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Abstract

The mammalian circadian clock is deeply rooted in rhythmic regulation of gene expression.

Rhythmic transcriptional control mediated by the circadian transcription factors is thought to

be the main driver of mammalian circadian gene expression. However, mounting evidence

has demonstrated the importance of rhythmic post-transcriptional controls, and it remains

unclear how the transcriptional and post-transcriptional mechanisms collectively control

rhythmic gene expression. In mouse liver, hundreds of genes were found to exhibit rhyth-

micity in poly(A) tail length, and the poly(A) rhythms are strongly correlated with the protein

expression rhythms. To understand the role of rhythmic poly(A) regulation in circadian gene

expression, we constructed a parsimonious model that depicts rhythmic control imposed

upon basic mRNA expression and poly(A) regulation processes, including transcription,

deadenylation, polyadenylation, and degradation. The model results reveal the rhythmicity

in deadenylation as the strongest contributor to the rhythmicity in poly(A) tail length and the

rhythmicity in the abundance of the mRNA subpopulation with long poly(A) tails (a rough

proxy for mRNA translatability). In line with this finding, the model further shows that the

experimentally observed distinct peak phases in the expression of deadenylases, regard-

less of other rhythmic controls, can robustly cluster the rhythmic mRNAs by their peak

phases in poly(A) tail length and abundance of the long-tailed subpopulation. This provides

a potential mechanism to synchronize the phases of target gene expression regulated by

the same deadenylases. Our findings highlight the critical role of rhythmic deadenylation in

regulating poly(A) rhythms and circadian gene expression.

Author summary

The biological circadian clock aligns bodily functions to the day-and-night cycle and is

important for maintaining health. The rhythms in various biological processes ultimately

stem from rhythmic gene expression in each single cell. Because several proteins in the
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mammalian core clock machinery are transcription factors, studies of mammalian circa-

dian gene expression have focused on rhythmic transcriptional control. However, many

recent studies have suggested the importance of rhythmic post-transcriptional controls.

Here we use mathematical modeling to investigate how transcriptional and post-tran-

scriptional rhythms jointly control rhythmic gene expression. We particularly focus on

rhythmic post-transcriptional regulation of the mRNA poly(A) tail, a nearly universal fea-

ture of mRNAs which controls mRNA stability and translation. Our model reveals that

the rhythmicities in poly(A) tail length and mRNA translatability are most strongly

affected by the rhythmicity in deadenylation, the process that shortens the poly(A) tail.

Particularly, the phases of poly(A) tail length and mRNA translatability are dominated by

the phase of deadenylation. In light of our findings, rhythmic control of deadenylation

deserves greater future attention in the field of circadian gene expression.

Introduction

Rhythmic control of gene expression is a hallmark of the circadian system. The daily rhythms

in biochemistry, physiology and behavior ultimately stem from rhythmic gene expression in

each cell [1, 2]. In mammals, approximately 3–15% of mRNAs are rhythmically expressed with

a ~24 hr period in any given tissue [3–5]. The rhythmicity originates from a cell-autonomous

circadian clock machinery, which consists of a set of core clock genes interlocked by transcrip-

tion-translation feedback loops [6–8]. Many core clock genes encode transcription factors and

interact with their respective target enhancers to exert rhythmic transcriptional control over

mRNA expression [6, 9].

While rhythmic transcriptional control has been extensively studied, rhythmic control of

gene expression also occurs beyond transcription [10–12]. Recent genome-wide analyses and

mathematical modeling particularly highlight the role of post-transcriptional regulations in

driving rhythmic mRNA expression [13–17]. Post-transcriptional regulations target various

processes, such as splicing, nuclear export, cellular translocation, dormancy and degradation

of RNAs [18]. Many post-transcriptional processes are under circadian control [10, 19–25];

these post-transcriptional processes, in turn, affect the phase and amplitude of the mRNA

level. Ultimately, rhythmic transcription and post-transcriptional processes couple with each

other and jointly determine the gene expression rhythm. For example, rhythmic RNA tran-

scription and degradation jointly determine the rhythmicity in the mRNA level [16]. As yet, it

remains unclear how the rhythmicities in other post-transcriptional processes affect the gene

expression rhythm.

One of the post-transcriptional regulations that impact rhythmic gene expression is the reg-

ulation of poly(A) tail length. The tracts of adenosines at the 3’ end of nearly all eukaryotic

mRNAs are critical for controlling stability and translatability of the mRNAs [26–28]. Hun-

dreds of mRNAs were discovered to exhibit robust circadian rhythms in their poly(A) tail

lengths in mouse liver [29]. Interestingly, the rhythmicity in poly(A) tail length is closely corre-

lated with the rhythmicity in the corresponding protein level, indicating that rhythmic poly(A)

regulation plays an important role in driving rhythmic protein expression [29]. Similar daily

fluctuations in poly(A) tail length also occur in mouse brain [30, 31]. In addition, the ampli-

tude of mRNA rhythmicity increases in the absence of Nocturnin, a deadenylase (enzyme that

removes poly(A) tails from mRNAs) which is rhythmically expressed in different mouse tis-

sues [32, 33]. These observations underscore the importance of poly(A) tail rhythmicity in reg-

ulating circadian gene expression.
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In this work, we built a mathematical model that describes mRNA dynamics under the reg-

ulation of rhythmic transcription, polyadenylation, deadenylation and degradation. We used

the model to systematically examine how rhythmic expression and poly(A) tail regulation gen-

erates rhythmicities in poly(A) tail length and mRNA abundance. Our results highlight the

rhythmicity in deadenylation as the strongest determinant for the rhythmicities in the poly(A)

tail length and in the abundance of mRNAs with long poly(A) tails. The latter can be regarded

as a rough proxy for mRNA translatability, because the poly(A) tail is known to regulate

mRNA translation initiation [34–38]. Furthermore, deadenylase expression with several dis-

tinct peak phases, as those observed in the mouse liver [29], are able to override the impact

from other rhythmic controls, and separate the peak phases of poly(A) tail length and abun-

dance of long-tailed mRNAs into corresponding clusters. Finally, we used the model to predict

factors or combination of factors (e.g., amplitudes of or phase differences between specific pro-

cesses) that can explain the different classes of rhythmic characteristics found in mRNAs with

rhythmic poly(A) tail length [29].

Results

Model for rhythmic mRNA and poly(A) tail regulation

In a typical RNA expression process, an RNA is first transcribed in the nucleus and acquires a

long poly(A) tail as a result of nuclear polyadenylation [39]. After being exported into the cyto-

plasm, the mature mRNA undergoes deadenylation and is ultimately degraded [40]. Cyto-

plasmic polyadenylation, as another important post-transcriptional regulation, elongates the

poly(A) tail to promote mRNA stability and translatability [41]. Although cytoplasmic polya-

denylation is typically associated with translational control in oocyte maturation, early embryo

development and synaptic plasticity [41–44], it is suggested to also play a role in circadian

gene expression in mouse liver [29]. Furthermore, the expression level of Gld2, a poly(A) poly-

merase responsible for cytoplasmic polyadenylation, exhibits circadian rhythmicity in mouse

liver [29]. In light of these biological facts, in the model we incorporated polyadenylation,

together with transcription, deadenylation and degradation, to capture the major processes

that dynamically regulate poly(A) tail length and mRNA abundance (Fig 1A). Note that the

four processes can assume different amplitudes and phases for different genes, because these

regulations can be mediated by different combinations of cis-elements and trans-factors [9, 13,

42, 45–47]. Instead of explicitly tracking the exact length of poly(A) tails, the model divides the

mRNA population into a long-tailed fraction and a short-tailed fraction (Fig 1A), which mim-

ics the fractionation conducted in the circadian transcriptome experiment (long-tailed

>~60nt, short-tailed <~60nt, [29]). Herein we use the ratio between the abundances of long-

tailed and short-tailed mRNAs as the metric for poly(A) tail length (Fig 1B), as was done in

the experimental study [29].

For the sake of simplicity, we made the following assumptions in the model based on exper-

imental evidence. First, degradation only occurs to the short-tailed mRNAs, because the poly

(A) tail of an mRNA must be shortened to 10~15 nt before the mRNA is degraded [47–50].

Second, transcription and nuclear polyadenylation are lumped together, because transcription

is followed by nuclear polyadenylation in general [51] and the poly(A) polymerases responsible

for nuclear polyadenylation are not rhythmically expressed [29]. Taken together, in our model

the transcription process directly leads to a long-tailed mRNA, the downstream cytoplasmic

deadenylation and polyadenylation further mediate conversion between the long-tailed and

short-tailed mRNAs, and degradation consumes the short-tailed mRNA (Fig 1A). The ordi-

nary differential equations (ODEs) that govern the temporal dynamics of long-tailed (L) and
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short-tailed (S) mRNAs read as Eqs (1) and (2).

Long� tailed mRNA :
dL
dt
¼ ktrscðtÞ|fflffl{zfflffl}

transcription

� kdeAðtÞL|fflfflfflffl{zfflfflfflffl}
deadenylation

þ kpolyAðtÞS
|fflfflfflfflffl{zfflfflfflfflffl}
polyadenylation

ð1Þ

Short� tailed mRNA :
dS
dt
¼ kdeAðtÞL|fflfflfflffl{zfflfflfflffl}

deadenylation

� kpolyAðtÞS
|fflfflfflfflffl{zfflfflfflfflffl}
polyadenylation

� kdgrdðtÞS
|fflfflfflffl{zfflfflfflffl}
degradation

ð2Þ

To capture the circadian rhythmicities of the four processes in Eqs (1) and (2), each reaction

rate term κ(t) is represented by a sinusoid function like Eq (3).

kðtÞ ¼ kð1þ Acosðoðt � φÞÞÞ ð3Þ

where k denotes the mean rate, A the relative amplitude, and φ the peak phase, of the process

labeled by the subscript. The angular frequency, ω, equals 2π/(24hr). ω is fixed, while the other

parameters vary. The subscript of a parameter indicates the process it describes (e.g., kdeA

stands for the mean deadenylation rate).

In this work we focus on how rhythmicities in the four processes affect the rhythmicities in

total mRNA abundance and poly(A) tail length, because total mRNA abundance and poly(A)

Fig 1. Overview of the study. (A) Schematic diagram of the model. The model describes four processes that control the poly(A) tail

length and mRNA abundance: transcription, degradation, cytoplasmic deadenylation and polyadenylation. The rhythmicities of the

four processes, i.e., amplitude and phase, are presumably controlled by the core clock mechanism (shaded molecular circuit), which

is not explicitly included in the model. (B) Work flow of the study. Numeric simulations of the ODE model using different sets of

input parameters (sampled according to Table 1, S1 Fig) generate the output quantities. The input parameters and output quantities

are analyzed through the global parameter sensitivity analysis to quantify the impact of each parameter on each output quantity over

the global parameter space.

https://doi.org/10.1371/journal.pcbi.1007842.g001
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tail length were quantified in the previous circadian transcriptome study [13, 29]. Additionally,

we take the rhythmicity of long-tailed mRNA abundance as a rough proxy for the rhythmicity

of mRNA translatability, because poly(A) tail facilitates translation initiation [34–38].

Rhythmic deadenylation is the strongest contributor to rhythmicities in

poly(A) tail length and long-tailed mRNA abundance

Because the parameters of the model are largely unknown and likely vary significantly from

gene to gene, we need to investigate the dependency of the output rhythmicities on the input

rhythmicities in the global parameter space (i.e., the entire possible range of parameter values).

In the previous studies, such dependency has been analyzed by deriving approximate analytic

solutions to models with up to two rhythmic input processes [16, 52]. With four rhythmic

input processes in our model, the approximate analytic solution obtained using the same

method as in [16, 52] are too complex to deliver any useful insight. We hence chose numeric

simulations to investigate the input-output dependency for our model. We ran numeric simu-

lations of the model (Eqs (1) and (2)) with random parameter values for the mean rates, rela-

tive amplitudes, and phases of each process (Table 1 and S1 Fig). Only the mean rate of

transcription was omitted, because it only affects the overall abundance of mRNAs, but not the

output rhythmicity, i.e., the phases and relative amplitudes of mRNA abundance and poly(A)

tail length (S1 File). From each simulated time trajectories {L(t), S(t)}, we extracted the peak

phases, relative amplitudes and mean levels of total mRNA abundance (L+S), poly(A) length

metric (L/S) and long-tailed mRNA abundance (L) (Fig 1B, also see Methods). These quanti-

ties were subject to further analysis, as elaborated in the following Results sections. For the rest

of the paper, we will refer to these quantities, e.g., the peak phase of L/S ratio, generally as the

“output quantities”, unless any specific quantity is referred to.

Our model results reveal that the peak phase of deadenylation is the strongest contributor

to the peak phase of L/S ratio (poly(A) length metric), followed by the peak phase of polyade-

nylation. Specifically, the scatter plot of the simulation results from random parameter sets

demonstrates a strong dependency of the peak phase of L/S ratio on the peak phase of deade-

nylation, with a 10 ± 1.5 hr lag between the two (Fig 2A). The peak phase of L/S ratio also

depends on the peak phase of polyadenylation, although much weaklier than its dependency

on the peak phase of deadenylation (Fig 2A). In contrast, the peak phase of L/S ratio depends

very little on the peak phases of transcription and degradation (Fig 2A).

To systematically quantify the impacts of each input parameter on each output quantity, we

performed variance-based sensitivity analysis using the Sobol’s method [53, 54] (Fig 1B, also

Table 1. Parameter distribution for sampling.

Parameter Symbol Distribution Source

Mean rate of transcription ktrsc 1 (constant) Has no effect on rhythmic patterns (S1 File)

Mean rate of degradation kdgrd log
10
ðk=hr� 1Þ � N ð� 1:10; 0:232Þ

(Log-normal)

Fitting with half-life distribution measured in [72]

Mean rate of deadenylation kdeA log
10
ðk=hr� 1Þ � N ð� 0:48; 0:232Þ

(Log-normal)

Mean value of deadenylation rate estimated from [73]; deviation same as mRNA

degradation

Mean rate of

polyadenylation

kpolyA log
10
ðk=hr� 1Þ � N ð� 0:48; 0:232Þ

(Log-normal)

Same as deadenylation

Relative amplitudes Atrsc,Adgrd,

AdeA,

ApolyA

A~U(0,1)

(Uniform)

Peak phases φtrsc,φdgrd,

φdeA,φpolyA

φ~U(0,24)

(Uniform)

https://doi.org/10.1371/journal.pcbi.1007842.t001
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Fig 2. Rhythmicities of poly(A) tail length and long-tailed mRNA abundance are strongly controlled by rhythmic deadenylation. (A)

Scatter plot of the peak phases of input processes versus the peak phases of L/S ratio (i.e., poly(A) length metric). (B) Sobol indices for the

peak phase of L/S ratio. (C) Scatter plot of the peak phases of input processes versus the peak phases of L+S (i.e., total mRNA abundance).

(D) Sobol indices for the peak phase of L+S. (E) Scatter plot of the peak phases of input processes versus the peak phases of L (i.e., long-

tailed mRNA abundance). (F) Sobol indices for the peak phase of L. (A, C, E) Each scatter plot shows 10,000 data points randomly chosen
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see Methods). Based on simulation results from a large number of random parameter sets

spanning the global parameter space (S1 Fig, Table 1), the Sobol’s method quantifies the sensi-

tivity of an output quantity to an input parameter in terms of how much the parameter, due to

the variation in its value, contributes to the variation in the output quantity. Specifically, the

sensitivity is reported as the single (S) and total (T) Sobol indices, which represent the contri-

bution of the parameter alone and the contribution of the parameter together with its (nonlin-

ear) interactions with the other parameters, respectively (see Methods).

The estimated Sobol indices (Fig 2B) confirm the findings from the scatter plots (Fig 2A).

For example, among all the input parameters, the peak phase of deadenylation has the largest

Sobol indices with respect to the peak phase of L/S ratio. The values of the Sobol indices indi-

cate that variance in the peak phase of deadenylation alone contributes to ~40% of variance in

the peak phase of L/S ratio (longest “S” bar in Fig 2B). When the interactions of deadenylation

with other processes are counted, this contribution increases to ~75% (longest “T” bar in Fig

2B). Additionally, the Sobol indices indicate that the relative amplitude of deadenylation has

the strongest impact on the relative amplitude of L/S ratio (S2 Fig). In comparison, the mean

level of L/S ratio, a quantity not related to rhythmicity, depends nearly equally on the mean

rates of deadenylation and polyadenylation (S2 Fig). These results collectively demonstrate the

rhythmicity in deadenylation as the strongest contributor to the rhythmicity in poly(A) tail

length.

Our model results also show a significant impact of rhythmic deadenylation and polyadeny-

lation on the rhythmicity of L+S (total mRNA abundance). Although the peak phases of tran-

scription and degradation strongly influence the peak phase of L+S (Fig 2C and 2D), as

expected, the Sobol indices indicate a weaker, yet substantial impact from the peak phases of

deadenylation and polyadenylation on the peak phase of L+S (Fig 2D). These impacts can be

understood from the regulation of mRNA stability by the poly(A) tail length, which is reflected

in the model by the assumption that degradation is restricted to the short-tailed mRNAs (Fig

1A, Eqs (1) and (2)).

We further used the model to examine the effects of the four processes on the rhythmicity

of mRNA translatability, using L (long-tailed mRNA abundance) as a proxy. Although L is a

quantity directly related to both L+S level and L/S ratio, the Sobol indices show that the peak

phase of L relies most heavily on the peak phase of deadenylation, followed by that of polyade-

nylation (Fig 2F). Consistently, the scatter plot shows a strong dependency of the peak phase

of L on the peak phase of deadenylation, with an approximately 10 hr lag between the two (Fig

2E). This is a relationship highly similar to that observed between the peak phases of L/S ratio

and deadenylation (Fig 2A). Furthermore, the relative amplitudes of deadenylation and polya-

denylation are also among the strongest contributors to the relative amplitude of L (S2 Fig).

Overall, the rhythmicities in deadenylation and polyadenylation make stronger impact on the

rhythmicity of long-tailed mRNA abundance than the rhythmicities in transcription and deg-

radation. This finding provides a possible explanation for the observed close correlation

between the rhythmicities of poly(A) tail length and protein expression [29].

Cytoplasmic polyadenylation requires specific cis-elements in the 3’ untranslated region

(UTR) of an mRNA to recruit the molecular machinery that elongates the poly(A) tails [42].

However, such cis-elements do not necessarily exist in all mRNAs. Therefore, we also removed

the polyadenylation term in our model and conducted the same global sensitivity analysis. The

results demonstrate similar impacts of the rhythmicity of transcription, deadenylation and

from the original simulations for the sake of visual clarity. (B, D, F) Bars with “S” on top: single Sobol indices. Bars with “T” on top: total

Sobol indices. Mean values of the Sobol indices are shown, because the variances are too small for clear visualization (S2 Fig).

https://doi.org/10.1371/journal.pcbi.1007842.g002
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degradation on the rhythmicity of L/S ratio, L+S and L (S3 Fig) as those found from the model

with cytoplasmic polyadenylation (Fig 2, S2 Fig). Particularly, rhythmic deadenylation

remains the strongest contributor to the rhythmicity of L/S ratio and L. Hence, our

conclusion stays the same for mRNAs without the cis-elements that mediate cytoplasmic

polyadenylation.

Taken together, these model results underscore the importance of rhythmic poly(A) regula-

tion in circadian gene expression, especially its impact on the rhythmicity of poly(A) tail

length, total mRNA abundance, and abundance of the long-tailed subpopulation. Importantly,

deadenylation emerges as the strongest contributor to the rhythmicity of poly(A) tail length

and long-tailed mRNA abundance.

Rhythmic deadenylation can robustly cluster genes by their poly(A) tail

rhythms

The rhythmicities in transcription, deadenylation, polyadenylation and degradation of

mRNAs are ultimately controlled by the rhythmicities in the abundance and activity of the

molecules mediating these processes, e.g., transcription factors, deadenylases and poly(A)

polymerases. Interestingly, although the core clock machinery includes several transcription

factors with different peak phases, the peak phases of nascent RNA synthesis (indicated by

intron abundance) are strongly concentrated around ZT 15 (Zeitgeber time, where ZT 0 is

defined as the time [hr] of lights on and ZT 12 is defined as the time of lights off) in mouse

liver [13]. Additionally, a cytoplasmic poly(A) polymerase, Gld2, is rhythmically expressed

with peak phase around ZT 3.5 [29]. Meanwhile, five deadenylases are also rhythmically

expressed, with Ccr4e/Angel1 peaking around ZT 2, Ccr4a/Cnot6, Ccr4b/Cnot6l, Caf1a/Cnot7/
pop2 and Parn peaking around ZT 5, and Ccr4c/Nocturnin peaking around ZT 13 [29]. These

data indicate that deadenylases assume a more diverse rhythmic expression pattern than poly

(A) polymerases and nascent RNA transcription.

Intrigued by the above observation, we used our model to explore the potential conse-

quence of having several distinct peak phases in deadenylases. In four separate in silico experi-

ments, we set transcription, degradation, deadenylation or polyadenylation, respectively, to

peak at three narrow windows centered around ZT 0, 8, and 16 (chosen to represent distinct

time windows in general), while setting the peak phases of the other three processes to distrib-

ute evenly around the clock (Fig 3ii–3v). Our results demonstrate that, when deadenylation

peaks in three narrow windows, the peak phases of L/S ratio and L are strongly clustered in

three distinct windows (Fig 3iv). In contrast, when transcription (Fig 3ii), degradation (Fig

3iii) or polyadenylation (Fig 3v) peaks in three narrow windows, the resulting peak phases of

L/S ratio and L do not show strong clustering. To test the effect of the actual rhythmic patterns

observed in nascent RNA transcription and expression of deadenylases and polyadenylases,

we set the distribution of peak phases centered around ZT 15 for transcription [13], narrow

peak phase window centered around ZT 3.5 for polyadenylation, and narrow peak phase win-

dows around ZT 2, ZT 5 and ZT 13 for deadenylation [29]. The simulation results demonstrate

that the peak phases of both L/S ratio and L are strongly clustered into three distinct time win-

dows (Fig 3vi). These results corroborate with the findings above about the strong impact of

rhythmic deadenylation on the rhythmicities of L/S ratio and L (Fig 2B and 2F). Note that the

mean rates and relative amplitudes of all four processes assumed random values in the model

simulations (Table 1, S1 Fig). Therefore, our results indicate that multiple peak phases in

deadenylation, but not other processes, can robustly cluster the peak phases of poly(A) tail

length and mRNA translatability (~ long-tailed mRNA abundance) into distinct time win-

dows, regardless of variations in the mean rates or rhythmicities of other processes.
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Fig 3. Distinct peak phases in deadenylases cluster transcripts by their peak phases of poly(A) tail length and long-tailed mRNA abundance. (i)

Transcription, degradation, deadenylation and polyadenylation phases evenly distributed around the clock. (ii) Transcription phases within three

narrow windows at ZT 0, 8, and 16. Degradation, deadenylation and polyadenylation phases evenly distributed around the clock. (iii) Degradation

phases within three narrow windows at ZT 0, 8, and 16. Transcription, deadenylation and polyadenylation phases evenly distributed around the

clock. (iv) Deadenylation phases within three narrow windows at ZT 0, 8, and 16. Transcription, degradation and polyadenylation phases evenly

distributed around the clock. (v) Polyadenylation phases within three narrow windows at ZT 0, 8, and 16. Transcription, degradation and

deadenylation phases evenly distributed around the clock. (vi) Peak phases of transcription follow transcriptome data reported by [13].

Deadenylation phases within three narrow windows at ZT 2, 5, and 13, and polyadenylation phases within one narrow windows at ZT 3.5, based on

the data from [29], while degradation phases evenly distributed around the clock. Mean rates and relative amplitudes follow Table 1 and S1 Fig.

https://doi.org/10.1371/journal.pcbi.1007842.g003
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Factors that explain different classes of mRNAs with rhythmic poly(A) tail

length

In the previous transcriptome-wide study [29], the mRNAs with poly(A) tail rhythmicity

(PAR mRNAs) were grouped into three classes, based on their rhythmicities in pre-mRNA

and total mRNA. The rhythmicity in pre-mRNA essentially reflects the rhythmicity in tran-

scription. The Class I mRNAs are rhythmic not only in poly(A) tail length, but also in pre-

mRNA and total mRNA (Fig 4A). The Class II mRNAs are rhythmic in poly(A) tail length and

pre-mRNA, but not in total mRNA (Fig 4A). The Class III mRNAs are only rhythmic in poly

(A) tail length, but not the other two (Fig 5A). Differences in mRNA half-lives were observed

between the three classes and suggested to explain their differences in the rhythmic patterns of

pre-mRNA, total mRNA, and poly(A) tail length [29]. Here we leverage our model to system-

atically identify factors that can lead to the combinatorial rhythmic patterns in these classes.

We first attempted to identify the model parameters that contribute most to the distinction

between Class I and Class II. Because the only difference between Classes I and II is whether

total mRNA abundance is rhythmic or not, we focused on identifying model parameters that

contribute most to the relative amplitude of L+S. The Sobol indices reveal the mean degrada-

tion rate as the strongest contributor to the amplitude of L+S (Fig 4B). We then ran model

simulations using random parameter sets (sampled from the distributions given in Table 1

and S1 Fig) and identified the ones that exhibit the characteristics of Class I or Class II (Fig

4A). Out of all the random parameter sets, the mean degradation rates in the Class II parame-

ter sets are overall lower than those in the Class I parameter sets (Fig 4C). This finding corrob-

orates with the experimental observation that the average half-life (inversely proportional to

the degradation rate) of Class II mRNAs is longer than that of Class I mRNAs [29].

The total Sobol indices also indicate that the peak phases of transcription and degradation

as the second and third strongest contributors to the amplitude of L+S, respectively (Fig 4B).

However, the corresponding single indices are diminishingly small (Fig 4B). The huge con-

trast between the total and single indices indicates that these two parameters exert strong

impacts through interactions with other parameters. Because such huge contrasts between

total and single indices do not exist in any other parameters, we speculated that the interac-

tions likely happen between the two parameters themselves. Indeed, the Class I, but not the

Class II, parameter sets, are strongly enriched with antiphasic rhythms between transcription

and degradation (Fig 4D). This finding is consistent with the prediction by a previous model-

ing study that antiphasic coupling between rhythmic transcription and degradation enhances

the rhythmicity of mRNA level [16].

The Sobol indices also reveal that the relative amplitudes of transcription and degradation

and the mean deadenylation rate are potentially important contributors to the amplitude of L

+S (Fig 4B). Indeed, the Class I parameter sets tend to have stronger amplitudes in transcrip-

tion and degradation rates (Fig 4E and 4F), again, consistent with the previous modeling

study [16]. Interestingly, unlike the Class I parameter sets (Fig 4D–4F, purple), the Class II

parameter sets exhibit nearly even distributions of transcription-degradation phase difference,

transcription amplitude and degradation amplitude (Fig 4D–4F, green). The distributions for

Class I and Class II parameter sets indicate that generation of significant rhythmicity in L+S

(Class I) requires sufficient phase difference between transcription and degradation, and suffi-

ciently high amplitudes of transcription and degradation, simultaneously (S4 Fig). If any of

these conditions are not satisfied, total mRNA abundance would not have significant rhyth-

micity (Class II). Lastly, the mean deadenylation rates in the Class I parameter sets tend to be

larger than those in the Class II parameter sets (Fig 4G). This is related to the above finding

about mRNA half-lives, because deadenylation promotes degradation and hence increasing
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the mean deadenylation rate has a similar effect on mRNA turnover as increasing the mean

degradation rate.

Class III is distinct from Class I and Class II, since it does not have rhythmic transcription

(Fig 5A). Because rhythmicity of transcription serves as an input to our model, we cannot use

the model to identify the origin of lack of transcriptional rhythmicity. However, we are

Fig 4. Factors distinguishing between Class I and Class II PAR mRNAs. (A) Characteristics of Class I and Class II

PAR mRNAs. (B) Sobol indices for the amplitude of L+S (i.e., total mRNA abundance). Bars with “S” on top: single

Sobol indices. Bars with “T” on top: total Sobol indices. (C) Distributions of mean mRNA degradation rates for the two

classes. (D) Distributions of peak phase differences between transcription and degradation for the two classes. (E)

Distributions of relative amplitudes of transcription for the two classes. (F) Distributions of relative amplitudes of

degradation for the two classes. (G) Distribution of mean deadenylation rates for the two classes. Results in (C-G) from

100,000 simulations with parameters randomly sampled according to Table 1. Parameter sets with�0.2 relative

amplitude in both L+S and L/S ratio are defined as Class I, while those with<0.2 relative amplitude in L+S and�0.2

relative amplitude in L/S ratio are defined as Class II.

https://doi.org/10.1371/journal.pcbi.1007842.g004
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interested in understanding why all PAR mRNAs without transcriptional rhythmicity also lack

rhythmicity in L+S [29]. For the convenience of discussion, we use “Class IV” to refer to a

hypothetical group of PAR mRNAs that would exhibit rhythmicity in total mRNAs and poly

(A) tails, but not in pre-mRNA (Fig 5A); this group of mRNAs are not found in the experi-

ments [29]. We used the model to identify model parameters that could contribute to the dif-

ference between Class III and the hypothetical Class IV. Because both Class III and Class IV do

not have rhythmic transcription, we ran model simulations with non-rhythmic transcription

(i.e., setting the relative amplitude of transcription to zero, while keeping the other parameters

sampled from the same distributions as before (Table 1, S1 Fig)). Out of the random parame-

ter sets, we identified those that fit the characteristics of Class III or Class IV (Fig 5A). We also

calculated the Sobol indices for this model.

When the model does not have rhythmic transcription, the Sobol indices again reveal the

mean degradation rate as the strongest contributor to the relative amplitude of L+S (Fig 5B).

Consistently, the Class IV parameter sets require much larger mRNA degradation rate, i.e.,

Fig 5. Factors distinguishing between Class III and Class IV PAR mRNAs. (A) Characteristics of Class III and the

hypothetical Class IV mRNAs. (B) Sobol indices for the amplitude of L+S (i.e., total mRNA abundance) for the model

without rhythmic transcription. Bars with “S” on top: single Sobol indices. Bars with “T” on top: total Sobol indices.

(C) Distributions of mean mRNA degradation rates for the two classes. (D) Distributions of relative amplitudes of

degradation for the two classes. (E) Distributions of peak phase differences (i) between deadenylation and degradation,

(ii) between polyadenylation and degradation, and (iii) between deadenylation and polyadenylation for the two classes.

Results in (C-E) from 100,000 simulations with parameters randomly sampled according to Table 1, but without

rhythmic transcription (Atrsc = 0). Parameter sets with�0.2 relative amplitude in L/S ratio and<0.2 relative amplitude

in L+S are defined as Class III, while those with and�0.2 relative amplitude in both L/S ratio and L+S are defined as

Class IV.

https://doi.org/10.1371/journal.pcbi.1007842.g005
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much shorter mRNA half-life, than the Class III parameter sets, to sustain rhythmic total

mRNA (Fig 5C). Therefore, the absence of Class IV mRNAs from the experimental observa-

tions is most likely due to the long half-lives of the mRNAs without rhythmic transcription.

Indeed, Class III has the longest average mRNA half-life measured among all mRNAs that are

rhythmically expressed [29].

We also identified a few additional factors that could distinguish Class III from Class IV.

Based on the Sobol indices, the second strongest factor affecting the amplitude of L+S is the

relative amplitude of degradation (Fig 5B). The Class IV parameter sets have markedly higher

amplitudes of degradation than Class III (Fig 5D). The phases of all three rhythmic processes,

i.e., degradation, deadenylation and polyadenylation, are also potentially important contribu-

tors, because their total Sobol indices are substantial (Fig 5B). Again, the huge contrast

between the total and single indices for these phase parameters, but not the other parameters,

suggests that they exert impacts through interactions among themselves. We hence examined

the distribution of pairwise differences between the three phase parameters. The Class IV

parameter sets are significantly enriched in the region where the peak phases of deadenylation

and degradation are close to each other, but opposite to that of polyadenylation (Fig 5E). This

can be understood from the fact that both deadenylation and degradation promote mRNA

turnover while polyadenylation inhibits it. Unlike the Class IV parameter sets, no distinct pat-

terns are found in the amplitude of degradation or the phase differences in the Class III param-

eter sets (Fig 5D and 5E). Similar to the discussion above for Class I and Class II, these results

indicate that the Class IV characteristics require both sufficiently large amplitude in degrada-

tion and sufficient differences of the polyadenylation phase from the deadenylation and degra-

dation phases (S5 Fig). The missing of Class IV from the experiment suggests that mRNAs

without transcriptional rhythmicity may also fail to satisfy these conditions at the same time.

Overall, our model suggests that besides mRNA half-life, relative amplitudes and phase dif-

ference between transcriptional and post-transcriptional processes can also contribute to the

rhythmic characteristics that distinguishe the three observed classes of PAR mRNAs (Figs 4

and 5). These results highlight that rhythmic transcriptional and post-transcriptional processes

collectively determine the rhythmicity in mRNA expression and poly(A) tail length. It will be

of future interests to test if the factors predicted by the model are indeed correlated with differ-

ent rhythmic characteristics.

Discussion

In this work, we developed a parsimonious mathematical model (Fig 1) to quantitatively evalu-

ate how rhythmic inputs from transcription, degradation, polyadenylation and deadenylation

collectively determine the rhythmic outputs in mRNA abundance, poly(A) tail length and

mRNA translatability (~long-tailed mRNA abundance). Our model results and global sensitiv-

ity analyses reveal rhythmic deadenylation as the strongest factor in controlling the peak

phases and amplitudes of rhythmic poly(A) tail length and long-tailed mRNA abundance

(Figs 2 and 3). Our model also suggests how three classes of rhythmic characteristics observed

in PAR mRNAs [29] arise from the dynamic features of the four processes, as well as the cou-

pling among their rhythmicities (Figs 4 and 5).

Many post-transcriptional steps are involved in regulating circadian gene expression [10,

11]. The importance of dynamic coupling between rhythmic transcription and post-transcrip-

tional processes was demonstrated by a previous modeling study by Lück et al. [16]. That work

particularly highlights that rhythmic turnover is necessary for achieving >6 hr peak phase dif-

ference between transcription and mRNA abundance. In comparison, our study explicitly con-

siders the effects of poly(A) regulation, a common intermediate process in the mRNA decay
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pathway, on rhythmic gene expression. In our model, the dynamic coupling among rhythmic

transcription, polyadenylation, deadenylation and degradation determines the rhythmic pat-

terns in both poly(A) tail length and mRNA abundance. These four processes jointly regulate

the circadian gene expression driven by the core clock (Fig 1A), with a principle similar to a

previous theoretical study that investigates rhythmic fluxes along metabolic chains using circa-

dian response analysis [52]. Because deadenylation is necessary for mRNA degradation and

polyadenylation opposes it, rhythmic deadenylation and polyadenylation, unsurprisingly, affect

the rhythmicity of total mRNA abundance at a level comparable to rhythmic degradation (Fig

2, S2 Fig). However, when poly(A) tail length and its effect on mRNA translatability are consid-

ered, rhythmic deadenylation emerges as the most important rhythmic controller (Fig 2, S2

Fig). This finding highlights the crucial role of rhythmic poly(A) regulation in circadian gene

expression. Of course, our model has not included other mRNA decay pathways that do not

depend on poly(A) regulation, such as endonuclease cleavage of mRNA followed by 5’-3’ decay

[47]. For any mRNA decayed through these pathways, which are less common, their expression

rhythms obviously would not depend on the rhythmicity in poly(A) regulation.

Based on the finding of rhythmic deadenylation as the strongest contributor to rhythmicity

of poly(A) tail length and long-tailed mRNA abundance, we further discovered that rhythmic

deadenylation is capable of synchronizing the target circadian gene expression post-transcrip-

tionally. According to the model results, three distinct peak phases in deadenylation activity,

as those suggested in mouse liver [29], can robustly cluster the mRNAs into three distinct

groups by their peak phases of poly(A) tail length and long-tailed mRNA abundance; this

deadenylation rhythm-dependent clustering happens regardless of the rhythmicity in the

other processes (Fig 3). This finding suggests a potential mechanism to synchronize the

expression of genes controlled by the same deadenylases, which would foster synergy among

these genes around the clock. This synchronization potential is unique to rhythmic deadenyla-

tion, but not the other rhythmic processes (Fig 3).

The potential capability of deadenylation to synchronize circadian gene expression further

poses two interesting questions. First, could deadenylation help synchronize circadian gene

expression among different cells and entrain their cell-autonomous clocks to the systemic

rhythms? Recent studies suggest that rhythmic feeding or other systemic rhythmic cues control

the rhythmic expression of several deadenylases, including Parn, Pan2 [17] and Nocturnin
[55], through clock-independent pathways. Given our findings, such systemically driven

rhythmicity in deadenylases could dictate the rhythmicity of poly(A) tail length and mRNA

translatability (~long-tailed mRNA abundance). This could help synchronize circadian gene

expression in cells influenced by the same systemic signals. Second, could deadenylases play a

role in tissue-specific circadian gene expression? Rhythmic gene expression is known to vary

tremendously from tissue to tissue: different tissues not only share very few rhythmically

expressed genes beyond the core clock genes, but also display different peak times for some

genes [5, 56, 57]. It is puzzling how the rhythmicity in gene expression varies so much across

different tissues while the cellular clock machineries are the same and are presumably synchro-

nized throughout the organism. Most previous studies on the mechanisms of tissue-specific

circadian gene expression have focused on tissue-specific transcriptional control, such as

rhythmic fluctuations in chromatin structure and interactions between core clock transcrip-

tion factors and tissue-specific transcription factors [58, 59]. In light of the findings from our

work, differential expression patterns of deadenylases in different tissues [60] could serve as an

additional mechanism to mediate tissue-specific circadian gene expression. These two interest-

ing questions await future studies to answer.

In our current model, the poly(A) regulation has been coarse-grained as one-step conver-

sions between a long-tailed and a short-tailed mRNA subpopulations. Such coarse-graining
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retains the most essential kinetic features of the poly(A) regulation processes, while allowing

for significant reduction of the model and efficient global parameter sensitivity analysis. From

such analysis we identified the critical role of deadenylation in rhythmic regulation. In reality,

both deadenylation and polyadenylation act sequentially, i.e., adding or subtracting one aden-

osine at a time. Unlike one-step chemical reactions, the kinetics of sequential processes are

often non-exponential [61, 62]. To evaluate the rhythmicities of poly(A) regulation and gene

expression more accurately, we will include a linear reaction chain in the model to account for

sequential steps of deadenylation and polyadenylation in our future work.

Circadian gene expression is a critical, yet highly complex process. Expressing the right

genes at the right time and the right place requires coordinated control at various gene expres-

sion steps, as well as across different cells and tissues. Systems-level study of the coupling

between different rhythmic processes is necessary to gain comprehensive understanding of cir-

cadian gene expression control, and more importantly, the ability to make positive use of cir-

cadian rhythm in disease treatments. As our work demonstrates the significant impact of

rhythmic poly(A) regulation and its coupling with rhythmic mRNA transcription and degra-

dation on circadian gene expression, it will be of great future interest to examine how coupling

of rhythmicities in all transcriptional, post-transcriptional, translational and post-translational

processes influences circadian gene expression.

Finally, the methodology used in this study, namely, global parameter sensitivity analysis

over randomized model parameters, are broadly applicable to modeling studies in chronobiol-

ogy. Randomized global parameter sweeping is effective and efficient for model analysis, when

the model parameters are largely unknown or highly variant (e.g., high variations across differ-

ent genes for parameters in our model), and the corresponding experimental data are too

sparse to effectively constrain the parameters. Results from global parameter sweep provide

insights about which elements of the system are important for the target qualitative or quanti-

tative behaviors. Many chronobiology models fall in this type. In fact, similar randomized

global parameter sweep was used to identify components that are critical to generate key char-

acteristics of the circadian clock, such as circadian entrainment, adaptation to seasonal

changes in photoperiod, and tissue-specific rhythms [63–65].

In addition, the Sobol’s method serves as a particularly powerful tool for parameter sensitiv-

ity analysis for models in chronobiology. In chronobiology models, oscillation phases are often

important quantities of interest. As circular variables, i.e., ZT 0 = ZT 24, phases are intrinsically

nonlinear and non-monotonic. Analyzing nonlinear and non-monotonic variables using clas-

sic correlation and dependency analyses, such as Pearson correlation and Spearman correla-

tion, could lead to misleading conclusions, because these methods are based on assumptions

about linear and monotonic relations between the analyzed data. For example, in our model,

Pearson and Spearman correlation analyses demonstrate strong negative correlation between

the phases of deadenylation and L/S ratio, a spurious conclusion due to the circular nature of

phases (S6 Fig); other pairs of input and output phases suffer different levels of distortion in

their Pearson and Spearman correlations (S6 Fig). Based on variance decomposition (see

Methods), the Sobol’s method circumvents these problems and can effectively analyze nonlin-

ear and non-monotonic variables [54]. The method can be used widely in chronobiology mod-

els to identify the key factors that drive phases of target quantities, such as the phase difference

between PER2 and TP53, whose interaction is critical for the crosstalk between the circadian

clock and cell cycle [66]. Furthermore, the Sobol’s method would be useful in model-driven

chronopharmacology research [67–69], a particularly exciting new area, to elucidate the

molecular mechanism of the therapy or drug and the source of variations in the therapeutic

effect.
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Control of circadian rhythm is a great example of systems biology topics, since the circadian

control is intricately connected to many, if not all, biological processes from the cellular to

organismal levels. Like research on other systems biology topics, combination between

computational modeling and experimentation provides a powerful tool and will accelerate

future advance in the research of circadian control.

Methods

Model simulation and extraction of phase, amplitude and mean from

simulation results

For any given parameter set, Eqs (1) and (2) were simulated using the ODE solver, ode45, in

MATLAB. For a simulated time trajectory {L(t),S(t)}, the peak phases, relative amplitudes and

mean levels of L(t)+S(t),L(t)/S(t) and L(t) were analyzed. First, the time trajectory for the out-

put quantity of interest, e.g., L(t)/S(t), was calculated from {L(t),S(t)}. Then a 48-hr window

after 700 hrs (sufficiently long to pass the initial transient) was extracted from the trajectory

for data analysis. The trajectories typically have irregular time spacing (due to automatic time

stepping in the ode45 solver) and hence often have insufficient time resolution for accurate

determination of the peak phase. To make accurate estimation of the peak phase, the 48-hr tra-

jectory was interpolated upon 500 equally spaced time points spanning the 48 hrs. The peak

phase was evaluated from the time for the maximum interpolated value, tmax, i.e., peak phase =

mod(tmax+700,24) (hr). The mean value was estimated by taking the average of the interpolated

values. The relative amplitude was estimated by taking the maximum and minimum interpo-

lated values and calculating (max−min)/(2×mean). An output quantity was considered rhyth-

mic if its relative amplitude is equal to or greater than 0.2.

Parameter sampling

We performed global parameter sensitivity analysis [70] on the model to analyze the general

contribution of each parameter to each output quantity (i.e., peak phase, relative amplitude

and mean of L(t)+S(t),L(t)/S(t) and L(t)). In this study we drew random parameter values

from the distributions listed in Table 1 and plotted in S1 Fig. The peak phases and relative

amplitudes were sampled from uniform distributions of their possible ranges by definition

(Table 1). The mean reaction rates were sampled from log-normal distributions suggested by

previous genomic scale measurements (see sources indicated in Table 1). We set the mean

transcription rate as constant, as it only causes proportional changes in L(t) and S(t), and does

not affect the rhythmic patterns of any quantity (S1 File). To improve the accuracy of the

global sensitivity analysis for models with many parameters, one needs parameter samples that

well represent the parameter space. To this end, we used the sampling method of Latin hyper-

cube [71], which is known to ensure good representation of a high-dimensional parameter

space.

Sobol’s method of global sensitivity analysis

To evaluate the impact of each model parameter (e.g., phase of deadenylation) on each model

output (e.g., relative amplitude of L/S ratio), we used a variance-based global parameter sensi-

tivity analysis method, the Sobol indices [53, 54]. The conceptual basis of this method is func-

tional decomposition of the variance of an output Y into contributions from each parameter

and interactions between the parameters (Eq (4)).

VarðYÞ ¼
X

i

ViðYÞ þ
X

i<j

VijðYÞ þ � � � þ V1;2;...;kðYÞ ð4Þ
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In Eq (4), ViðYÞ ¼ VarXi
ðEX�i
ðYjXiÞÞis the contribution from the i-th parameter alone.

Here X~i denotes the combined parameter set except for the i-th parameter. EX�i
ðYjXiÞdenotes

the expectation of output Y conditional on a fixed value for Xi (while the other parameters ran-

domly vary). VarXi
ðEX�i
ðYjXiÞÞthen denotes the variance of the calculated conditional expecta-

tion as Xi varies. The second term of Eq (4),VijðYÞ ¼ VarXi;Xj
ðEX�ij

ðYjXi;XjÞÞ � ViðYÞ� VjðYÞ,
is the contribution from the interactions between the i-th and j-th parameters, where X~ij

denotes the combined parameter set except for the i-th and j-th parameters. Contributions

from higher-order interactions between parameters are defined similarly as Vij(Y).

The Sobol indices are then defined as fractions of the decomposed terms in Eq (4) out of

the total variance, Var(Y). In practice, only the single (Eq (5)) and total-effect (Eq (6)) indices

are calculated because relatively simple algorithm as described below can be designed. Specifi-

cally, the single Sobol index, Si, characterizes the contribution of variance in Xi alone to the total

variance in Y (Eq (5)). The total-effect, or total index, STi, characterizes the contribution of vari-

ance in Xi, as well as the variance caused by its coupling with other parameters, to the total vari-

ance in Y (Eq (6)). Conveniently, the total-effect contribution equalsEX�i
ðVarXi

ðYjX�iÞÞ. Here

VarXi
ðYjX�iÞ denotes the variance of output Y conditional on a fixed set of X~i (while Xi ran-

domly varies). EX�i
ðVarXi

ðYjX�iÞÞthen denotes the expectation of the calculated variance as X~i

varies (Eq (6)). The larger the single and total indices are, the more sensitive Y is to Xi, or the

more impact Xi has on Y.

Si ¼
VarXi

ðEX�i
ðYjXiÞÞ

VarðYÞ
ð5Þ

STi ¼

Vi þ
X

j6¼i

Vij þ
X

j6¼i;k6¼i;j<k

Vijk þ � � �

VarðYÞ
¼

EX�i
ðVarXi

ðYjX�iÞÞ
VarðYÞ

ð6Þ

We followed the specific algorithms given in [53] and [74] for evaluating the single (Eq (5))

and total indices (Eq (6)). The details of implementation are explained below.

1. Sample from the distributions given in Table 1 two independent groups of N parameter

sets (N = 100,000 in this study):

A ¼

A1;1 � � � A1;k

..

. . .
. ..

.

AN;1 � � � AN;k

2

6
6
6
4

3

7
7
7
5
;B ¼

B1;1 � � � B1;k

..

. . .
. ..

.

BN;1 � � � BN;k

2

6
6
6
4

3

7
7
7
5

ð7Þ

Each row in A and B represents one set of k parameters. k = 11 for the model with cyto-

plasmic polyadenylation. k = 8 for the model without cytoplasmic polyadenylation. k = 9

for the model without transcriptional rhythmicity.

2. Construct k hybrid groups of parameter sets. The i-th hybrid group, AðiÞB , has the i-th col-

umn equal to the i-th column of B, and the remaining columns copied from A, where
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i = 1,. . .,k.

AðiÞB ¼

A1;1 � � � B1;i � � � A1;k

A2;1 � � � B2;i � � � A2;k

..

. . .
. ..

. . .
. ..

.

AN;1 � � � BN;i � � � AN;k

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð8Þ

3. Estimate the total variance for each model output, Yq.

VarðYqÞ �
1

2N

XN

n¼1

f½fqðAðnÞÞ � �fqðAðnÞÞ�
2
þ ½fqðBðnÞÞ � �fqðBðnÞÞ�

2
g ð9Þ

where fq denotes the q-th output quantity (Fig 1B) from the circadian gene expression model

(Eqs (1) and (2)). A(n) and B(n) denote the n-th parameter set (row) in Groups A and B, respec-

tively. The bars on top denote the average of output quantities over N parameter sets.

4. For each pair of parameter Xi and output Yq in the model (Fig 1B), estimate the single and

total Sobol indices, using Eqs (10) and (11) [53, 74].

Siq �
1

N

XN

n¼1

fqðBðnÞÞ½fqððA
ðiÞ
B ÞðnÞÞ � fqðAðnÞÞ�=VarðYqÞ ð10Þ

STiq �
1

2N

XN

n¼1

½fqððA
ðiÞ
B ÞðnÞÞ � fqðAðnÞÞ�

2
=VarðYqÞ ð11Þ

where ðAðiÞB ÞðnÞ denotes the n-th parameter set (row) in the i-th hybrid group, and the other

notations follow those described above.

Supporting information

S1 Fig. Sampling distributions of the model parameters. (A) Sampling distribution of mean

mRNA degradation rate. (B) Sampling distribution of mean deadenylation rate. (C) Sampling

distribution of mean polyadenylation rate. (D) Sampling distribution of relative amplitudes of

all rhythmic processes. (E) Sampling distribution of peak phases of all rhythmic processes.

(TIF)

S2 Fig. Sobol indices of the model with cytoplasmic polyadenylation. Calculation using Eqs

(1) and (2). Label “S” on top: single Sobol indices. Label “T” on top: total Sobol indices. Error

bars show the standard deviation of the estimated Sobol indices from 10 repeats. Each repeat

was performed using the procedure described in Methods with N = 100,000.

(TIF)

S3 Fig. Sobol indices of the model without cytoplasmic polyadenylation. Calculation using

Eqs (1) and (2), with kpolyA = 0. Label “S” on top: single Sobol indices. Label “T” on top: total

Sobol indices. Error bars show the standard deviation of the estimated Sobol indices from 10

repeats. Each repeat was performed using the procedure described in Methods with N =

100,000.

(TIF)
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S4 Fig. Two-parameter distributions show a more confined distribution of the Class I

parameter sets than the Class II sets. (A) Parameter distributions with respect to the ampli-

tudes of transcription and degradation. (B) Parameter distributions with respect to the phase

difference between transcription and degradation and the amplitude of transcription. (C)

Parameter distributions with respect to the phase difference between transcription and degra-

dation and the amplitude of degradation. Case (i): Scatter plots for 3,000 Class I sets and 3,000

Class II sets randomly chosen from the 100,000 parameter sets used to produce Fig 4. Case (ii):

The parameter sets in case (i) that satisfy −1.15�log10kdgrd�0. Case (iii): The parameter sets in

case (i) that satisfy −2�log10kdgrd�−1.15. As the mean degradation rate, kdgrd, decreases, fewer

Class I parameter sets are found in a more confined region.

(TIF)

S5 Fig. Two-parameter distributions show a more confined distribution of the Class IV

parameter sets than the Class III sets. (A-C) Parameter distributions with respect to the deg-

radation amplitude and the phase difference between deadenylation and degradation (A), or

between polyadenylation and degradation (B), or between deadenylation and polyadenylation

(C). (D-F) Parameter distributions with respect to pairs of phase differences. Case (i): Scatter

plots for 3,000 Class III sets and 3,000 Class IV sets randomly chosen from the 100,000 param-

eter sets used to produce Fig 5. Case (ii): The parameter sets in case (i) that satisfy −-

1�log10kdgrd�1. Case (iii): The parameter sets in case (i) that satisfy −1.5�log10kdgrd�−1. As

the mean degradation rate, kdgrd, decreases, fewer Class IV parameter sets are found in a more

confined region.

(TIF)

S6 Fig. Comparison among Pearson correlation, Spearman correlation and Sobol indices.

(A) Dependency analyses between the phase of L/S ratio and the phase of each input. (B)

Dependency analyses between the phase of L+S and the phase of each input. (C) Dependency

analyses between the phase of L and the phase of each input. Scatter plots from Fig 2 for each

input-output pair are placed below the corresponding dependency analysis results.

(TIF)

S1 File. Setting mean transcription rate as constant does not affect rhythmic pattern.

(PDF)
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