not much affected. The size

ratio estimate q showed a greater number of extreme out-

liers in the demographic model with population growth

than in the one without (cp. Figs. 6B and S5B). The tran-

sition–transversion ratio ti/tv (Fig. S6) and the divergence

time factor T had no obvious influence on the estimates

(data not shown).

In general, when h was above a value of 10 per locus

(�0.01 per site), the estimates worsened compared to the

estimates of data sets simulated and evaluated under the

correct model. For data sets with h estimates above this

critical value, we propose that a finite-sites simulator

should be used for the simulation procedure. For data

sets with lower mutation rates, bias corrections based on

the observed regression lines might be a possibility to

obtain results faster, but will be imprecise.

Jaatha estimates mutation rate
heterogeneity accurately

To estimate parameters under an FSM with Jaatha, we

simulated data with ms (Hudson 2002) in conjunction

with Seq-Gen (Rambaut and Grassly 1997) in the initial
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Figure 6. The effect of neglecting finite sites

on parameter estimation under the “Fraction-

Growth” model. The ratio of estimated and

true values of h, q, s, and m plotted against

true h values under infinite-sites assumptions

and the "Fraction-Growth“ model. Shown are

the data sets simulated with the most extreme

a values (a=0.2 and 1), ti/tv=2, and T=3. As a

comparison, estimates for infinite-sites data

sets ( ) are included. The lines plotted are

polynomial regression lines fitted to the ratios

(with lowess function of R). The greatest

influence of neglecting finite sites was

observed in the estimates of s and m (notice

different scaling of Y-axes).
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and refined search phase. To determine how well Jaatha is

able to jointly estimate FSM parameters, in particular the Γ
shape parameter a, in combination with demographic

parameters, we simulated ten data sets each for three differ-

ent values of the transition–transversion ratio ti/tv (1, 2, 5).

The estimation of a in combination with the other parame-

ters was accurate (Fig. 7; for details see Section S1.3).

Parameter estimation improved greatly compared to the

results obtained by applying an ISM in Jaatha on the same

data sets. For high values of ti/tv, the estimation of h and a
became less accurate, even if it was based on FSM. For the

Solanum loci, we estimated ti/tv�1.6 based on the observed

number of transitions and transversions relative to the out-

group. In this ti/tv-range, parameter estimation is robust if

enough loci are available. (The ISM runs were run with

two different Jaatha settings that yielded similar results,

therefore only the results with one of them, J5 (see Table

S1), are shown.).

Application example I: Speciation in
Solanum

Our simulation results in Figure 5 indicate that estimating

the seven parameters of the “Decreasing Migration

model” from only seven genes is quite imprecise for all

parameters. Therefore, we will not discuss the Solanum

results for this model in much detail, but mention that

the migration rate between species was estimated to be

extremely high and the time without migration s0 to be

extremely recent (Table 2). According to our analysis of

the wild tomato species with models in which fewer than

seven parameters were estimated, the ancestral population

size ratio (s1) of S. chilense was below one (0.17), indicat-

ing an expansion in this species following speciation. Pre-

vious studies have not uncovered a signal of an expansion

in this species, but rather in S. peruvianum (St€adler et al.

2008). Therefore, we attempted to determine how strong

the signal for expansion was in S. chilense (and whether

our data set contained sufficient information to distin-

guish between alternative scenarios). We analyzed the

Solanum data with three additional models: (1) “Single-

GrowMig” in which only S. peruvianum experienced an

expansion and gene flow was present between species, (2)

“BothGrowNoMig” with an expansion in both species but

with no gene flow between species, and (3) “Both-

GrowMig” with an expansion in both species and gene

flow. Although the latter two models contained more

parameters, the “SingleGrowMig” model fit the wild

tomato data best. Hence, the indication of growth in

S. chilense is not supported. The two best fitting models

in which FSM is applied were the “FixedS2+Γ” and the

“SingleGrowMig” model. For the estimates of the “Fix-

edS2+Γ” model with a fixed to 2.5, the 95% bias-cor-

rected bootstrap confidence intervals are given in Table 3.

The composite log-likelihood of the “FixedS2+Γ” was

by ‘LR=13.95 higher than that “NoMig+Γ”, the corre-

sponding model without gene flow. To access the signifi-

cance of this evidence of gene flow, we simulated 200 data

sets with the “NoMig+Γ” model and analyzed them with

both the “FixedS2+Γ” and the “NoMig+Γ” model. Only

one of the 200 data sets led to Jaatha results preferring

the model with gene flow with equal or higher ‘LR than

the 13.95 observed in the tomato data (P-value <0.01,
range of ‘LR: [�7.22,14.77]). Thus, even when mutation

rate heterogeneity is allowed, we still detect significant

evidence for gene flow between the two species.
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Figure 7. Estimation of Γ shape parameter jointly with demographic

parameters. Here, we estimated four demographic parameters and

the Γ shape parameter on 30 simulated data sets containing 100 loci,

each with 30 summary statistics. For the estimation, the transition–

transversion ratios (ti/tv=1,2,5) were fixed to the true value. Shown

are also the estimates of the infinite sites (IS) runs with Jaatha on the

same data sets ( ). A clear drop in precision of the estimates of all

four parameters is observed if an IS model is chosen instead of an

finite-sites model.
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Application example II: Speciation in A.
thaliana

When applying Jaatha to a large genome-wide data set

from A. thaliana, we obtained very recent split times for

the population divergence between Spain and Italy and a

high rate of gene flow between populations (Table 4 with

FSM and Table S4 with ISM). The estimates of these two

parameters were nearly the same when we used only the

SNPs of any of the classes FS, TR, or NC. Using an ISM

for parameter estimation led to slight changes in the esti-

mates. The high migration rates of M>3, that is, more

than 1.5 individuals per generation makes the genealogies

of single loci difficult to distinguish from the standard

coalescent of a panmictic population (Gillespie 2004). To

test whether the separation between the population is sig-

nificant, we applied Jaatha with the same population split

model to 100 data sets simulated under the assumption

that the southern European populations are panmictic.

The split times estimated for the panmictic simulated

populations were always shorter than the split time esti-

mated from A. thaliana data. Thus, the spatial structur-

ing of the Italian and Spanish samples is significant

(P<0.01).

Table 2. Estimated parameter values and log-likelihoods based on sequence data from Solanum chilense and Solanum peruvianum.

Model hsite q m s s1 s2 a # Parameters log-Likelihood Settings

NoMig 0.012 10 0 0.17 1 0.3 0.7 3 �91.6 J8

NoMig+Γ 0.012 10 0 0.21 1 0.3 0.69 4 �83.2 J7

FixedS2 0.012 10 0.04 0.22 1 0.3 0.7 4 �81.5 J9

(IS) FixedS2 0.010 4.65 0.59 0.39 1 0.3 – 4 �∞ J10

FixedS2+Γ 0.010 6.05 0.36 0.32 1 0.3 2.5 5 �69.2 J7

SingleGrowMig 0.011 5.67 0.46 0.39 1 0.21 0.7 5 �69.1 J11

SingleGrowMig+Γ 0.010 6.75 0.41 0.29 1 0.24 2.5 6 �72.8 J11

BothGrowNoMig 0.012 5.13 0 0.13 0.42 0.58 0.7 5 �94.6 J11

BothGrowNoMig+Γ 0.014 3.73 0 0.09 0.14 0.19 0.19 6 �294.5 J11

BothGrowMig 0.011 4.47 0.75 0.60 0.62 0.03 0.7 6 �87.1 J12

BothGrowMig+Γ 0.016 2.41 0.96 0.24 0.10 0.18 1.11 7 �96.8 J13

DecMig 0.012 2.36 2.79 0.83* 0.17 0.17 0.7 7 �87.1 J9

(IS) DecMig 0.020 1.80 3.84 0.20* 0.13 0.31 – 7 �∞ J1

Model s0 sm

DecMig 0.03 0.79

(IS) DecMig 0.017 0.19

hsite, m, and s(.) are scaled by 4N1, where N1 is the effective population size of S. chilense. Values in bold were fixed for the estimation. In the

“+Γ” models, a was estimated additionally. The log-likelihoods of the ISM estimates are set to �∞ because the tomato data does not conform to

this assumption. The estimates of s0 and sm are listed in the lower table. See Tables A 1, A 2, and A 3 for Jaatha settings, additional results with

alternative settings, and run times.

*This value was calculated after the run with s0+sm.

Table 3. 95% confidence intervals for best wild tomato estimates

Model hsite q m s s2 a # parameters Settings

FixedS2+Γ 0.010 6.05 0.36 0.32 0.3 2.5 5 J7

lower CI boundary 0.008 3.52 0.11 0.14 0.3 2.5 4 J7

upper CI boundary 0.013 10.51 1.83 0.63 0.3 2.5 4 J7

The estimates and the 95% bias corrected confidence intervals (CI) for the ”FixedS2+Γ“ estimates are given. For the estimations a was fixed to

2.5. Values in bold were fixed for the estimation.

Table 4. Parameter estimates for Arabidopsis thaliana using FSM.

s m a hsite

Complete data set 0.16 3.45 2.87 3.54910�3

FS only 0.12 2.81 4.83 2.73910�3

Th only 0.19 3.31 1.53 3.70910�3

NC only 0.18 3.33 2.26 4.31910�3

Jaatha’s estimates using the HKY model for the mutation rate h, time

s of the split of both demes, the subsequent migration rate m

between populations, and the rate heterogeneity parameter a. The

parameter s is scaled in 2Ne generations, m is twice the number of

immigrants to each deme per generation, and h is 2Ne times the

mutation rate per base.
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Discussion

In this study, we introduced a new version of the

composite-likelihood method Jaatha, which estimates

demographic parameters of a given model from SNP

data. Conducting a simulation study we demonstrated

that Jaatha – when applied to sufficiently many loci –
gives accurate results under both finite-sites (FSM) and

infinite-sites (ISM) models. Jaatha 2.0 is considerably fas-

ter than the previous version (couple of hours vs. several

days in the ISM case), such that estimations with a finite-

site sequence evolution simulator become feasible.

Many population genetic analyses are based on the

ISM assumption (e.g., Chen 2012, approaches using diffu-

sion approximations like as Gutenkunst et al. 2009, or

ABC methods based on ms Hudson 2002). With increas-

ing values of h, there is a higher probability for back and

multiple mutations to occur, some of which will not be

observed. MCMC approaches as those implemented in

LAMARC (Kuhner 2006) or IM (Hey and Nielsen 2007)

do apply finite-sites models (FSM). In currently available

software implementations, these methods can, however,

take several weeks or months to converge. Moreover, they

are restricted to certain types of population genetic mod-

els and difficult to extend.

We considered the biologically more realistic finite-sites

scenario and investigated the effects of ISM violations on

demographic parameter estimations. We show that the

divergence time and migration rates are overestimated

even for moderate values of h. While Schneider and Ex-

coffier (1999) showed that departures from an ISM could

account for a misestimation of the one-population expan-

sion time of 10% to 20%, we observe deviations of diver-

gence time estimates in the two-population scenario of

more than two orders of magnitude when h per site

exceeds 0.01. If the demographic history includes popula-

tion expansion, the misestimation is even greater. Thus,

failure to account for back and multiple mutations is par-

ticularly severe in populations with high-effective popula-

tion sizes (as it is common in bacteria or plants; reviewed

in Charlesworth 2009; Siol et al. 2010) and/or with high

mutation rates (high h values). FSM could mimic migra-

tion if a mutation occurs in one population and creates a

pattern like the one in an individual of the other popula-

tion. If these two independent mutations are misinter-

preted as a single-mutational event, migration may be

evoked to explain the presence of the shared polymor-

phism. This will inflate the estimation of migration.

Multiple mutations create challenges for parameter esti-

mation whether they arise within the genealogy of the

population sample or along the lineage leading to the

outgroup. A solution to tackling the latter issue was pre-

sented in Hernandez et al. (2007). In Jaatha, multiple hits

are allowed across the entire genealogy, both within the

population sample and along the outgroup lineage; there-

fore, this distinction based on where the independent

mutations occur is not treated explicitly, but is still incor-

porated into the model. By incorporating FSM into

Jaatha, we can control for the problems caused by inap-

propriately assuming the ISM. In Jaatha, we are able to

estimate mutation rate heterogeneity a under several sim-

ulation scenarios provided enough loci are available. Sim-

ulating the demography using ms (Hudson 2002) and

subjecting the simulated sequences to a FS sequence gen-

erator such as Seq-Gen provided satisfactory results, espe-

cially when h is included in the optimization range (Figs.

7 and S2). To decrease the run time of the FSM applica-

tions with a estimation, there are several possibilities. For

example, we have not yet investigated the option of cate-

gorizing the Γ shape (-g option in Seq-Gen) as it is com-

monly done in phylogenetics (Yang 1996). Alternatives to

Seq-Gen which are capable of discriminating between

coding and noncoding positions are indelSeqGen2.0

(Strope et al. 2009) or SFS_CODE (Hernandez 2008).

The latter might be a good alternative because in addition

to incorporating FSM into complex demographies, it is

also able to apply a distribution of selective effects on

newly arising mutations, which will be our next step. Siol

et al. (2010) noted that the JSFS might be especially pow-

erful to detect selection.

In a demographic model with two parameters h and

divergence times s, large s values (s≥15) were poorly esti-

mated. Since Jaatha is based on a coalescent simulator

(ms, Hudson 2002), if the divergence time is larger than

the average time that the two populations need to find

their common ancestor, Jaatha reaches its limitation (Fig.

S4). If gene flow is included into the model, greater diver-

gence times could be resolved. The current version of Jaa-

tha is implemented for complex speciation models of two

populations. It is straight forward to apply Jaatha to

demographic models of more than two related popula-

tions or species, but further investigations for the choice

of SS will be needed to obtain good performance in these

cases. For FSM, the choice of SS deserves further consid-

eration because reducing the number of SS would save

computational time during the run (e.g., with boosting,

Lin et al. 2011, or partial least squares (PLS) method,

Wegmann et al. 2009; Boulesteix and Strimmer 2007). In

Section S3, we describe additional SS for FSMs but there

is still room for improvement, especially for high transi-

tion and transversion ratios.

Jaatha was applied to the South American wild toma-

toes S. chilense and S. peruvianum. Compared to our ear-

lier estimates when the finite-sites model was not used,

our estimates for migration are smaller, but still signifi-

cantly different from zero. Sousa et al. (2012) showed in a

Accounting for Finite Sites L. A. Mathew et al.
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simulation study under an ABC framework that it is possi-

ble to distinguish between models with and without

migration even with as few as 5 loci. When more loci are

available, the accuracy of the parameter estimates

increases. In light of the results of our LRT and of Sousa

et al., we find evidence for speciation in the presence of

gene flow between S. chilense and S. peruvianum, as has

been suggested previously (St€adler et al. 2008). However,

to answer the question whether gene flow decreased grad-

ually or not (as modeled in the “Decreasing Migration”

model), more sequence data is required. With simulated

data sets of 200 loci, we show that this is computationally

tractable. The size ratio estimate (6.05) is slightly larger

and the divergence time (0.3294N1, where N1 is the effec-

tive population size of S. chilense) between the two wild

tomato species is more recent compared to previous esti-

mates. Depending on the generation time (one or seven

years), and a per site mutation rate of 5.1910�9 (Roselius

et al. 2005), divergence time of the two species is either

0.7 million years (My) or 4.6 My. Our analyses suggest

that the population structure of S. chilense has not

changed size since the split (cp. likelihood of model Sin-

gleGrowMig of 69.1 and of BothGrowMig of 87.1). Interest-

ingly, in the region of the Central Andes where both

species cooccur, the Andes underwent a drastic elevation

(one third of the present height of the Andes) in the late

Tertiary (10 My ago, Jenks 1975). Around 3–5 My ago, a

cooling of the temperatures occurred, leading to the for-

mation of the youngest habitat of the Andes and a unique

environment for species radiation (e.g., in lupines Smith

and Cleef 1988; Hughes and Eastwood 2006; Graham

2009). The timing of the cooling coincides with our diver-

gence estimates of the two species. Therefore, environmen-

tal changes in the habitat may have allowed for range

expansion of the ancestral species and led to the formation

of these two distinct present day taxa.

As a proof of concept, we have applied Jaatha to

NGS data from a Siberian and two southern European

A. thaliana populations. Our estimates for the split time

between the Spanish and the Italian populations are very

short on a population genetic time scale and the esti-

mated migration rates are very high. With a data set of

just a few loci, it would not be possible to distinguish

such a scenario from panmixia; however as demonstrated

here, the availability of whole-genome data sets makes

such distinctions possible. This illustrates the power of

such large data sets to understand and extract recent

demographic history from genetic information.

According to our results, the split of the Spanish and

Italian populations was very recent on a population genetic

time scale, but still well before the height of the last glacia-

tion, which was 18�20,000 years ago (Taberlet et al. 1998).

If we use experimentally measured rates of about 7910�9

mutations per site per generation (Ossowski et al. 2010) to

calculate the effective population sizes, we get about

2.59105 individuals, which is within the credibility inter-

vals given in Franc�ois et al. (2008). Given a generation

time of one generation per year, the split between these

two southern populations occurred approximately 83,000

years ago. Therefore, according to our estimates, it is unli-

kely that the ancestors of both populations survived the last

glaciation in a common southern refugium as suggested by

Sharbel et al. (2000). However, our results for A. thaliana

are preliminary at best because we have assumed a very

simplistic demographic model, e.g., without allowing for

population size changes. The per-site population-mutation

rate in the A. thaliana data set is in a range where our sim-

ulations (Fig. S5) indicated a minimal bias of using ISM,

rather than FSM, in Jaatha. The simulated data sets were,

however, much smaller than the A. thaliana data set. Rela-

tive to the estimation accuracy that is possible with NGS,

the bias introduced using ISM may be large even under

conditions for which our simulation studies indicated that

the ISM bias was small. Indeed, the ISM-based estimations

(Table S4) differ from the FSM-based estimations for the

divergence time. For the other parameters, the bias intro-

duced using ISM was minimal.

Because of its computational efficiency, Jaatha has a

great potential for population genetic analyses of NGS

data. We are currently improving Jaatha’s applicability for

NGS data by adding procedures to account for sequencing

errors and the influence of coverage. To make Jaatha

appropriate for genome-wide data, we will allow for varia-

tion in mutation rate between loci and the possibility that

a certain fraction of the loci are subject to natural selec-

tion. In principle, large sequence data sets (with many

unlinked or weakly linked loci) should make it possible to

fit complex models. To make this feasible in Jaatha, we

are extending our approach to allow for more than two

populations to be studied and for multiple categories of

SNPs, for example, into synonymous, nonsynonymous,

and noncoding. This will be necessary to extract more

information from the data, which is required to estimate

the additional parameters of more complex models.

Moreover, to make our bootstrap approach for comput-

ing confidence ranges tractable for large data sets, we need

highly efficient methods to simulate structured ancestral

recombination graphs (Griffiths and Marjoram 1996). We

are currently exploring whether McVean and Cardin’s

(McVean and Cardin 2005) approximation is appropriate

or whether we need to account for more of the stochastic

dependencies induced by the ARG (Wiuf and Hein 1999).

Since composite-likelihood methods require large data

sets (Wiuf 2006; Garrigan 2009), we believe Jaatha is a

powerful tool in this era of NGS data and has great

potential for further applications and extensions.
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