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Abstract

Epidemiologists are often confronted with datasets to analyse which contain measure-

ment error due to, for instance, mistaken data entries, inaccurate recordings and

measurement instrument or procedural errors. If the effect of measurement error is mis-

judged, the data analyses are hampered and the validity of the study’s inferences may be

affected. In this paper, we describe five myths that contribute to misjudgments about

measurement error, regarding expected structure, impact and solutions to mitigate the

problems resulting from mismeasurements. The aim is to clarify these measurement

error misconceptions. We show that the influence of measurement error in an epidemio-

logical data analysis can play out in ways that go beyond simple heuristics, such as

heuristics about whether or not to expect attenuation of the effect estimates. Whereas

we encourage epidemiologists to deliberate about the structure and potential impact of

measurement error in their analyses, we also recommend exercising restraint when

making claims about the magnitude or even direction of effect of measurement error if

not accompanied by statistical measurement error corrections or quantitative bias analy-

sis. Suggestions for alleviating the problems or investigating the structure and magni-

tude of measurement error are given.
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Introduction

Epidemiologists are often confronted with datasets to ana-

lyse which contain data errors. Settings where such

errors occur include, but are not limited to, measurements of

dietary intake,1–3 blood pressure,4–6 physical activity,7–9 ex-

posure to air pollutants,10–12 medical treatments received13–

15 and diagnostic coding.16–18 Mismeasurements and

misclassifications, hereinafter collectively referred to as

measurement error, are mentioned as a potential study

limitation in approximately half of all the original

research articles published in highly ranked

epidemiology journals.19,20 The actual burden of measure-

ment error in all of epidemiological research is likely to be

even higher.19

Despite the attention given to measurement error in

the discussion and limitation sections of many published

articles, empirical investigations of measurement error in

epidemiological research remain rare.19–21 Notably, sta-

tistical methods that aim to investigate the impact of

measurement error or alleviate their consequences for the

epidemiological data analyses at hand continue to be

rarely used. Authors instead appear to rely on simple

heuristics about measurement error structure, e.g.

whether or not measurement error is expected to be non-

differential, and impact on epidemiological data analy-

ses, e.g. whether or not the measurement error creates

bias towards null effects, despite ample warnings that

such heuristics are oversimplified and often wrong.22–27

As we will illustrate, the impact of measurement error of-

ten plays out in a way that counters common

conceptions.

In this paper we describe and reply to five myths about

measurement error which we perceive to exist in epidemi-

ology. It is our intention to clarify misconceptions about

mechanisms and bias introduced by measurement error in

epidemiological data analyses, and to encourage research-

ers to use analytical approaches to investigate measure-

ment error. We first briefly characterize measurement

error variants before discussing the five measurement error

myths.

Measurement error: settings and
terminology

Throughout this article (except for myth 5) we assume that

measurement error is to occur in a non-experimental epide-

miological study designed to estimate an exposure effect,

that is the relationship between a single exposure (denoted

by A, e.g. adherence versus non-adherence to a 30-day

physical exercise programme) and a single outcome

(denoted by Y; e.g. post-programme body weight in kg),

statistically controlled for one or more confounding varia-

bles (e.g. age, sex and pre-programme body weight). Some

simplifying assumptions are made for brevity of this

presentation.

It is assumed that the confounders are adequately con-

trolled for by conventional multivariable linear, risk or

rate regression (e.g. ordinary least squares, logistic regres-

sion, Cox or Poisson regression), or by an exposure model

(e.g. propensity score analysis).28 Besides measurement er-

ror, other sources that could affect inferences about the ex-

posure effect are assumed not to play an important role,

e.g. no selection bias.29 Unless otherwise specified, we as-

sume that the measurement error has the classical additive

form: Observation ¼ Truth þ Error, shortened as

O¼TþE, where the mean of E is assumed to be zero,

meaning that the Observations do not systematically differ

from the Truth. Alternative and more complex models for

measurement error relevant to epidemiological research,

such as systematic and Berkson error models,30 are not

considered here. We also assume that there is an agreed un-

derlying reality (T) of the phenomenon that one aims to

measure and an imperfectly measured representation of

that reality (O) subject to measurement error (E). This

identifiable measurement error assumption is often reason-

able in epidemiological research but may be less so in some

circumstances, for instance with the measurement of com-

plex diseases. For in-depth discussion on the theories of

measurement we refer to the work by Hand.31

In the simplest setting, we may assume (or in rare cases,

know) that the measurement error is univariate, that is to

say that measurement error occurs only in a single variable.

Key Messages

• The strength and direction of effect of measurement error on any given epidemiological data analysis is generally dif-

ficult to conceive without appropriate quantitative investigations.

• Frequently used heuristics about measurement error structure (e.g. nondifferential error) and impact (e.g. bias to-

wards null) are often wrong and encourage a tolerant attitude towards neglecting measurement error in epidemiolog-

ical research.

• Statistical approaches to mitigate the effects of unavoidable measurement error should be more widely adopted.
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Measurement error in an exposure variable (EA) is further

commonly classified as nondifferential if error in the mea-

surement error is independent of the true value of the out-

come (TY ; i.e. EAqTY) and differential otherwise.

Likewise, error in the measurement of the outcome (EY) is

said to be nondifferential only if the error is independent of

the true value of the exposure (TA; i.e. EYqTA),32–35 or in

an alternative notation if for each possible outcome status

y of TY , Pr(OY ¼ yj TY ¼ y, TA ¼ aÞ ¼ c; where c is a

constant for all possible values a of TA. (Note that nondif-

ferential error sometimes refers to a broader definition that

includes covariates; for a single covariate L with true val-

ues, the assumption can then be specified by Pr(OY ¼ yj TY

¼ y, TA ¼ a; Tl ¼ lÞ ¼ c.)

Reconsider the hypothetical example of the relation be-

tween the exposure physical exercise programme adher-

ence and post-programme body weight. Differential

exposure measurement error would mean that mismea-

surement of programme adherence occurs more frequently

or more infrequently in individuals with a higher (or lower)

post-programme body weight. For the binary exposure

programme adherence, nondifferential error simplifies to

assuming that the sensitivity and specificity of measured

programme adherence are the same for all possible true

values of post-programme body weight.

If two or more variables in the analysis are subject to

measurement error, we may speak of multivariate (or joint)

measurement error. When two variables are measured with

error, measurement error (which may be differential or non-

differential for either variable) is said to be independent if

the errors in the one error-prone variable are statistically

unrelated to the errors in the other error-prone variable and

dependent otherwise, i.e. multivariate measurement error in

A and Y is said to be independent if EYq EA:
32–34 Dependent

measurement error may for instance occur in an exposure

variable when error on exposure becomes more (or less)

likely for units that are misclassified on the outcome vari-

able. In the hypothetical example, if both adherence to a

physical activity programme and post-programme body

weight were self-reported, we may expect error in both ex-

posure and outcome measurements. Further, we may also

anticipate that respondents who misreport adherence to the

exercise programme also misreport their post-programme

body weight, which would result in multivariate dependent

measurement error.

Five myths about measurement error

In this section we discuss five myths about measurement in

epidemiological research, in particular as regards the im-

pact of measurement error on study results (myths 2 and

5), solutions to mitigate the impact (myths 1 and 4) and

the mechanisms of measurement error (myth 3). Each

myth is accompanied by a short reply that is substantiated

in a more detailed explanation.

Myth 1: measurement error can be compensated

for by large numbers of observations

Reply: no, a large number of observations does not resolve

the most serious consequences of measurement error in ep-

idemiological data analyses. These remain regardless of the

sample size.

Explanation: one intuition is that measurement error

distorts the true existing statistical relationships between

variables, analogous to noise (the measurement error) low-

ering the ability to detect a signal (the true statistical rela-

tionships) that can be picked up from the data. Continuing

on this thought, increasing the sample size would amplify

the signal to become better distinguishable from the noise,

thereby compensating for the measurement error.

Unfortunately, this signal to noise analogy rarely applies to

epidemiological studies.

Measurement error can have impact on epidemiological

data analyses in at least three ways, as summarized by the

Triple Whammy of Measurement Error.30 First, measure-

ment error can create a bias in the measures of the expo-

sure effect estimate. Second, measurement error affects the

precision of the exposure effect estimate, often by reducing

it, reflected in larger standard errors and widening of confi-

dence intervals for the exposure effect estimates, and a

lower statistical power of the significance test for the null

exposure effect. Biased exposure effect estimates may,

however, be accompanied by smaller rather than larger

expected standard errors and conserved statistical power.36

Third, measurement error can mask the features of data,

such as non-linear functional relationships between the ex-

posure and outcome variables. Figure 1 illustrates feature

masking by univariate nondifferential measurement error.

With sample size increasing and assuming all else

remains equal, exposure effect estimates will on average be

closer to their limiting expected values, while not necessar-

ily closer in distance to their respective true values. A large

sample size thus improves the assurance that the exposure

effect estimate comports to the expected value under the

measurement error mechanism, affecting the second

Whammy of Measurement Error (precision) but not di-

rectly the first (bias) (Figure 2). A larger sample size may

thus compensate for the loss in precision and power which

is due to the presence of measurement error. The compen-

sation needed for studies with data that contain measure-

ment error can be a 50-fold or more increase of the sample

size when the reliability of measurement is low.37,38 In con-

sequence, even a dataset of a spectacularly large size
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containing measurement errors may or may not yield more

precise estimates and more powerful testing than a much

smaller dataset without measurement error.

Myth 2: the exposure effect is underestimated

when variables are measured with error

Reply: no, an exposure effect can be over- or underesti-

mated in the presence of measurement error depending on

which variables are affected, how measurement error is

structured and the expression of other biasing and data

sampling factors. In contrast to common understanding,

even univariate nondifferential exposure measurement er-

ror, which is often expected to bias towards the null, may

yield a bias away from null.

Explanation: more than a century ago, Spearman39 de-

rived his measurement error attenuation formula for a

pairwise correlation coefficient between two variables

wherein at least one of the variables was measured with er-

ror. Spearman identified that this correlation coefficient

would on average be underestimated by a predictable

amount if the reliability of the measurements was known.

This systematic bias towards the null value, also known as

regression dilution bias, attenuation to the null and

Hausman’s iron law, is now known to apply beyond sim-

ple correlations to other types of data and analyses.25,40–42

It is, however, an overstatement to say that—by iron

law—the exposure estimates are underestimated in any

given epidemiological study analysing data with measure-

ment error. For instance, selective filtering of statistically

Figure 1. Illustration of Whammy 3: Measurement error may mask a functional relation. True model: outcome ¼ 3/2*exposure^2þ e, e�N(0, 1).

Measurement error model: observed exposure value ¼ true exposure value þ exposure error. Line is a LOESS curve.

Figure 2. Illustration of Whammy 1 (bias) and Whammy 2 (precision, see width confidence intervals) of measurement error. Dashed is regression line

without measurement error (Truth), solid line is regression line with measurement error (With ME). N ¼ sample size. Lines, point estimates and confi-

dence intervals based on 5000 replicate Monte Carlo simulations (Truth: outcome ¼ exposure þ e, e�N(0, 0.6), exposure�N(0, 1), With ME: Truth þ
er, er�N(0, 0.5)). Plotted points the first single simulation replicate.
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significant exposure effects in measurement error-contami-

nated data estimated with low precision is likely to lead to

substantial overestimation of the exposure effect estimates

for the variables that withstand the significance test.26

Even if one is willing to assume that measurement error is

the only biasing factor, a simplifying assumption that we

make in this article for illustration purposes only, statisti-

cal estimation is subject to sampling variability. The dis-

tance of the exposure effect estimate relative to its true

value varies from dataset to dataset. In a particular dataset

with measurement error, exposure effects may be overesti-

mated only due to sampling variability, illustrations of

which are found in Hutcheon et al. and Jurek et al.22,43

Hence, a defining characteristic of the iron law is that it

applies to averages of exposure effect estimates, e.g. after

many hypothetical replications of a study with the same

measures.

This is not to argue that measurement error in itself can-

not, in principle, produce a bias in a predictable direction.

The iron law does come with many exceptions. For instance,

the law does not apply uniformly to univariate differential

measurement error in any variable (which may produce bias

in the exposure effect estimate away or towards null27,44–46),

nor to univariate nondifferential error in the outcome vari-

able (which may not affect bias in the exposure effect in case

the outcome is continuous25) nor to univariate nondifferen-

tial measurement error in one of the confounding variables

(which may create a bias in the exposure effect estimate

away or towards null due to residual confounding27,44,47).

For multivariate measurement error in any combination of

exposure, outcome and confounders, bias in the exposure

can be in either direction, with the exception of (strictly) in-

dependent and nondifferential measurement error in dichot-

omous exposure and outcome.34

There are also exceptions to the iron law in cases of uni-

variate nondifferential exposure measurement error.

Particularly, nondifferential misclassification of a polyto-

mous exposure variable (i.e. with more than two catego-

ries) may create bias that is away from null for some of the

exposure categories and towards null for others.29,48,49

Measurement error of any kind, including nondifferential

exposure measurement error, also hampers the evaluation

of exposure effect modification,44,50 interaction51,52 and

mediation,53,54 creating bias away or towards null.

Myth 3: exposure measurement error is

nondifferential if measurements are taken without

knowledge of the outcome

Reply: no, exposure measurement error can be differential

even if the measurement is taken without knowledge of the

outcome.

Explanation: differential exposure measurement error is

of particular concern because of its potentially strong bias-

ing effects on exposure effect estimates.29,35,55 Differential

error is a common suspect in retrospective studies where

knowledge of the outcome status can influence the accu-

racy of measurement of the exposure. For instance, in a

case-control study with self-reported exposure data, cases

may recall or report their exposure status differently from

controls, creating an expectation of differential exposure

measurement error. Differential exposure measurement er-

ror may also arise due to bias by interviewers or care pro-

viders who are not blinded to the outcome status, or by use

of different methods of exposure measurement for cases

and controls.

Differential exposure measurement error is often not

suspected in prospective data collection settings where the

measurement of exposure precedes measurement of the

outcome. Measurement of exposure before the outcome is

nonetheless insufficient to guarantee that exposure mea-

surement error is nondifferential. For example, as White56

noted: in a prospective design, differential measurement er-

ror in the exposure ‘family history of disease’ may be due

to a more accurate recollection of family history among

individuals with strong family history who are at a higher

risk of the disease outcome. The nondifferential exposure

measurement assumption is violated, as the measurement

error in exposure is not independent of the true value of

the outcome (i.e. EAqTY is violated) despite that the expo-

sure was measured before the outcome could have been

observed.

Measurement error structures are also not invariant to

discretization and collapsing of categories. For instance,

discretization of a continuous exposure variable measured

with nondifferential error into a categorical exposure vari-

able can create differential exposure measurement error

within the discrete categories.48,57,58 A clear numerical ex-

ample of this is given in Wacholder et al., their second ta-

ble.59 Although discretization in broader categories may be

perceived as more robust to measurement error-induced

fluctuations, the possible change in the mechanism of the

error may do more harm than good for the estimation of

the exposure effect.

Myth 4: measurement error can be prevented but

not mitigated in epidemiological data analyses

Reply: no, statistical methods for measurement error bias-

corrections can be used in the presence of measurement er-

ror provided that data are available on the structure and

magnitude of measurement error from an internal or exter-

nal source. This often requires planning of a measurement
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error correction approach or quantitative bias analysis,

which may require additional data to be collected.

Explanation: a number of approaches have been pro-

posed which examine and correct for the bias due to mea-

surement error in analysis of an epidemiological study,

typically focusing on adjusting for the bias in the exposure

effect estimator and corresponding confidence intervals.

These approaches include: likelihood based approaches60;

score function methods61; method-of-moments correc-

tions62; simulation extrapolation63; regression calibration64;

latent class modelling65; structural equation models with la-

tent variables66; multiple imputation for measurement error

correction67; inverse probability weighing approaches68 and

Bayesian analyses.69 Comprehensive text books30,62,69–71

and a measurement error corrections tutorial72 are available.

Some applied examples are given in Table 1.

Measurement error correction methods79 require infor-

mation to be gathered about the structure and magnitude

of measurement error. These data may come from within

the study data that are currently analysed (i.e. internal vali-

dation data) or from other data (i.e. external validation

data). If an accurate measurement procedure exists (i.e. a

gold standard), either external or on an internal subset, a

measurement error validation study can be conducted to

extract information about the structure and magnitude of

measurement error. If no such gold standard measurement

procedure exists, a reliability study can replicate measure-

ments of the same imperfect measure (e.g. multiple blood

pressure measurements within the same unit), or alterna-

tively, observations on multiple measures that aim to mea-

sure the same phenomenon (e.g. different diagnostic tests

for the same disease within the same unit). Different mea-

surement error correction methods, and the ability of the

bias correction to return an estimate nearer to the truth,

may be more or less applicable depending on the data sour-

ces available for the measurement error correction.

The impact of measurement error on study results can

also be investigated by a quantitative bias analysis,79,80 even

in the absence of reliable information about structure and

magnitude. In brief, a quantitative bias analysis is a sensitiv-

ity analysis that simulates the effect of measurement error as-

suming a certain structure and magnitude of that error. Since

some degree of uncertainty about measurement error gener-

ally remains, in particular about error structure, sensitivity

analyses can also be useful following the application of mea-

surement error correction methods mentioned above.

Myth 5: certain types of epidemiological research

are unaffected by measurement error

Reply: no, measurement error can affect all types of epide-

miological research.

Explanation: measurement error affects epidemiology

undoubtedly beyond the settings we have discussed thus

far, i.e. studies of a single exposure and outcome variable

statistically controlled for confounding. For instance,

measurement error has also been linked to issues with data

analyses in the context of record linkage,81,82 time

series analyses,10,11 Mendelian randomization studies,83

genome-wide association studies,84 environmental epide-

miology,85 negative control studies,86 diagnostic accuracy

studies,87,88 disease prevalence studies,89 prediction model-

ling studies90,91 and randomized trials.92

It is worth noting that types of data and analyses can be

differently affected by measurement error. This means that

even when measurement error is similar in structure and

magnitude, the error can have a different impact depending

on the analyses conducted. For example, consider a two-

arm randomized trial with univariate differential measure-

ment error in the outcome variable. If it is not possible to

blind patients and providers to the treatment assignment,

then the accuracy of assessment of some outcomes may de-

pend on the assigned treatment arm. In this setting, bias in

the exposure (treatment) effect estimate can be in either di-

rection and inflate or deflate both Type I and Type II error

for the null hypothesis significance test of no effect of treat-

ment.92 The impact the measurement error has on the

inferences made from the trial’s results depends on whether

the trial is a superiority, equivalence or non-inferiority

trial.93

Concluding remarks

Our discussion of five measurement error-related myths

adds to an already extensive literature that has warned

against the detrimental effects of neglected measurement

error, a problem that is widely acknowledged to be ubiqui-

tous in epidemiology. We suspect that these persistent

myths have contributed to the tolerant attitude towards

neglecting measurement error found in most of the applied

epidemiological literature, as evidenced by the slow uptake

of quantitative approaches that mitigate or investigate

measurement error.

We have shown in this paper that the effect that mea-

surement error can have on a data analysis is often

counter-intuitive. Whereas we encourage epidemiologists

to deliberate about the structure and potential impact of

measurement error in their analyses, for instance via

graphical approaches such as causal diagrams,33,45,94 we

also recommend exercising restraint when making claims

about the magnitude or even direction of bias of measure-

ment error if not accompanied by analytical investigations.

With the increase of collection and use of epidemiological

data that are primarily collected without a specific research
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question in mind, such as routine care data,95 we anticipate

that attention to measurement error and approaches to

mitigate it will only become more important.
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1. Thiébaut ACM, Kipnis V, Schatzkin A, Freedman LS. The role

of dietary measurement error in investigating the hypothesized

link between dietary fat intake and breast cancer—a story with

twists and turns. Cancer Invest 2008;26:68–73.

2. Freedman LS, Schatzkin A, Midthune D, Kipnis V. Dealing with

dietary measurement error in nutritional cohort studies. J Natl

Cancer Inst 2011;103:1086–92.

3. Freedman LS, Commins JM, Willett W et al. Evaluation of the

24-hour recall as a reference instrument for calibrating other

self-report instruments in nutritional cohort studies: evidence

from the validation studies pooling project. Am J Epidemiol

2017;186:73–82.

4. Bauldry S, Bollen KA, Adair LS. Evaluating measurement error

in readings of blood pressure for adolescents and young adults.

Blood Press 2015;24:96–102.

5. van der Wel MC, Buunk IE, van Weel C, Thien T, Bakx JC. A

novel approach to office blood pressure measurement: 30-minute

office blood pressure vs daytime ambulatory blood pressure.

Ann Fam Med 2011;9:128–35.

6. Nitzan M, Slotki I, Shavit L. More accurate systolic blood pres-

sure measurement is required for improved hypertension man-

agement: a perspective. Med Devices 2017;10:157–63.

7. Welk G. Physical Activity Assessments for Health-Related

Research. Champaign, IL: Human Kinetics, 2002.

8. Ferrari P, Friedenreich C, Matthews CE. The role of measure-

ment error in estimating levels of physical activity. Am J

Epidemiol 2007;166:832–40.

9. Lim S, Wyker B, Bartley K, Eisenhower D. Measurement error of

self-reported physical activity levels in New York City: assess-

ment and correction. Am J Epidemiol 2015;181:648–55.

10. Zeger SL, Thomas D, Dominici F et al. Exposure measurement

error in time-series studies of air pollution: concepts and conse-

quences. Environ Health Perspect 2000;108:419–26.

11. Goldman GT, Mulholland JA, Russell AG et al. Impact of expo-

sure measurement error in air pollution epidemiology:

effect of error type in time-series studies. Environ Health 2011;

10:61.

12. Sheppard L, Burnett RT, Szpiro AA et al. Confounding and ex-

posure measurement error in air pollution epidemiology. Air

Qual Atmos Health 2012;5:203–16.

Table 1. Examples of measurement error corrections, models and bias analyses

Measure with error Methods Applied example Ref.

Serum measurement of

Vitamin D

Regression

calibration

To account for measurement error, serum measurements were calibrated to as-

say measurements (the preferred reference standard) using data from an earlier

study containing measurements of both assay and serum of Vitamin D

73

Smoking status reported by

health care providers

Multiple imputation Clinical assessments of smoking status were available only for an internal valida-

tion subgroup. Multiple imputation was used to account for the potential

measurement error in health care provider-reported smoking status for the

remaining patients

74

Low-density lipoprotein

cholesterol (LDL-c)

measurement

SIMEX Effect estimate of LDL-c on coronary artery disease was corrected for bias in the

error contaminated LDL-c measurements using the Simulation Extrapolation

(SIMEX) method

75

Self-reported dietary fibre

intake

Regression

calibration

Repeated measurement of error-prone self-reported dietary feedback was used to

estimate within-person variation to correct for measurement error via regres-

sion calibration

76

Diagnostic tests for pulmo-

nary tuberculosis (PTB)

Latent class analysis Results from six diagnostic tests for PTB were available which were considered

error-contaminated measurements of PTB infection. A latent class model was

developed to estimate diagnostic accuracy in the absence of a gold standard

77

Self-reported influenza vac-

cination status

Quantitative bias

analysis

Monte Carlo simulations were performed to evaluate the impact of measurement

error in the relation between vaccination status of pregnant women and pre-

term birth, assuming a range of plausible accuracy values for self-reported

influenza vaccination

78

344 International Journal of Epidemiology, 2020, Vol. 49, No. 1



13. Boudreau DM, Daling JR, Malone KE, Gardner JS, Blough DK,

Heckbert SR. A validation study of patient interview data and phar-

macy records for antihypertensive, statin, and antidepressant medi-

cation use among older women. Am J Epidemiol 2004;159:308–17.

14. Schneeweiss S, Avorn J. A review of uses of health care utiliza-

tion databases for epidemiologic research on therapeutics. J Clin

Epidemiol 2005;58:323–37.

15. De Smedt T, Merrall E, Macina D, Perez-Vilar S, Andrews N,

Bollaerts K. Bias due to differential and non-differential disease-

and exposure misclassification in studies of vaccine effectiveness.

PLoS One 2018;13:e0199180.

16. Delate T, Jones AE, Clark NP, Witt DM. Assessment of the cod-

ing accuracy of warfarin-related bleeding events. Thromb Res

2017;159:86–90.

17. Yu AYX, Quan H, McRae AD, Wagner GO, Hill MD, Coutts

SB. A cohort study on physician documentation and the accuracy

of administrative data coding to improve passive surveillance of

transient ischaemic attacks. BMJ Open 2017;7:e015234.

18. Nissen F, Morales DR, Mullerova H, Smeeth L, Douglas IJ,

Quint JK. Validation of asthma recording in the clinical practice

research datalink (CPRD). BMJ Open 2017;7:e017474.

19. Jurek AM, Maldonado G, Greenland S, Church TR. Exposure-

measurement error is frequently ignored when interpreting epi-

demiologic study results. Eur J Epidemiol 2007;21:871–76.

20. Brakenhoff TB, Mitroiu M, Keogh RH, Moons KGM,

Groenwold RHH, van Smeden M. Measurement error is often

neglected in medical literature: a systematic review. J Clin

Epidemiol 2018;98:89–97.

21. Shaw PA, Deffner V, Keogh RH et al. Epidemiologic analyses

with error-prone exposures: review of current practice and rec-

ommendations. Ann Epidemiol 2018;28:821–28.

22. Sorahan T, Gilthorpe MS. Non-differential misclassification of

exposure always leads to an underestimate of risk: an incorrect

conclusion. Occup Environ Med 1994;51:839–40.

23. Brenner H, Loomis D. Varied forms of bias due to nondifferen-

tial error in measuring exposure. Epidemiology 1994;5:510–17.

24. Jurek AM, Greenland S, Maldonado G. Brief report: How far

from non-differential does exposure or disease misclassification

have to be to bias measures of association away from the null.

Int J Epidemiol 2008;37:382–85.

25. Hutcheon JA, Chiolero A, Hanley JA. Random measurement er-

ror and regression dilution bias. BMJ 2010;340:c2289.

26. Loken E, Gelman A. Measurement error and the replication cri-

sis. Science 2017;355:584–85.

27. Carroll RJ. Measurement error in epidemiologic studies. In:

Armitage P and Colton T (eds). Encyclopedia of Biostatistics.

Chichester, UK: Wiley, 2005.

28. Rosenbaum PR, Rubin DB. The central role of the propensity

score in observational studies for causal effects. Biometrika

1983;70:41–55.

29. Rothman KJ, Greenland S, Lash T. Modern Epidemiology. 3rd

edn. Philadelphia: Lippincott Williams & Wilkins (Wolters

Kluwer Health), 2008.

30. Carroll RJ, Ruppert D, Stefanski LA, Crainiceanu CM.

Measurement Error in Nonlinear Models: A Modern

Perspective. Boca Raton, FL:Chapman and Hall/CRC, 2006.

31. Hand DJ. Statistics and the theory of measurement. J R Stat Soc

Ser A 1996;159:445–92.

32. Kristensen P. Bias from nondifferential but dependent misclassi-

fication of exposure and outcome. Epidemiology 1992;3:

210–15.

33. Hernan MA, Cole SR. Invited commentary: causal diagrams and

measurement bias. Am J Epidemiol 2009;170:959–62.

34. Brooks DR, Getz KD, Brennan AT, Pollack AZ, Fox MP. The

impact of joint misclassification of exposures and outcomes on

the results of epidemiologic research. Curr Epidemiol Rep 2018;

5:166–74.

35. Copeland KT, Checkoway H, Mcmichael AJ, Holbrook RH.

Bias due to misclassification in the estimation of relative risk.

Am J Epidemiol 1977;105:488–95.

36. Greenland S, Gustafson P. Accounting for independent nondif-

ferential misclassification does not increase certainty that an ob-

served association is in the correct direction. Am J Epidemiol

2006;164:63–68.

37. McKeown-Eyssen GE, Tibshirani R. Implications of measure-

ment error in exposure for the sample sizes of case-control stud-

ies. Am J Epidemiol 1994;139:415–21.

38. Devine OJ, Smith JM. Estimating sample size for epidemiologic

studies: the impact of ignoring exposure measurement uncer-

tainty. Stat Med 1998;17:1375–89.

39. Spearman C. The proof and measurement of association between

two things. Am J Psychol 1904;15:72–101.

40. Bross I. Misclassification in 2 x 2 tables. Biometrics 1954;10:

478–86.

41. Liu K. Measurement error and its impact on partial correlation

and multiple linear regression analyses. Am J Epidemiol 1988;

127:864–74.

42. Hausman J. Mismeasured variables in econometric analysis:

problems from the right and problems from the left. J Econ

Perspect 2001;15:57–67.

43. Jurek AM, Greenland S, Maldonado G, Church TR. Proper

interpretation of non-differential misclassification

effects: expectations vs observations. Int J Epidemiol 2005;34:

680–87.

44. Greenland S. The effect of misclassification in the presence of

covariates. Am J Epidemiol 1980;112:564–69.

45. VanderWeele TJ, Hernan MA. Results on differential and depen-

dent measurement error of the exposure and the outcome using

signed directed acyclic graphs. Am J Epidemiol 2012;175:

1303–10.

46. Buzas JS, Stefanski LA, Tosteson TD. Measurement error. In:

Ahrens W and Pigeot I (eds). Handbook of Epidemiology.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2014.

47. Brakenhoff TB, van Smeden M, Visseren FLJ, Groenwold R.

Random measurement error: why worry? An example of cardio-

vascular risk factors. PLoS One 2018;13:e0192298.

48. Dosemeci M, Wacholder S, Lubin JH. Does nondifferential

miclassification of exposure always bias a true effect toward the

null value? Am J Epidemiol 1990;132:746–48.

49. Brenner H. Bias due to non-differential misclassification of polyt-

omous confounders. J Clin Epidemiol 1993;46:57–63.

50. Armstrong BG. Effect of measurement error on epidemiological

studies of environmental and occupational exposures. Occup

Environ Med 1998;55:651–56.

51. Muff S, Keller LF. Reverse attenuation in interaction terms due

to covariate measurement error. Biom J 2015;57:1068–83.

International Journal of Epidemiology, 2020, Vol. 49, No. 1 345



52. Jaccard J, Wan CK. Measurement error in the analysis of interac-

tion effects between continuous predictors using multiple regres-

sion: multiple indicator and structural equation approaches.

Psychol Bull 1995;117:348–57.

53. Le Cessie S, Debeij J, Rosendaal FR, Cannegieter SC,

Vandenbroucke JP. Quantification of bias in direct effects esti-

mates due to different types of measurement error in the media-

tor. Epidemiology 2012;23:551–60.

54. VanderWeele TJ, Valeri L, Ogburn EL. The role of measurement

error and misclassification in mediation analysis. Epidemiology

2012;23:561–64.

55. Drews CD, Greeland S. The impact of differential recall on the

results of case-control studies. Int J Epidemiol 1990;19:1107–12.

56. White E. Design and interpretation of studies of differential ex-

posure measurement error. Am J Epidemiol 2003;157:380–87.

57. Flegal KM, Keyl PM, Nieto FJ. Differential misclassification aris-

ing from nondifferential errors in exposure measurement. Am J

Epidemiol 1991;134:1233–46.

58. Blas Achic BG, Wang T, Su Y, Kipnis V, Dodd K, Carroll RJ.

Categorizing a continuous predictor subject to measurement er-

ror. Electron J Stat 2018;12:4032–56.

59. Wacholder S, Dosemeci M, Lubin JH. Blind assignment of expo-

sure does not always prevent differential misclassification. Am J

Epidemiol 1991;134:433–37.

60. Carroll RJ, Spiegelman CH, Lan KKG, Bailey KT, Abbott RD.

On errors-in-variables for binary regression models. Biometrika

1984;71:19–25.

61. Stefanski LA. Unbiased estimation of a nonlinear function a nor-

mal mean with application to measurement-error models.

Commun Stat Theory Methods 1989;18:4335–58.

62. Fuller WA. Measurement Error Models. New York: Wiley,

1987.

63. Cook JR, Stefanski LA. Simulation-extrapolation estimation in

parametric measurement error models. J Am Stat Assoc 1994;

89:1314–28.

64. Carroll RJ, Stefanski LA. Approximate quasi-likelihood estima-

tion in models with surrogate predictors. J Am Stat Assoc 1990;

85:652–63.

65. Hui SL, Walter SD. Estimating the error rates of diagnostic tests.

Biometrics 1980;36:167–71.

66. Sánchez BN, Budtz-Jørgensen E, Ryan LM, Hu H. Structural

equation models. J Am Stat Assoc 2005;100:1443–55.

67. Cole SR, Chu H, Greenland S. Multiple-imputation for

measurement-error correction. Int J Epidemiol 2006;35:

1074–81.

68. Gravel CA, Platt RW. Weighted estimation for confounded bi-

nary outcomes subject to misclassification. Stat Med 2018;37:

425–36.

69. Gustafson P. Measurement Error and Misclassification in

Statistics and Epidemiology: Impacts and Bayesian Adjustments.

Boca Raton, FL: Chapman and Hall (CRC Press), 2003.

70. Buonaccorsi JP. Measurement Error. Boca Raton, FL: Chapman

and Hall/CRC, 2010.

71. Yi GY. Statistical Analysis with Measurement Error or

Misclassification. New York: Springer, 2017.

72. Keogh RH, White IR. A toolkit for measurement error correc-

tion, with a focus on nutritional epidemiology. Stat Med 2014;

33:2137–55.

73. Tian L, Durazo-Arvizu RA, Myers G, Brooks S, Sarafin K,

Sempos CT. The estimation of calibration equations for varia-

bles with heteroscedastic measurement errors. Stat Med 2014;

33:4420–36.

74. Edwards JK, Cole SR, Westreich D et al. Multiple imputation to

account for measurement error in marginal structural models.

Epidemiology 2015;26:645–52.

75. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan

NA, Thompson JR. Assessing the suitability of summary data for

two-sample Mendelian randomization analyses using MR-Egger

regression: the role of the i2 statistic. Int J Epidemiol 2016;45:

1961–74.

76. Dahm CC, Keogh RH, Spencer EA et al. Dietary fiber and colo-

rectal cancer risk: a nested case-control study using food diaries.

J Natl Cancer Inst 2010;102:614–26.

77. Schumacher SG, Van Smeden M, Dendukuri N et al. Diagnostic

test accuracy in childhood pulmonary tuberculosis: a Bayesian

latent class analysis. Am J Epidemiol 2016;184:690–700.

78. Ahrens K, Lash TL, Louik C, Mitchell AA, Werler MM.

Correcting for exposure misclassification using survival analysis

with a time-varying exposure. Ann Epidemiol 2012;22:

799–806.

79. Lash TL, Fox MP, Fink AK. Applying Quantitative Bias

Analysis to Epidemiologic Data. New York: Springer-Verlag,

2009.

80. Lash TL, Fox MP, MacLehose RF, Maldonado G, McCandless

LC, Greenland S. Good practices for quantitative bias analysis.

Int J Epidemiol 2014;43:1969–85.

81. Tromp M, Ravelli AC, Bonsel GJ, Hasman A, Reitsma JB.

Results from simulated data sets: probabilistic record linkage

outperforms deterministic record linkage. J Clin Epidemiol

2011;64:565–72.

82. Harron K, Wade A, Gilbert R, Muller-Pebody B, Goldstein H.

Evaluating bias due to data linkage error in electronic healthcare

records. BMC Med Res Methodol 2014;14:36.

83. Pierce BL, VanderWeele TJ. The effect of non-differential mea-

surement error on bias, precision and power in Mendelian ran-

domization studies. Int J Epidemiol 2014;43:1383–93.

84. Barendse W. The effect of measurement error of phenotypes on

genome wide association studies. BMC Genomics 2011;12:232.

85. Gryparis A, Paciorek CJ, Zeka A, Schwartz J, Coull BA.

Measurement error caused by spatial misalignment in environ-

mental epidemiology. Biostatistics 2009;10:258–74.

86. Sanderson E, Macdonald-Wallis C, Davey Smith G. Negative

control exposure studies in the presence of measurement error:

implications for attempted effect estimate calibration. Int J

Epidemiol 2018;47:587–96.

87. Fosgate G. Non-differential measurement error does not always

bias diagnostic likelihood ratios towards the null. Emerg Themes

Epidemiol 2006;3:7.

88. de Groot JAH, Bossuyt PMM, Reitsma JB et al. Verification

problems in diagnostic accuracy studies: consequences and solu-

tions. BMJ 2011;343:d4770.

89. Joseph L, Gyorkos TW, Coupal L. Bayesian estimation of disease

prevalence and the parameters of diagnostic tests in the absence

of a gold standard. Am J Epidemiol 1995;141:263–73.

90. Pajouheshnia R, van Smeden M, Peelen LM, Groenwold R. How

variation in predictor measurement affects the discriminative

346 International Journal of Epidemiology, 2020, Vol. 49, No. 1



ability and transportability of a prediction model. J Clin

Epidemiol 2019;105:136–41.

91. Luijken K, Groenwold RHH, Van Calster B, Steyerberg EW, van

Smeden M. Impact of predictor measurement

heterogeneity across settings on the performance of prediction

models: a measurement error perspective. Stat Med 2019;38:

3444–59

92. Nab L, Groenwold RHH, Welsing PM, van Smeden M.

Measurement error in continuous endpoints in

randomised trials: problems and solutions. Stat Med 2019;38:

5182–96.

93. Lesaffre E. Superiority, equivalence, and non-inferiority trials.

Bull NYU Hosp Jt Dis 2008;66:150–54.

94. Hernan MA, Robins JM. Causal Inference. Boca Raton, FL:

Chapman & Hall/CRC, 2020 (forthcoming).

95. Agniel D, Kohane IS, Weber GM. Biases in electronic health re-

cord data due to processes within the healthcare system: retro-

spective observational study. BMJ 2018; k1479.

International Journal of Epidemiology, 2020, Vol. 49, No. 1 347


