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The impact of the tumor immune microenvironment on overall survival in

non-small cell lung cancer (NSCLC) has been studied, but there is little

information on its relevance for risk of relapse after surgery. Understand-

ing more about the immune microenvironment in previously untreated

NSCLC could help in identifying high-risk patients and patients more

likely to benefit from neoadjuvant/adjuvant immunotherapy. Here, we

examined gene expression in 399 surgically derived NSCLC samples and 47

samples from normal lung, using Agilent microarray and RNA sequencing.

In 335 of the tumor samples, programmed death-ligand 1 (PD-L1) expres-

sion was evaluated by immunohistochemistry. Gene expression was used to

estimate content of immune cells and to calculate an immune score. Prop-

erties of the immune microenvironment, and its impact on prognosis, were

compared in histological subgroups and gene expression subtypes. Tumors

with an active immune microenvironment were found for both adenocarci-

nomas (AD) and squamous cell carcinomas (SCC). In AD, high immune

score and high estimates of several immune cell types belonging to the

adaptive immune system were associated with better progression-free sur-

vival (PFS), while in SCC, no association between immune characteristics

and PFS was found. The immune microenvironment, including PD-L1

expression, and its impact on prognosis showed clear differences in AD

and SCC gene expression subtypes. In conclusion, the NSCLC immune

microenvironment is predictive of prognosis after surgery. Lung AD and

SCC gene expression subtypes should be investigated as potential prognos-

tic biomarkers in patients treated with immune checkpoint inhibitors.

1. Introduction

Lung cancer is often diagnosed in advanced stage, and

the 5-year survival rate is 10–20% (Allemani et al.,

2015). Patients with early stage non-small cell lung

cancer (NSCLC) can be offered surgery with curative

intent, but many of these will later relapse. The most

significant predictor for recurrence is TNM stage.
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Other clinical factors associated with poor prognosis

are tumor grade (Sun et al., 2006), increasing age,

male gender, smoking status, performance status,

comorbidity, and surgical technique (Bugge et al.,

2018; Wei et al., 2018; Woodard et al., 2016). Differ-

ent prognostic biomarkers have been investigated but

this far none have been enough validated to make its

way to the clinic.

Since the role of the immune system was recognized

in preventing and arresting the development of can-

cer, much effort has been put into understanding the

underlying biology. Catacchio et al. reviewed the

importance of different immune cell types for progno-

sis in lung cancer reporting M1 macrophages, CD8+
T cells, CD4+ T cells, mature dendritic cells (DC),

and the presence of tertiary lymphoid structures in

tumor to be associated with good prognosis. Regula-

tory T cells (Tregs), immature DC, and M2 macro-

phages were found to be associated with poor

prognosis (Catacchio et al., 2018). A meta-analysis on

the prognostic impact of PD-L1 expression in NSCLC

showed poor prognosis in those with a PD-L1-posi-

tive tumor (Wang et al., 2015). Signs of systemic

inflammation, for example, high neutrophil-to-lym-

phocyte ratio (Gu et al., 2015), have also been

associated with poor overall survival (OS) and

progression-free survival (PFS).

In most studies, NSCLC has been investigated as

one entity, although its main histological subgroups,

adenocarcinomas (AD) and squamous cell carcinomas

(SCC), in many ways behave differently. Both sub-

groups have high mutational burden, but they differ in

mutational pattern. For example, activating EGFR

mutations and ALK alterations are mostly found in

AD while almost all SCC harbor a TP53 mutation

(Cancer Genome Atlas Research Network, 2012,

2014). The immune microenvironment shows different

characteristics in AD and SCC (Socinski et al., 2016),

and it is likely that its impact on prognosis varies with

histological subgroup.

In 2006 and 2010, expression subtypes were

described in AD and SCC, respectively (Hayes et al.,

2006; Wilkerson et al., 2010, 2012), and these are, to

some degree, predictive of patient outcome. In AD,

the terminal respiratory unit subtype (TRU, formerly

bronchioid) has better prognosis after surgery and

includes most nonsmokers and patients with EGFR

mutations and ALK alterations. The proximal inflam-

matory subtype (PI, formerly squamoid) often har-

bors mutations in TP53 and NF1 and has high

mutational burden and proliferation. The proximal

proliferative subtype (PP, formerly magnoid) shows

high expression of DNA repair genes, high

proliferation and often mutations in TP53, KRAS,

and STK11. In this subtype, we find more heavy

smokers and higher chromosomal instability and

hypermethylation, compared to in the other subtypes

(Cancer Genome Atlas Research Network, 2014;

Wilkerson et al., 2012). In SCC, four different sub-

types are described. The primitive subtype is charac-

terized by high proliferation, poor differentiation,

RB1 and PTEN alterations, and poor prognosis. The

classical subtype shows typical alterations associated

with heavy smoking as high expression of genes

active in detoxification and high overall methylation

and chromosomal instability. The basal subtype is

usually well differentiated with high activity in genes

active in cell adhesion and in the basement mem-

brane, while the secretory subtype expresses many

genes related to immunological activity and secretory

functions (Cancer Genome Atlas Research Network,

2012; Wilkerson et al., 2010).

Faruki et al. (2017) investigated the immune

microenvironment in AD and SCC expression sub-

types and found that the TRU and PI subtypes in

AD, and the secretory subtype in SCC, had more

immunologically active tumor microenvironments. The

influence of estimated immune markers on OS was

investigated separately in the expression subtypes and

was found to be most important for the AD PI sub-

type and the SCC primitive subtype, where higher esti-

mates of several immune cell types were associated

with better OS. Lung cancer patients treated with

curative intent are known to have increased mortality

from other causes than lung cancer (Bugge et al.,

2018). Most studies on prognosis after surgery focus

on OS while identifying factors influencing risk of

recurrence would be more meaningful to select high-

risk patients eligible for adjuvant treatment. The

impact of different immune characteristics on risk of

relapse after surgery in expression subtypes has not yet

been studied.

Immune checkpoint inhibitors are used to treat

advanced NSCLC, and trials with adjuvant and

neoadjuvant immunotherapy are in progress. There is

still a lack of good prognostic biomarkers for

response. PD-L1 expression and high mutational bur-

den/neoantigen load have emerged as the most promis-

ing ones, but the absence of these has not been able to

predict lack of response (Ahmadzada et al., 2018). The

aim of this study was to achieve more knowledge

about the immune microenvironment in NSCLC and

how it influences risk of relapse after surgery, with the

hope that this could help selecting patients for adju-

vant immunotherapy and guide the development of

new treatment options.

1167Molecular Oncology 13 (2019) 1166–1179 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

�A. K. €Ojlert et al. Immune microenvironment in NSCLC



2. Materials and methods

2.1. Patients

Tumor tissue was collected from 399 patients who

underwent surgery for stage I–IV NSCLC at Oslo

University Hospital 2006–2016. Adjuvant treatment

with a platinum-doublet was given according to

national guidelines. Information related to clinical out-

come has been collected. Patient characteristics are

shown in Table 1.

The study was approved by the regional ethics com-

mittee (REC South East), and informed written con-

sent was obtained from all patients before surgery.

The study was performed in agreement with the stan-

dards established by the Declaration of Helsinki.

2.2. Gene expression assessment

All samples were fresh-frozen and stored at �80°.
Gene expression was assessed using Agilent microarray

on samples from AD (n = 184) and SCC (n = 183)

separately. RNA sequencing (RNA seq) was per-

formed on the remaining 32 samples, of which 17 were

AD and 15 were SCC. In addition, 47 samples were

collected from normal lung. Nineteen samples were

derived during surgery for SCC and 28 samples during

surgery for AD. These were analyzed, using Agilent

microarray, together with their paired tumor sample.

2.2.1. RNA sequencing

RNA was isolated with QIAcube. Concentration was

measured spectrophotometrically with NanoDrop, and

RNA quality was controlled using 2100 Bioanalyzer

microfluidic gel electrophoresis system (Agilent, Santa

Clara, CA, USA). Two samples were excluded due to

low RNA quality. The remaining 32 samples all had a

RIN value above 6 (mean: 9.2) and were accepted for

further analysis.

An RNA seq library was prepared using TruSeq

stranded mRNA sample prep kit (Illumina, San Diego,

CA, USA). In short, RNA was mRNA enriched using

oligodT bead system (Illumina). Double-stranded

cDNA was synthesized, end repaired, 30adenylated,
and Illumina sequencing adaptors were ligated onto

the fragments ends (Agencourt AMPure XP; Beckman

Coulter, Brea, CA, USA). The libraries were pre-

amplified with PCR (Agencourt AMPure XP) and

then validated and quality inspected on the 2100 Bio-

analyzer and quantified using the Qubit fluorometer

(Life Technologies, Waltham, MA, USA).

Sequencing was performed on NextSeq500 instru-

ment (Illumina). Raw reads were evaluated using

FASTQC (v0.11.3; Babraham institute, Cambridge, UK).

TRIMMOMATIC (v0.35; Bolger et al., 2014) was used to

remove adapter content and to trim reads with very

low quality. The reads were then mapped to a refer-

ence genome using TOPHAT (v2.1.0; Kim et al., 2013)

and assembled into genes using HTSEQ (v0.6.1; Anders

et al., 2015). Fragments per kilobase per million read

(FPKM) values were calculated.

2.2.2. Microarray data

RNA was extracted and analyzed as previously

described (Bjaanaes et al., 2016). In short, RNA isola-

tion was done using standard TRIZOL methods and

quantity and quality was controlled using the Nano-

Drop ND-1000 spectrometer and the 2100 Bioana-

lyzer. Gene expression was assessed using gene

expression microarrays from Agilent technologies (Sur-

ePrint G3 human GE 8 9 60 K and SurePrint G3

human GE v3 8 9 60 K for the AD and SCC respec-

tively). The raw data were processed with the AGI-

LENT’S FEATURE EXTRACTION Software with default

parameters (Agilent feature extraction version

Table 1. Patient characteristics.

AD (n = 201) SCC (n = 198)

Stage

I 57.7% (n = 116) 55.6% (n = 110)

II 21.9% (n = 44) 30.3% (n = 60)

III 19.4% (n = 39) 13.6% (n = 27)

IV 1% (2) 0.5% (n = 1)

Age at surgery (years)

Mean 66.3 67.2

Median 66.4 67.3

Range 39.2–87.0 43.2–82.4

Smoking status

Current smoker 32.8% (66) 49.0% (97)

Ex-smoker 54.7% (110) 50.0% (99)

Never smoker 12.4% (25) 1% (2)

Packyears

Mean 27.0 40.4

Range 0–76 0–145 (5 missing)

Sex

Female 54.7% (110) 33.3% (66)

Male 45.3% (91) 66.7% (132)

Recurrence 48.3% (97) 36.9% (73)

At time of recurrence

Local recurrence 26.8% (26) 35.6% (26)

Metastases 73.2% (71) 64.4% (47)

Follow-up time (months)

Median 89.2 65.8

Range 18.0–128.6 16.6–136.9

OS 47.0% (1 lost to follow-up) 51.0%
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10.7.3.1). Probes were collapsed by median, samples

were quantile normalized, and the data were log2

transformed. Since the samples from AD and SCC

were analyzed using different versions of the platform,

they were normalized separately.

2.3. Immunohistochemistry

Information on tumor histology and stage was

obtained from the patient records.

In 335 samples, PD-L1 expression was evaluated

by immunohistochemistry (IHC). All tumors were

formalin fixed and paraffin embedded. Representative

tumor tissue was selected from Hematoxylin–Eosin
stained slides. In the first 29 samples, 3-lm thin sec-

tions were treated in PT-link with FLEX Target

Retrieval Solution, High pH (pH 9.0). En Vision

FLEX Peroxidase-Blocking Reagent (0.03% H2O2)

was used for inhibition of endogenous peroxidase.

The slides were then stained with anti-PD-L1

(405.9A11) mouse monoclonal antibody (Cell Signal-

ing Technology, Danvers, MA, USA, clone 1543a,

Lot 1 August 2018). Flex+ (Dako, Agilent) was used

as detection system. In the remaining samples, PD-L1

expression was assessed in tissue micro array (TMA)

blocks. At least two 1 mm punch biopsies were

stained with PD-L1 antibody 22C3. Proportion of

PD-L1 positive tumor cells was manually evaluated

by an experienced pathologist.

2.4. TP53, EGFR, and KRAS mutation assessment

The TP53 mutation in exon 2–11 was analyzed by San-

ger sequencing using the AB 3730 DNA Analyzer

(Applied Biosystems, Waltham, MA, USA) after stan-

dard protocol. The wobble-enhanced ARMS method

was used for detecting the seven most commonly

reported KRAS mutations. EGFR mutations were ana-

lyzed using the TheraScreen EGFR mutation kit (DxS,

Manchester, UK) designed to detect 28 specific muta-

tions in the EGFR gene. The results are previously pub-

lished and methods more thoroughly described in the

respective publications (Halvorsen et al., 2016; Ham-

fjord et al., 2011; Helland et al., 2011).

2.5. Statistics

Adenocarcinomas were classified as TRU (formerly

bronchioid), PP (formerly magnoid) or PI (formerly

squamoid), and SCC as basal, secretory, primitive,

or classical using the previously published centroid

classifiers for AD (Wilkerson et al., 2012) and SCC

(Wilkerson et al., 2010), respectively. Microarray

data were quantile normalized, log2 transformed,

and median centered. For the RNA seq dataset,

FPKM values were upper quantile normalized, log2

transformed, median centered, and the samples were

split in two groups according to histology prior to

classification. Subtypes were assigned using Pearson

correlation. Four of the microarray AD had negative

correlation for all subtypes and were not assigned a

subtype.

xCell (Aran et al., 2017) was used to estimate the

presence of different immune cells in tumor and to cal-

culate an immune score. The RNA seq dataset and the

two microarray datasets were analyzed separately.

The microarray datasets were quantile normalized, but

the probes were not collapsed as this is done by

default, using averages, in xCell. For the RNA seq

dataset, FPKM values were used.

For calculating cytolytic score, proliferation score

and to compare expression of CD274, the three data-

sets were merged and quantile normalized together.

Cytolytic score was calculated as the geometric mean

of GZMA and PRF1 (Rooney et al., 2015). Tumor

proliferation was calculated using the cell cycle pro-

gression (CCP) score, which uses the average of 31 cell

cycle genes (Wistuba et al., 2013). As a quality control

cytolytic score, CCP score and expression of CD274

before and after merging and quantile normalizing

were plotted in the three datasets separately, revealing

good visual correlation and a Pearson correlation coef-

ficient close to 1.

Heatmaps were created using R software developed

by one of the authors (OCL). Immune cell type esti-

mates were median centered before creating heatmaps.

Hierarchical clustering was based on Euclidean dis-

tance with comple linkage.

All comparisons of estimated immune cell types,

immune score, cytolytic score, and proliferation score

between groups were made using Wilcoxon rank sum

test, if nothing else is declared. Comparisons between

more than two groups were made using the Kruskal–
Wallis test.

The impact of different factors on PFS, defined as

time to relapse after surgery, was analyzed using Cox

proportional regression analysis. Patients who died of

other causes than lung cancer during follow-up were

censored at time of death. IHC PD-L1 expression,

CD274 gene expression, cytolytic score, CCP score,

immune score, CD274 gene expression/immune score,

and all estimates of immune cell types were divided by

their standard deviation (SD) to achieve comparable

estimates of hazard ratio (HR).

All statistical analyses were performed using R

version 3.4.3 (http://www.r-project.org).

1169Molecular Oncology 13 (2019) 1166–1179 ª 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

�A. K. €Ojlert et al. Immune microenvironment in NSCLC

http://www.r-project.org


3. Results

3.1. Immune microenvironment in histological

subgroups

xCell was used to calculate an immune score and to

get an estimate of different cell types in the tumor

microenvironment. Of 64 cell types, 34 were immune

cells. These were median centered and used to cluster

the samples (Fig. 1A). We could see that samples with

high immune score clustered together and that both

AD and SCC were found in the most immune cell-rich

clusters. xCell estimates of immune cells were also used

to cluster AD and SCC separately (Fig. 1B,C).

Immune cell type estimates were compared between

AD and SCC with immune score above median (me-

dian immune score = 0.6847, AD n = 92, SCC

n = 107) using Wilcoxon rank sum test with

Bonferroni correction for multiple testing. We found

significantly higher estimates of eosinophils, macro-

phages M1, neutrophils, CD4+ naive T cells, and plas-

macytoid DC (pDC) in SCC with high immune score

and more gamma delta T cells (Tgd cells), conven-

tional DC (cDC), mast cells, NK cells, CD4+ T cells,

DC, activated DC (aDC), type 2 T-helper cells (Th2

cells), and CD4 memory T cells in AD with high

immune score. In order to evaluate the immune cell

distribution in histological subgroups with high

immune score compared to normal lung, cell types

with significantly different estimates in AD and SCC

were plotted in a heatmap together with 47 samples

from normal lung (Fig. 1D). We could then see that

31/47 samples from normal lung clustered together.

One AD and 15 SCC clustered with normal lung.

The xCell immune score, cytolytic score, and CCP

proliferation score were compared between AD and
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Fig. 1. Heatmaps based on estimates of 34 immune cell types in (A) all samples, (B) AD, and (C) SCC. In the last heatmap (D), only

immune cell types found to be significantly different between AD and SCC with immune score above median are used. Tumor samples

with xCell immune score above median, and all samples from normal lung, are included in the heatmap. CD8+ Tem, CD8+ effector memory

T cells; CD4+ Tcm, CD4+ central memory T cells; NKT, natural killer T cells.
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SCC, as shown in Table 2 and Fig. 2. Correlation tests

between scores revealed that immune score and cytoly-

tic score were positively correlated in both AD and

SCC [SCC: Pearson correlation coefficient (r) = 0.63

and P < 0.001 AD: r = 0.58 and P < 0.001]. Prolifera-

tion score was negatively correlated to immune score

(r = �0.574 and P < 0.001) and cytolytic score

(r = �0.33 and P < 0.001) in SCC while in AD we

found no significant correlation.

Estimates of immune cells were also compared

between all AD and SCC, and results can be found in

Appendix S1.

3.2. Gene expression subtypes

Adenocarcinomas and SCC were investigated sepa-

rately to see whether clustering based on immune cell

type estimates would separate the samples according

to their expression subtype (Fig. 1B–C). We found

that 41 out of 48 secretory SCC clustered together in

the cluster with the highest immune score. No obvious

pattern was seen for the other subtypes. In AD, 29 out

of 36 PP samples clustered together in the cluster with

the lowest immune score. Also, 35 out of 44 PI sam-

ples and 92 out of 117 TRU samples were found in

the three most immune cell-rich clusters. Cluster num-

ber two had high immune score, was dominated by the

TRU subtype (24 out of 31 samples), and did not con-

tain any PP AD. We also performed clustering of all

samples, including normal lung, and found the AD

TRU subtype and the SCC secretory subtype to be

most similar to normal lung (Fig. S1A–C). Notably,

normal samples did not cluster with their paired tumor

sample (Fig. S1D).

Estimates of immune cells in expression subtypes

were compared to normal lung using Wilcoxon rank

sum test with Bonferroni correction for multiple test-

ing (Appendix S1). In SCC, we found that the secre-

tory expression subtype had high estimates of most

immune cells. Only mast cells, cDC and NK cells were

significantly higher in normal lung compared to in the

secretory subtype. In the primitive, basal, and classical

subtypes, some cell types were elevated compared to

normal lung, but there was no convincing pattern of

adaptive cell types being more prominent in tumor

samples than in normal lung (Fig. S2).

In AD, the same pattern was seen for almost all

immune cells with low estimates in the PP subtype and

high in the TRU and PI subtypes. When comparing

TRU and PI to normal lung, the same cell types were

elevated in tumor samples. These included aDC, CD8+
central memory T cells (CD8+ Tcm) cells, M1 macro-

phages, B cells, plasma cells, Th2 cells, memory B

cells, na€ıve B cells, pro B cells, type 1 T-helper cells

(Th1 cells), and Tgd cells. In the TRU subtype, there

were in addition higher estimates of class-switched

memory B cells.

Proliferation score, cytolytic score, and immune

score differed in the expression subtypes as shown in

Table 3.

3.3. TP53 mutation status

TP53 mutation status was available for 105 SCC and

183 AD, and of these, 71 (67.6%) and 75 (41.0%) had

nonsilent mutations, respectively. For proportion of

samples mutated in expression subtypes, see Table 3.

We investigated differences in immune cell distribution

in samples with or without a TP53 mutation. After

Table 2. xCell immune score, CCP proliferation score, and cytolytic

score in histological subgroups.

AD SCC

xCell immune score

Mean (T-test P: 0.016) 0.65 0.73

Median (range) 0.66 (0.078–1.35) 0.72 (0.00–1.53)

CCP proliferation score

Mean (T-test P: 3.488e-12) 7.77 8.40

Median (range) 7.75 (6.06–9.63) 8.71 (6.11–9.84)

Cytolytic score

Mean (T-test P: 0.013) 7.42 7.22

Median (range) 7.44 (5.51–10.07) 7.24 (5.33–9.81)

AD Normal lung SCC

0.
0

0.
5

1.
0

1.
5

Immune score

Fig. 2. Box plot showing immune score in AD, SCC, and normal

lung.
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Bonferroni correction for multiple testing, samples

with a nonsilent mutation had higher estimates of neu-

trophils, Tgd cells, and Th1 cells and lower estimates

of CD4+ effector memory T cells (CD4+ Tem), DC,

immature dendritic cells (iDC), Tregs, and cDC. The

same pattern was seen when AD and SCC were tested

separately but only Th1 cells, Tgd cells, and CD4+
Tem in SCC and Th1 cells in AD remained significant

after correction for multiple testing. We also looked

for differences in immune score, cytolytic score, and

proliferation and found higher proliferation in those

having a TP53 mutation in AD, SCC, and all samples

tested together. Immune score was elevated in nonmu-

tated samples in SCC.

3.4. PD-L1

Programmed death-ligand 1 expression by IHC was

analyzed for 335 samples (188 AD and 147 SCC), and

of these, 103 (55 AD and 48 SCC) were PD-L1 posi-

tive (> 1% positive tumor cells) and 41 (23 AD and 18

SCC) had more than 50% PD-L1-positive tumor cells.

As expected, IHC PD-L1 expression correlated with

CD274 gene expression (r = 0.58 and P < 2.2e-16).

Correlation analyses were performed to investigate

what characteristics of the immune microenvironment

were important for the expression of PD-L1. Results

for IHC PD-L1 expression and CD274 gene expression

were highly overlapping, but correlation was stronger

Table 3. xCell immune score, CCP proliferation score, cytolytic score, CD274 gene expression, and CD274 gene expression/xCell immune

score in expression subtypes and normal lung. IHC PD-L1 expression and EGFR, TP53, and KRAS mutation status in expression subtypes.

CD274 gene expression/xCell immune score was not possible to calculate in one SCC sample with the classical expression subtype due to

zero immune score. ‘P-value’ refers to P-value when scores/estimates in the expression subtypes were compared to normal lung using

Wilcoxon rank sum test.

Expression subtype (n) Basal (56) Classical (85) Primitive (9) Secretory (48) PI (44) PP (36) TRU (117) Normal lung (47)

xCell immune score

Mean 0.73 0.55 0.53 1.07 0.75 0.32 0.72 0.88

Median 0.76 0.48 0.58 1.13 0.72 0.32 0.73 0.86

P-value 0.0073 1.7e-09* 0.00037* 1.0e-05* 0.013 4.5e-20* 0.00047*

CCP proliferation score

Mean 8.45 9.01 8.87 7.20 8.39 8.43 7.33 6.22

Median 8.55 9.04 9.15 6.92 8.54 8.49 7.32 6.18

P-value 3.0e-18* 2.3e-21* 2.6e-10* 2.5e-17* 1.0e-26* 4.9e-24* 9.4e-21*

Cytolytic score

Mean 7.19 6.95 7.00 7.79 7.80 6.99 7.42 7.61

Median 7.21 6.95 6.93 7.77 7.75 6.87 7.46 7.67

P-value 0.00071* 7.5e-08* 0.011 0.11 0.33 2.8e-05* 0.087

CD274 gene expression

Mean 6.59 6.92 6.58 6.73 7.43 6.25 6.40 6.63

Median 6.44 6.81 6.25 6.77 7.35 6.02 6.28 6.63

P-value 0.24 0.19 0.12 0.59 1.3e-05* 0.0041 0.016

CD274 gene expression/xCell immune score

Mean 12.57 41.90 39.29 7.77 12.09 27.33 10.99 7.89

Median 8.28 14.67 10.52 6.08 10.44 18.71 8.92 7.81

P-value 0.019 2.4e-11* 0.00016* 1.6e-06* 7.6e-05* 4.5e-20* 0.0024

IHC PD-L1 expression

N 38 71 7 31 39 34 111

Mean 8.39 15.89 12.14 13.68 30.0 8.94 8.05

PDL1 positive (%) 10 (26.3) 29 (40.8) 1 (14.3) 8 (25.8) 20 (51.3) 9 (26.5) 25 (22.5)

TP53 mutation status

N 26 48 5 26 40 29 110

Nonsilent mutation (%) 16 (62) 37 (77) 5 (100) 13 (50) 18 (45) 13 (45) 42 (38)

EGFR mutation

N 43 36 116

Mutation (%) 0 (0) 1 (2.8) 26 (22.4)

KRAS mutation

N 21 38 4 21 37 26 105

Mutation (%) 0 (0) 2 (5.3) 1 (25) 1 (5) 16 (43.2) 5 (19.2) 43 (41.0)

* Indicates P-values that stayed significant after Bonferroni correction for multiple testing including all tests in the table.
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when we used CD274 gene expression. This is proba-

bly reflecting that more samples were available for

analyses on gene expression and that many samples

were PD-L1 negative when assessed by IHC. The

strongest positive correlation with IHC PD-L1 expres-

sion and CD274 gene expression was seen with macro-

phages M1, cytolytic score, NK cells, and CD8+ Tcm

cells, and the same pattern was seen when AD and

SCC were tested separately.

CD274 gene expression was not found to be signifi-

cantly different in histological subgroups when tested

using a two-sided t-test. In Table 3, CD274 gene

expression, immune score, and CD274 gene expression

per immune score in expression subtypes are shown

and compared to normal lung.

3.5. Progression-free survival analysis

Median follow-up time was 71.6 months (85.6 months

for AD and 58.5 months for SCC) calculated as median

observation time for patients with no relapse when data

were collected. Twenty-eight patients with AD and 39

patients with SCC died from other causes during follow-

up. We found no difference in PFS in SCC compared to

AD [HR: 0.80 95% confidence interval (CI): 0.59–1.09,
P = 0.161]. There was not seen any significant difference

in PFS reflecting age at surgery, smoking status, pack-

years, sex, or stage in SCC. In AD, we found more

advanced stage to be associated with poor prognosis.

Expression subtype did not predict PFS in SCC. In

AD, patients with the expression subtype TRU had a

better prognosis (HR: 0.50, P = 0.000853) versus non-

TRU and this stayed significant after adjusting for

stage (HR: 0.59, P = 0.01222). TP53 mutation status

had no significant impact on PFS when tested in the

whole cohort and in histological subgroups and

expression subtypes (not possible to calculate in the

SCC primitive subtype where only five samples were

available and all had a TP53 mutation).

Immunohistochemistry PD-L1 expression and

CD274 gene expression were investigated as prognostic

markers, adjusting for stage. We did not find any dif-

ference in PFS according to CD274 gene expression or

IHC PD-L1 expression levels in histological sub-

groups. In expression subtypes, increasing CD274 gene

expression was associated with better prognosis in the

secretory subtype and with poor prognosis in the clas-

sical subtype. In the classical subtype, results were also

significant for IHC PD-L1 expression.

Immune score, cytolytic score, and proliferation

score did not affect PFS in SCC or any of the SCC

expression subtypes. In AD, increasing immune score

and decreasing proliferation were associated with

better PFS while cytolytic score only came out signifi-

cant in the PP expression subtype, all adjusted for

stage.

Results for PFS analyses on clinical and molecular

characteristics in histological subgroups and expression

subtypes, as described above, can be found in

Tables 4, S1 and S2.

Progression-free survival was also compared between

the main clusters formed in the heatmaps described in

section 3.1. We did not find any significant difference

in PFS between the four main clusters in Fig. 1A. In

Fig. 1B,C, the samples were divided according to his-

tological subgroup and clustered. There was no signifi-

cant difference in PFS between the main clusters in

SCC. In AD, the cluster with the lowest immune score

had shorter PFS (HR: 1.75, P = 0.007; adjusted for

stage: HR: 1.52, P = 0.0481) and the cluster with the

highest immune score close to significant longer PFS

(HR: 0.53, P = 0.061; adjusted for stage: HR: 0.63,

P = 0.176). In Fig. 1D, showing samples with immune

score above median, there was no difference in PFS

between the clusters when AD and SCC were tested

separately, adjusting for stage.

The 34 immune cell types estimated by xCell were

tested for relation to PFS in histological subgroups

and expression subtypes, adjusting for stage (Fig. 3A–
C). To further investigate the impact of the immune

microenvironment on prognosis, we compared samples

from patients with and without relapse, local recur-

rence, and metastases (see Appendix S1). In those with

local recurrence, we found higher proliferation, CD8+
na€ıve T cells, and Th1 cells and lower immune score,

CD4+ Tem, CD4+ na€ıve T cells, eosinophils, iDC, B

cells, M2 macrophages, Tregs, and class-switched

memory B cells compared to those without relapse. In

AD, a similar pattern was found, while in SCC this

was not seen. Results indicate that the immune activity

in tumor is of greater importance in preventing local

recurrence than metastatic disease, though some

patients might have had not yet detected metastases at

time of surgery, blurring the results.

4. Discussion

Patients with NSCLC eligible for curative surgery still

have a bleak prognosis. In our material, with 399 sam-

ples from previously untreated lung AD and SCC, we

found clinical and molecular characteristics predictive

of risk of recurrence. In AD, we found decreasing

stage, decreasing proliferation, increasing immune

score, and the TRU expression subtype to be associ-

ated with better prognosis. Stage is known to be the

most important prognostic factor in both AD and
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SCC, but in our material this was not confirmed in

SCC. The reason for this might be that there were few

patients with stage III in the SCC group.

When samples were clustered based on estimates of

immune cells, we could see that both histological sub-

groups were represented in all four clusters derived.

We also found xCell immune score to be similarly dis-

tributed in AD and SCC. This pointed toward that the

degree of immunological activity mainly varied within,

and not between, histological subgroups. When AD

and SCC were clustered separately, we found poor

PFS in the AD cluster with the lowest immune score,

consistent with that increasing immune score had been

found to be a good prognostic factor in AD. Since this

was not the case in SCC, we wanted to see whether

there were differences between the immune microenvi-

ronment in AD and SCC with high immune score,

hypothesizing that it would be more dominated by an

adaptive immune response in AD. We found this to be

correct. When comparing samples from normal lung

to tumor samples with high immune score, we also

saw that more SCCs than ADs had an immune cell

distribution similar to normal lung.

In expression subtypes, earlier findings of more

immunological activity in the AD TRU and PI

expression subtypes and the SCC secretory expression

subtype were confirmed (Faruki et al., 2017). In AD,

all expression subtypes showed higher estimates of

the three T effector cells Th1 cells, Th2 cells, and

Tgd cells compared to normal lung. In addition, they

had more plasma cells. This indicates that there is an

adaptive immune response in AD regardless of

expression subtype, though in the PP subtype the

overall immune activity is low. In SCC, on the other

hand, the immune cell-rich secretory subtype shared

many immune characteristics with normal lung, possi-

bly explaining why increasing immune score and

immune cell estimates were not associated with better

prognosis in SCC. The classical subtype had high

proliferation and PD-L1 expression but low immune

Table 4. PFS in histological subgroups. PFS assessed by Cox proportional regression analysis.

Adenocarcinoma SCC

HR (95% CI) P-value HR (95% CI) P-value

Stage I–IV 1.57 (1.26–1.97) 6.43e-05* 1.26 (0.92–1.71) 0.15

Smoking status

Current smoker 1 1

Previous smoker 1.22 (0.78–1.92) 0.386 1.22 (0.77–1.94) 0.405

Never smoker 1.19 (0.62–2.30) 0.604 4.21 (0.57–31.37) 0.160

Age at surgery 1.01 (0.98–1.03) 0.51 1.00 (0.97–1.03) 0.799

Packyears 1.00 (0.98–1.01) 0.530 1.01 (1.00–1.02) 0.255

Sex

Male 1 1 0.557

Female 0.72 (0.48–1.09) 0.119 1.16 (0.71–1.9)

Expression subtype PI: 1 Basal: 1

PP: 1.40 (0.79–2.46) 0.250 Classical: 0.94 (0.54–1.63) 0.821

TRU: 0.58 (0.36–0.95) 0.0287* Primitive: 1.51 (0.57–4.01) 0.407

Secretory: 0.82 (0.42–1.59) 0.555

TP53 mutationa

Wild-type or silent mutation 1 1 0.412

Nonsilent mutation 1.19 (0.78–1.81) 0.430 1.32 (0.68–2.59)

KRAS mutationa

Wild-type 1 1 0.684

Mutation 1.39 (0.91–2.15) 0.130 1.35 (0.32–5.72)

EGFR mutationa

Wild-type 1 _ _

Mutation 1.06 (0.62–1.82) 0.82

Immune scorea 0.78 (0.63–0.96) 0.0196* 0.99 (0.78–1.25) 0.923

Cytolytic scorea 0.85 (0.69–1.05) 0.122 0.84 (0.67–1.07) 0.164

Proliferation scorea 1.27 (1.03–1.57) 0.0231* 1.09 (0.86–1.39) 0.458

CD274 gene expressiona 1.01 (0.82–1.24) 0.956 1.08 (0.85–1.37) 0.513

IHC PD-L1a 1.06 (0.87–1.29) 0.559 1.13 (0.89–1.44) 0.302

a Adjusted for stage.

* P < 0.05.
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score and cytolytic score indicating aggressive disease

with an inhibited antitumor immune response. This

was supported by that increasing PD-L1 expression

and increasing estimates of some immune cell types

including the immunosuppressive macrophages M2

were associated with poor prognosis in the classical

subtype.

The lung is an organ that is constantly exposed to

the outer world and is, not surprisingly, rich in

immune cells that form an effective first defense

against microbes and foreign particles. We therefore

found it valuable to have samples from normal lung

available, when trying to identify tumor-specific

immune properties. One could argue that samples

derived from normal lung during surgery for NSCLC

are not optimal as controls since most lung cancer

patients are smokers and this could affect the immune

microenvironment. However, the immune response

seen in smokers compared to in nonsmokers is differ-

ent from what we expect to find in a tumor (Grumelli

et al., 2004; Shaykhiev et al., 2009), and when samples

from normal lung were clustered together with tumor

samples based on immune cell estimates, these did not

cluster with their paired tumor sample.

TP53 is a well-known tumor suppressor gene, com-

monly found mutated in NSCLC. As a prognostic
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factor, TP53 mutations predict worse OS in most stud-

ies (Deben et al., 2016; Kosaka et al., 2009). In our

material, we did not find any significant impact of

TP53 mutation status on PFS. Since TP53 is an

important DNA repair gene, we expect those having a

TP53 mutation to have more mutations, resulting in

more antigens and a stronger immune response. We

did not find higher immune score in tumors with a

TP53 mutation but higher proliferation, indicating

more aggressive disease. There are increasing evidence

that TP53 functions as an immune modulator affecting

both cytokine production, immune cell function, and

expression of immune checkpoints (Munoz-Fontela

et al., 2016). We found lower estimates of DC, CD4+
Tem and Tregs, and higher estimates of neutrophils,

Tgd cells, and Th1 cells in samples with a nonsilent

TP53 mutation. Lacking TP53-mediated immune acti-

vation, and especially insufficient activation of DC

which are crucial for an effective antitumor immune

response, might explain why we did not find higher

immune score in TP53-mutated samples.

Immune cell content can be estimated from gene

expression using gene set enrichment analysis or decon-

volution methods. None of these methods are perfect.

xCell (Aran et al., 2017) uses multiple gene signatures to

estimate content of immune and stromal cells, excluding

genes known to be overexpressed in cancer. Still, untypi-

cal gene expression patterns in tumor cells are a source

of inaccurateness when studying tumor samples, and

this can explain why we sometimes get small estimates

of cell types not likely present in the tumor microenvi-

ronment. Localization of the different immune cells in

tumor has also been associated with patient outcome

(Badalamenti et al., 2018). In our study, we did not have

whole sections from the tumors, which hindered us in

such investigations.

Lately, there has been great interest in identifying

tumors with high cytolytic activity, PD-L1 expression,

and estimates of immune cells, particularly CD8+ T

cells, hoping these would function as predictive

biomarkers for response to immune checkpoint inhibi-

tors. In that context, it is interesting to see that normal

lung has high immune score, cytolytic score, and

CD274 gene expression. This indicates that there is a

constant immunological activity in normal lung, which

involves not only innate but also adaptive immune

cells, and that activation of immune checkpoints is

needed in normal lung to control this immune activity.

In an attempt to identify tumors where inhibition of

the immune response was stronger than one would

expect from the overall immunological activity, CD274

gene expression per xCell immune score was calcu-

lated. This ratio was high in the classical and primitive

SCC subtypes and in the PP and PI AD subtypes. In

the immune cell-rich SCC secretory and AD TRU sub-

types, CD274/immune score ratio was low. These two

expression subtypes both had low proliferation, and

the TRU subtype is known to have a low mutational

burden (Faruki et al., 2017), making a strong tumor-

directed immune response in these less likely. STK11

mutations have been associated with low PDL1 expres-

sion on tumor cells in AD (Scheel et al., 2016) and

with lack of response to immune checkpoint inhibitors

(Hellmann et al., 2018). Inactivating STK11 mutations

are often found in the immunologically inactive PP

subtype. Neoadjuvant/adjuvant immunotherapy is

most likely to influence patient outcome when tumor

cells are well recognized by the immune system but

activation of immune checkpoints, either by tumor

cells expressing PDL1 or as a physiological part of the

immune response, is the main reason why tumor is not

eliminated. With this in mind, the AD PI subtype and

the SCC classical and primitive subtypes might be

the best candidates for successful treatment with

immunotherapy.

The only predictive biomarker for response to

immune checkpoint inhibitors in clinical use is IHC

PDL1 expression. It can be used to select patients

more likely to respond to treatment but also PDL1-

negative tumors can respond, and its predictive ability

seems to be more pronounced in AD than in SCC

(Borghaei et al., 2015; Brahmer et al., 2015). In our

cohort, relatively few tumors were IHC PDL1 positive.

There are indications that early-stage operable tumors

might have lower PDL1 expression (Lin et al., 2017),

but could also be that PDL1-positive tumor cells

would have been found if other parts of the tumor

had been used to assess this, as TMA analyses use

only small cores of the tumors. The often seen hetero-

geneity in PDL1 expression within the same tumor

(McLaughlin et al., 2016) is a limitation when used as

a biomarker. To our knowledge, expression subtypes

have not been investigated as a prognostic biomarker

for response to immune checkpoint inhibitors. In this

study, we have found that both the immune microenvi-

ronment and the impact it has on risk of relapse after

surgery differ in histological subgroups and expression

subtypes. In AD, high immune score and signs of an

adaptive immune response were associated with better

prognosis. It is likely that this is just as important in

SCC but that we have not been able to identify which

tumors are effectively targeted by the immune system

and, in the context of immunotherapy, which harbor

immune cells recognizing tumor cells as foreign but

are unable to eliminate them. To enhance OS in surgi-

cally treated NCSLC, high-risk patients must be
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identified and selected for additional treatment, at the

same time as treatment-related and non-lung cancer-

related mortality must be minimized.

5. Conclusions

The tumor immune microenvironment is predictive of

prognosis after surgery in lung adenocarcinoma but

not in lung SCC. NSCLC gene expression subtypes

differ in immune cell distribution and PD-L1 expres-

sion, and should be investigated as a prognostic bio-

marker in patients treated with immune checkpoint

inhibitors.
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Fig. S1. Heatmaps based on estimates of 34 immune

cells in (A) all samples and normal lung, (B) SCC and

normal lung and (C) AD and normal lung. In the last

heatmap (D) it is marked which tumor samples have a

normal control and weather the normal control was

taken from a patient with lung adenocarcinoma or

SCC.

Fig. S2. Box plots showing immune cell type estimates

in adenocarcinoma and SCC expression subtypes and

normal lung.

Table S1. Progression free survival analysis in adeno-

carcinoma expression subtypes.

Table S2. Progression free survival analysis in SCC

expression subtypes.

Appendix S1. Immune cell estimates compared using

Wilcoxon rank sum test in histological sub-

groups, expression subtypes, according to TP53

mutation status and according to local/metastatic

recurrence.
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