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Nuclear regulatory disturbances precede and predict the development of Type-2 
diabetes in Asian populations. 
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ABSTRACT 
To identify biomarkers and pathways to Type-2 diabetes (T2D), a major global disease, we 

completed array-based epigenome-wide association in whole blood in 5,709 Asian people. 

We found 323 Sentinel CpGs (from 314 genetic loci) that predict future T2D. The CpGs 

reveal coherent, nuclear regulatory disturbances in canonical immune activation pathways, 

as well as metabolic networks involved in insulin signalling, fatty acid metabolism and lipid 

transport, which are causally linked to development of T2D. The CpGs have potential clinical 

utility as biomarkers. An array-based composite Methylation Risk Score (MRS) is predictive 

for future T2D (RR: 5.2 in Q4 vs Q1; P=7x10-25), and is additive to genetic risk. Targeted 

methylation sequencing revealed multiple additional CpGs predicting T2D, and synthesis of 

a sequencing-based MRS that is strongly predictive for T2D (RR: 8.3 in Q4 vs Q1; P=1.0x10-

11). Importantly, MRS varies between Asian ethnic groups, in a way that explains a large 

fraction of the difference in T2D risk between populations. We thus provide new insights into 

the nuclear regulatory disturbances that precede development of T2D, and reveal the 

potential for sequence-based DNA methylation markers to inform risk stratification in 

diabetes prevention.   
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INTRODUCTION  
 Type 2 diabetes (T2D) is an age-related, chronic disease typically characterised by the 

presence of adiposity, insulin resistance and impaired glucose metabolism. Although an 

important public health problem in all regions of the world, the burden of diabetes is 

particularly high amongst people from Asian countries1. Currently, around 55% of people 

with T2D live in Asia, and the number of people living with T2D in the Asia-Pacific region is 

predicted to reach 412 million by 20452. In urban and migrant settings, one in five Asian 

adults is living with diabetes3–5, with disease onset occurring up to 10 years earlier and at 

substantially lower levels of adiposity, compared to people of European background6,7. 

Understanding the mechanisms underlying susceptibility to diabetes, and improving 

metabolic health outcomes, amongst Asian people is a major biomedical research priority8.  

 As a multifactorial disease, T2D arises through the intersection of a complex genetic 

background, with multiple modifiable risk exposures, including early life adversity, 

unfavourable lifestyle behaviours and adipose expansion9. We previously hypothesised that 

the convergence of these exposures would manifest through perturbations of nuclear 

regulation, that disrupt cellular metabolism and foster the development of diabetes4. In 

keeping with this, we and others identified changes in DNA methylation, a key regulator of 

DNA conformation, chromatin structure and gene expression, at ABCG1, SREBF1, TXNIP 

and several other genomic loci, that precede and predict development of T2D by more than 

a decade4,10–14. However, modest sample size, low coverage of DNA methylation profiling 

and the parsimonious nature of the accompanying clinical and molecular profiling, limited 

the impact of these observations, either as functional molecular insights or as the basis for 

biomarker discovery.  

 To extend on this prior work, and advance understanding of the nuclear and molecular 

disturbances underlying development of diabetes in Asian populations, we now report 

comprehensive molecular phenotyping of Asian people at risk for future diabetes, including 

through application of whole genome and targeted methylation sequencing. In so doing, we 

identify co-ordinated immune and metabolic pathway disturbances that precede and predict 

the development of diabetes, and reveal the potential for methylation profiling to improve 

identification of susceptible individuals.  
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RESULTS 
 Our study design is summarised in Extended Data Figure 1. We first carried out 

epigenome-wide association for incident T2D using the baseline samples collected at 

enrolment for 5,709 Asian individuals, from three prospective population-based cohorts 

(Supplementary Online Materials; Supplementary Table 1). Diabetes was defined as i. 

physician diagnosis of diabetes and on drug treatment, ii. fasting glucose ≥7.0mmol/L or iii. 

HbA1c ≥6.5%1. All participants were confirmed free from diabetes at enrolment. Cases 

(N=2,592) were selected as people identified to have developed diabetes during follow-up 

of up to 15 years. Controls (N=3,117) were people confirmed to remain free from diabetes 

during follow-up, and were matched to cases based on age, sex, and ethnic group. DNA 

methylation was quantified in genomic DNA from whole blood, using the Illumina MethylEpic 

array (N~850K markers) in the iHealth-T2D and MEC cohorts15, or the Illumina 

HumanMethylation 450K array (N~450K markers, LOLIPOP cohort). Epigenome wide 

association was carried out in the three cohorts separately, followed by inverse-variance 

meta-analysis (see Methods). Statistical significance was inferred as P<8.62x10-8, based 

on permutation testing16. 

 
Epigenome-wide association identifies multiple genetic loci predicting T2D  
 We identified 420 CpG sites that are associated with well characterised incident T2D at 

P<8.62x10-8; a ~20-fold increase compared to prior knowledge (Supplementary Table 2; 

Figure 1). The CpGs are distributed between 314 genetic loci. Conditional analyses at each 

locus identified 323 CpG sites to be associated with T2D, independent of other nearby CpGs 

sites (‘Sentinel CpGs’; Supplementary Table 2). For 306 genetic loci, there was a single 

Sentinel CpG; at the remaining 8 loci there were 2 or more CpGs independently associated 

with incident T2D. Twenty-one (6%) of the 323 Sentinel CpGs have been previously reported 

to be associated with incident T2D. Relative risk (RR) for new onset T2D ranged from 1.11 

to 2.51 between the highest and lowest risk quartiles of DNA methylation for the respective 

markers (Figure 1). The mean absolute difference in methylation level between incident 

T2D cases and controls at the 323 Sentinel CpGs was 0.5%, with no evidence for 

heterogeneity of effect across Asian ethnic group or between cohorts (Supplementary 
Table 3). After adjusting for glucose and HbA1c, 56 loci remained significantly associated 

with incident T2D at P<8.62x10-8 (Supplementary Table 4, Supplementary Figure 1). As 

a sensitivity analysis, we excluded 1,752 individuals with prediabetes at baseline 

(HbA1c≥6% or fasting glucose≥6mmol/L); despite reduced sample size, 23 sentinel CpGs 

remained independently associated with future T2D (P<8.62x10-8; Supplementary Table 
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4, Supplementary Figure 1). Our results thus identify extensive variation in DNA 

methylation that precedes and predicts T2D, including multiple methylation markers that are 

independent of traditional glycaemic measures of metabolic dysregulation. 

 

Determinants of DNA methylation at the Sentinel CpG sites 
We used data from an independent population cohort comprising 2,237 Asian individuals 

with deep clinical and molecular phenotyping (Health for Life in Singapore study17, HELIOS; 

Methods, Supplementary Table 1), to explore the potential genetic and environmental 

factors influencing methylation at our Sentinel CpG sites. We tested both directly measured 

exposures, as well as exposures genetically inferred by polygenic risk scores (PRS), for 

association with methylation at Sentinel CpGs. In phenome-wide analyses, we observed 

that the Sentinel CpGs are associated with multiple measures of adiposity and lipid 

metabolism (range 59-74% of CpGs associated with trait at P<0.05; Fold Enrichment [FE]: 

5.4 to 7.1, Pperm<0.001 compared to background expectations; Extended Data Figure 2; 
Supplementary Table 5, Supplementary Table 6). We also found that the Sentinel CpGs 

are associated with dietary quality, including protective impacts of Alternate Mediterranean, 

DASH and Healthy Eating Index scores18–20, as well as with intakes of fruit, vegetables and 

other food items as assessed through Asian dietary metabolite panels21 (range 10 to 56% 

of CpGs associated with trait at P<0.05; FE: 1.9 to 6.8, P<0.001 compared to background). 
Polygenic risk scores for adiposity, lipid metabolism, diabetes and alcohol intake are 

associated with changes in methylation that are unfavourable for T2D risk, while polygenic 

risk for educational attainment is protective (Extended Data Figure 2; Supplementary 
Table 7). The results of these phenome-wide and polygenic risk analyses support the view 

that disturbances in methylation at the CpG sites predicting T2D are directly influenced by 

educational attainment, unfavourable dietary patterns, increased adiposity, lipid 

disturbances, and genomic disturbances recognised to determine T2D. 

 
Functional genomic evaluation of the Sentinel CpGs 
 Multiple lines of evidence point to a role for the identified CpG sites in genome regulation 

and transcriptional control. First, compared to background CpGs, our Sentinel CpG sites are 

more likely to show intermediate levels of methylation (79% vs 38%, FE=2.10; Pchi-sq<5x10-

324; Figure 1), and to have greater variability in methylation (Mean SD: 4.76% vs 4.20%, Pt-

test<5x10-324). Second, we show that there is enrichment of the sentinel CpGs compared to 

background for location in (i) DNase I hotspots (FE: 1.23 to 1.49), (ii) activating histone 

marks H3K4me1 and H3K36me3 (FE: 1.16 to 4.42), and (iii) Transcription flanking,  
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enhancer, and genic enhancer regions (FE: 1.56 to 4.84) across multiple tissue and cell 

subsets (FDR – PHyper<0.05, Supplementary Table 8; Extended Data Figure 3). Third, we 

demonstrate that the sentinel CpGs are significantly enriched for location in the binding sites 

of 92 specific nuclear transcription factors, including ZNF597, NFKB2, SPI1, IKZF1/2, JUNB, 

IRF4, and CREBBP (FE: 1.21 to 8.07, FDR-PHyper<0.05; Supplementary Table 9; 
Extended Data Figure 3). Fourth, we show that the sentinel methylation loci are enriched 

for association with gene expression in both cis- and trans- (expression quantitative trait 

methylation loci [eQTMs], assessed by RNA-seq of whole blood in 1,228 Asian samples; 

cis-eQTMs FE: 4.70, Pperm<0.001; trans-eQTMs FE 1.69, Pperm=0.03; Supplementary 
Table 10; Supplementary Table 11, Extended Data Figure 3). Fifth, the sentinel CpGs, 

and their associated trans-gene expression signatures show covariation that is greater than 

expected under the null hypothesis, consistent with a co-ordinated functional genomic 

response (Extended Data Figure 4). Finally, Gene Set Enrichment Analysis (GSEA) of the 

cis-eQTMs reveals they are enriched for insulin signalling and cholesterol metabolism (in 

particular through ABCG1, SREBF1 DBCR24, MSMO1, BAIAP1 and PDK4; P<0.001; 

Supplementary Table 10, Supplementary Table 12, Supplementary Figure 2), while the 

trans-eQTMs are strongly enriched for immune system activation, interferon and cytokine 

signalling (P<10-17; Supplementary Table 11, Supplementary Table 13, Supplementary 
Figure 3), coherent biological pathways linked to diabetes and related phenotypic 

disturbances. Our functional genomic analyses thus strongly support the view that the 

Sentinel CpGs identify multiple disturbances of nuclear regulation, that precede the 

development of T2D and related metabolic phenotypes. 

 

Cis- and trans-mQTLs support causal relationships between DNA methylation, T2D 
and related metabolic phenotypes.  
 To help understand the causal pathways linking our Sentinel CpGs to diabetes, we next 

carried out genome-wide-association amongst 7,573 Asian individuals with whole genome 

sequence and MethylEpic array data (see Methods). This enabled us to identify genetic 

variants that influence our Sentinel CpGs (‘mQTL’ SNPs), which we then used as genetic 

instruments in Mendelian randomisation, pathway, and related functional genomic analysis. 

 We found cis-acting genetic variants influencing 264 (82%) of our Sentinel CpGs 

(Supplementary Table 14), with the sentinel cis-mQTLs accounting for a median 1.2% of 

variation in methylation (range 0 to 24%). We also found 242 genetic loci that influence 

methylation at 253 (78%) of our Sentinel CpGs in trans (Supplementary Table 15). Overall, 

the median total genetic variance explained for the sentinel CpGs was 7.5% (range: 0 to 
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79%). Both the cis- and trans-acting mQTL SNPs are strongly enriched for association with 

diabetes, adiposity, insulin resistance and lipid concentrations in published GWAS studies22–

31 (FE: 1.33 to 19.23; Pperm: 0.05 to <0.001) (Extended Data Figure 5, Supplementary 
Table 16, Supplementary Table 17). Furthermore, Summary data-based Mendelian 

Randomization32 (SMR) together with colocalization33 (Methods), supports the view that our 

Sentinel CpGs, share a common genetic basis with multiple metabolic, inflammatory and 

cardiovascular traits and diseases (Supplementary Table 18 and Supplementary Table 
19).  

 Amongst the cis-regulated methylation loci, sentinel CpGs at BAIAP2, CPNE6, H1-10, 

HMGA1, INAFM2, JARID2, MDM4, RPS6KA2, SLC12A2 and TGM4 may be causally linked 

to the development of T2D (SMR P<1x10-5 and Coloc Posterior Probability [Coloc PP.H3 or 

Coloc PP.H4]>0.6; Extended Data Figure 6; Supplementary Table 18). We also observed 

shared genetic regulation between Sentinel CpGs and adiposity (N=8 CpGs), lipid traits 

(N=33 CpGs), and risk of cardiovascular disease (N=6 CpGs) (Supplementary Table 18). 

This includes an association between methylation at ABCA1 locus with LDL cholesterol, 

total cholesterol, and triglycerides (Coloc PP.H3>0.99), and at homeobox HOXB1 with WHR 

(Coloc PP.H4>0.97).  

 Amongst the 242 trans-acting mQTLs, SMR also supported the presence for a shared 

genetic basis between trans-methylation and diabetes at (13 trans-mQTLs and 45 CpGs, 

with SMR P<6.6x10-5; Supplementary Table 19). This includes the FADS2, NFKB1 and 

TBX6 SNP loci, impacting methylation at the SREBF1, CDKAL1, DHCR24 and IGFBP6 loci, 

and influencing risk of diabetes. The trans-acting SNPs also provide evidence for a shared 

genetic basis between our Sentinel CpGs and adiposity, lipid metabolism, systemic 

inflammation and cardiovascular risk. This includes the trans- effects of SNPs at the APOA5, 

APOE3, FADS, NFKB1, REST and SCARB1 loci (Supplementary Table 19). Together, this 

provides further evidence that the methylation disturbances identified represent components 

of biological pathways causally linked to the pathophysiology of metabolic disease and its 

cardiovascular complications.  

 

The trans-acting mQTLs reveal co-ordinated nuclear regulatory pathways linked to 
inflammation and metabolic disease  
 Amongst the 242 trans-acting mQTLs, we find that 50 are pleiotropic and influence 

multiple independent Sentinel CpG sites (range 2 to 45 Sentinel CpGs per SNP locus; FE: 

5 to 1729 compared to background, PHyper<2.1x10-4; Figure 2, Supplementary Table 20), 

indicating an effect on methylation within co-ordinated nuclear pathways. We searched the 
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eQTLgen database34 to identify the cis-genes and RNA species, that might be molecular 

mediators for the trans-acting effects of these 50 pleiotropic genomic loci. We found 153 

(115 protein coding) cis-eQTLs that are associated with 33 of our 50 Sentinel SNPs at 

P<1.2x10-5 (i.e. P<0.05 after correction for 4,283 independent tests; Supplementary Table 
21). Colocalization confirms that 151 (99%) of these cis-eQTLs are linked to the respective 

trans-methylation signature (Coloc PP.H3>0.9 or PP.H4>0.9). Our Asian-specific RNA-seq 

dataset replicated 53 of these colocalising cis-eQTLs (PGWAS<0.05; N=1,228 samples; 105 

eQTLs present in data; Supplementary Table 21).  

 We next used hierarchical clustering to organise the trans-acting relationships between 

SNP, gene expression and DNA methylation, into potential biological networks. We focused 

on the 33 Sentinel trans-mQTL SNPs with at least one cis-eQTL and identified seven 

discrete clusters based on their shared relationships to Sentinel CpGs (Supplementary 
Figure 4; see Methods). The largest two networks comprise 19 trans-acting SNPs linked to 

113 colocalising cis-eQTLs, 128 trans-CpGs and their proximal genes (‘CPG-Genes’; 

Extended Data Figure 7; Supplementary Figure 5). The cis-eQTLs mediating these trans-

acting pathways are strongly enriched for transcription factors known to be critical 

components of inflammatory pathways, and their specific interacting proteins, as well as to 

key components of metabolic pathways directly relevant to the pathophysiology of diabetes 

(Count: 1-61 cis-eQTLs, FE: 1.26 to 263.9, PFDR > 0.05) (Extended Data Figure 7; 

Supplementary Table 22) 
 To illustrate the complex relationships between immune activation, nuclear regulation and 

diabetes, we summarise our analyses focused on the NKFB1 cluster (Figure 3). We show 

that NFKB1 expression is closely correlated with both measured adiposity (BMI: Beta=0.143 

per SD, P=6.2x10-6) and genetically inferred adiposity (PRS-BMI: Beta=0.068 per SD, 

P=0.03), raising the initial epidemiological possibility that NFKB1 activation might represent 

a pathway linking excess accumulation of fat to future diabetes (Figure 3a, Figure 3b). 

However, we show that sentinel SNP rs2272676 (GàT) which increases NFKB1 expression 

in cis (eQTLGen Z=15.4), and lowers methylation at 37 Sentinel T2D CpG sites in trans 

(Beta: -0.002 to -0.031 per allele copy, P= 4.1x10-8 to 1.8x10-205, Supplementary Table 15), 

is associated with a lower risk for diabetes (Odds ratio: 0.986 per allele copy, P=7.8x10-6, 

Supplementary Table 17). SMR Analysis using rs2272676 confirms a shared genetic basis 

between increased NFKB1 expression and lower trans-CpG DNA methylation (SMR Beta: 

-0.35 to -1.99, P=2.4x10-7 to 6.1x10-43 ), as well between trans-CpG DNA methylation and 

risk of diabetes (SMR Beta: 0.44 to 7.29, P-value: 4.9x10-4 to 8.8x10-6; Supplementary 
Table 19, Supplementary Table 21, Figure 3c). Our findings suggest that NFKB1 
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activation in the context of increased BMI, may in fact ameliorate, and protect from, the 

adverse metabolic effects characteristic for excess adiposity. 

 

Co-ordinated disturbances of FADS1/2, SREBF1 and related lipid metabolic genes 
precede the development of diabetes  
 Our analysis of pleiotropic genetic loci identifies a cluster of 3 trans-acting SNPs, which 

jointly impact 5 diabetes-related CpG loci in trans (ABCG1, SREBF1, MSMO1, DHCR24 

and OLMALINC; P=2.2x10-8 to 3.7x10-24; Figure 4a, Supplementary Table 21). Increased 

methylation at the ABCG1 and SREBF1 loci shows the strongest relationship to future T2D 

(RR: 1.18 and 1.14 per 1% change in methylation, P=9.1x10-46 and 4.0x10-32 respectively; 

Supplementary Table 2), highlighting the potential biological importance of these 

regulatory connections.  

 Amongst the 3 trans-acting SNPs in this cluster, rs174598 (GàA) is associated in cis, 

with increased expression of FADS1 and FADS2 (eQTLGen Z=40.0 and 62.9 respectively, 

both P<3.2x10-320), encoding key enzymes in fatty acid desaturation and elongation. In 

keeping with this, SNP rs174598 impacts the concentrations of more than 100 distinct fatty 

acid metabolites in our participants (P=5.0x10-8 to 1.5x10-208; Supplementary Table 23). 

SNP rs174598 (GàA) is also associated in trans with reduced methylation of cg11024682, 

the Sentinel CpG at the SREBF1 locus (Beta=-0.002, P=2.8x10-9; Supplementary Table 
21), and increased expression of SREBF1 (LD proxy SNP rs174577 CàA: trans-eQTLGen 

Z=5.2, P=1.8x10-7; LD with rs174598: R2=0.86, D’=0.95). SNP rs174598 is also associated 

with raised triglycerides, lower HDL cholesterol and a lower risk of T2D. SMR and 

colocalization support a shared genetic basis between FADS1/2 gene expression, SREBF1 

expression and these key metabolic outcomes (Supplementary Table 23, Figure 4c). 

SREBF1 binds Steroid Regulatory Elements (SRE) to regulate transcription of genes 

involved in fatty acid synthesis and lipogenesis35. Cis-eQTLs that increase SREBF1 

expression are associated with raised triglycerides and a lower risk of diabetes28,31.  

 Increased methylation of cg06500161 at ABCG1 is associated with reduced expression 

of ABCG1 and an increased risk of T2D, suggesting that ABCG1 activation may reduce risk 

of T2D. We show an SRE site in the ABCG1 promoter, and that SREBF1 and ABCG1 

expression are positively correlated (P=4.8x10-13, Figure 4b), thus also providing a 

functional link between these two key metabolic, diabetes predicting methylation loci.  

 The cluster also identifies PANK1 and SCARB1 as potential mediators of trans-acting 

regulation of our diabetes-predicting CpGs (Figure 4a, Supplementary Table 15). PANK1 

catalyzes the first and rate-limiting enzymatic reaction in the biosynthesis of CoA from 
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vitamin B5, a co-enzyme that plays an essential role in  fatty acid metabolism, and in 

the citric acid cycle36. SMR and Colocalization analyses indicate that SNP rs17391246 

(AàG) at PANK1 impacts methylation at both the SREBF1 and OLMALINC loci (SREBF1: 

SMR Beta=0.89, P=1.7x10-5; OLMALINC: SMR Beta=0.86, P=2.3x10-5, both Coloc 

PP.H3>0.99; Supplementary Table 21; Supplementary Figure 6). OLMALINC is a long 

non-coding RNA that regulates expression of SCD, a major gene in lipid biosynthesis, 

through regional chromosomal DNA-DNA looping interactions37.  SCARB1 is an integral 

membrane protein well known to function as the receptor for HDL cholesterol, enabling 

reverse cholesterol transport38. Increased SCARB1 expression shows genetic colocalization 

with differential methylation at the ABCG1 and DHCR24 loci (ABCG1: SMR Beta=-0.35, 

P=2.55x10-15; DHCR24: SMR Beta=0.42, P=9.5x10-21; both Coloc.PP.H3>0.99; 

Supplementary Table 21; Supplementary Figure 7), as well as with HDL (SMR Beta = -

0.09, P=5.73x10-34, Coloc.PP.H3>0.99) and total cholesterol levels (SMR Beta = -0.04, 

P=3.48x10-8, Coloc.PP.H3>0.99, Supplementary Figure 7). DHCR24 is an enzyme in 

terminal cholesterol synthesis, and is linked to vascular disease and cognitive decline39.  

 

Fine-mapping of methylation loci associated with T2D 

 The MethylEpic array used for our discovery experiment assays only 2-3% of the ~30M 

CpG sites in the epigenome40. This limits insights into both risk prediction and mechanism. 

To expand on these array-based association signals, we first carried out whole-genome 

methylation sequencing (30x depth) of genomic DNA from whole blood, using samples from 

500 of our Asian participants (Extended Data Figure 8, Methods). We used the data to 

quantify local correlation around our Sentinel CpGs, and to selective genomic intervals for 

targeted high-depth methylation sequencing.  

 We show that pairwise correlation >|0.2| with the discovery marker is restricted to <500bp 

at the majority of CpGs (67.6% of 411 successfully sequenced, Extended Data Figure 8). 

Based on this, we selected a minimum of 500bp either side of the 420 CpGs associated with 

T2D, for targeted methylation sequencing. At 133 of the methylation loci, there was evidence 

for correlation at |r|>0.2 beyond the minimum 500bp interval; for these loci we extended the 

sequencing interval up to a maximum of 5kb in an effort to fully capture this longer range 

correlation (see Methods; Supplementary Table 24). Our primary strategy for methylation 

sequencing thus aimed to capture DNA methylation at 13,338 unique CpGs (mean 36 per 

locus, range 1 to 384; Supplementary Table 24). As secondary approach, we carried out 

methylation sequencing for the complete gene region for five methylation loci based on the 

following criteria: i. Complete resequencing of the ABCG1 and the SREBF1 gene locus, as 
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the genomic regions most closely associated with T2D; and ii. three loci with genetic 

evidence for potential causality of methylation on T2D (BAIAP2, H1-10 and JARID2). 

 High depth (mean coverage: 351x; SD: 92x) targeted methylation sequencing was carried 

out using a custom sequence capture panel (Twist Bioscience, Methods), using genomic 

DNA from 1,974 whole blood samples (978 cases with incident T2D, and 996 controls). The 

choice of sequencing depth was based on our previous data, which demonstrates this 

sequencing depth is needed to achieve precision equivalent to a methylation array41. We 

determined the appropriate statistical threshold for our primary analysis of the relationship 

between DNA methylation and T2D as P<10-5, based on 13,338 independent tests (median 

~14 per locus). Our targeted sequencing had 80% power to identify a difference in 

methylation between cases and controls of 0.9% at P<0.05, and 1.6% at P<3.7x10-6 

(Bonferroni correction for 13,338 independent tests), effect sizes that were observed at 56 

and 4 respectively, of the 323 Sentinel CpGs identified in the array-based discovery 

experiment.  

 

Fine mapping reveals multiple additional methylation signals for T2D  
 Amongst the 13,338 unique markers assayed in the primary target regions, there was 

strong evidence for enrichment for association with T2D (λ=1.83). We find 2,252 CpGs 

associated with T2D at P<0.05, of which 165 CpGs (mean 3, range 1-13 CpGs per locus) 

are associated with T2D at P<3.7x10-6. At 195 of the 314 loci with multiple CpGs captured, 

the most closely associated CpG was not the marker identified by the array (Phet<0.05 at 36 

loci, Supplementary Table 25). Resequencing of the primary intervals thus identifies 

additional CpG sites associated with T2D, including multiple CpG sites that are more 

strongly predictive than evaluation based on low-coverage microarray.  

 Resequencing of the ABCG1 locus (1MB, 11 genes, 19,216 CpG sites) identified 1,395 

CpG sites predicting T2D at P<0.05, and 21 at P<2.6x10-6 (Figure 5, Supplementary Table 
26). The methylation markers associated with T2D pile up almost exclusively in the ABCG1 

genic region (20 from 21 [95%] at P<2.6x10-6, particularly in ABCG1 enhancer regions 

across multiple cell types (FE:3.5 to 16.5, PFDR<0.05, 17 cell types; Extended Data Figure 
9). Of the 21 CpGs at ABCG1 associated with T2D, 19 were located in introns 1 and 2, in or 

near annotated LXR response elements (LXRE). The CpGs were most strongly enriched for 

location in the binding sites for ZNF93 (P=2x10-11), a transcriptional repressor, and HAND2 

(P=2x10-9), a glucocorticoid-responsive TF associated with BMI and implicated in 

adipogenesis42. 
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 The most closely associated CpG in ABCG1 was now located at chr21:43656590 (RR 

[95% CI]:1.44 [1.31 to1.60] per SD; P=1.1x10-12), a marker not assessed by the methylation 

arrays. Furthermore, a gene-based methylation score (developed using least absolute 

shrinkage and selection operator [LASSO] modelling, see Methods) that incorporated 17 of 

the 21 CpGs associated with T2D at ABCG1, achieved a RR for T2D of 2.12 per SD increase 

in methylation score (95% CI: 1.71 to 2.62; P=5.1x10-12). This represents a ~3-fold 

improvement compared to the effect size for the initially identified array-based Sentinel CpG 

cg06500161 (RR for T2D: 1.37 [1.25 to 1.51] per SD; P=1.5x10-10; Phet=2.8x10-4). Similarly, 

at the SREBF1 locus (1MB, 18 genes, 16,282 CpG sites), we identify 1,011 CpG site 

predicting T2D at P<0.05, and five at P<3.1x10-6 (Supplementary Table 27). The five T2D-

associated CpG sites were again found exclusively in the SREBF1 gene body (Extended 
Data Figure 10) and were also enriched in enhancer regions (FE:2.4 to 11.5, PFDR<0.05, 30 

cell types; Extended Data Figure 9). As was the case for the ABCG1 locus, the gene-based 

approach at the SREBF1 locus also resulted in an improved relative risk, with a RR for T2D 

of 1.93 (1.50 to 2.48) per SD (P=2.7x10-7), representative of a 58% improvement compared 

to the initially identified array-based sentinel CpG (Phet=0.01). Fine-mapping of the 

methylation markers identified by the microarray thus offers new insights into genomic 

regulation, and identifies multiple novel CpG associated with T2D, that as a set strongly 

predict future T2D. 

 Amongst the three loci selected for fine-mapping based on evidence of a potential causal 

relationship between methylation and T2D from colocalization, at BAIAP2 and H1-10 loci 

we found only one CpG associated with T2D at P<0.05 after Bonferroni correction for the 

number of CpGs sequenced. At the JARID2 locus, none of the CpGs achieved statistical 

significance.  

 

Potential clinical relevance: Methylation Risk Scores predict future diabetes. 
 As a key objective, and building on our prior work4,43, we tested the potential utility of DNA 

methylation for prediction of T2D. Having identified multiple predictive methylation markers 

using our array-based analyses, we first used a LASSO model to identify a parsimonious 

set of 42 array-based CpGs that independently predict T2D, amongst participants of the 

MEC study (‘Development set’, Supplementary Table 28). We then estimated an 

epigenome-wide Methylation Risk Score (MRS) as the sum of the site-specific DNA 

methylation levels, weighted by effect size for association with T2D, for each of the 42 

independent CpGs. We tested the MRS for prediction of T2D amongst participants of the 

iHealth-T2D study (‘Validation set’). We compared effect sizes and discrimination of future 
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T2D for the MRS, and for a diabetes polygenic risk score (PRS). Based on our prior work, 

we carried out a pre-specified analysis of MRS for prediction of T2D amongst 

normoglycaemic and obese individuals; this approach recognises that there is an important 

need to improve prediction of diabetes amongst obese people before the onset of 

prediabetes.   

 Our array-based MRS is strongly predictive for future T2D in the validation dataset (RR: 

5.4 [3.9 to 7.5] in Q4 vs Q1 of MRS, P=6.3x10-24; Figure 6; Supplementary Table 29), MRS 

is as predictive for future T2D as established PRS scores (RR: 4.7 [3.4 to 6.4] in Q4 vs Q1 

of PRS, P=2.3x10-22), with similar discrimination (AUC: 0.7 vs 0.65 respectively, P=0.13). 

The relationship of MRS and PRS with T2D were independent and additive, consistent with 

the view that MRS identifies additional, non-genetic, behavioural exposures underpinning 

development of diabetes (Supplementary Table 29). MRS remained predictive for T2D 

after adjusting for BMI, glucose and HbA1c concentrations (RR: 2.5 [1.7 to 3.8] in Q4 vs Q1 

of MRS, P=3.0x10-6). MRS also remained strongly predictive for future T2D amongst key 

subgroups, including the subset of normoglycaemic people with overweight and obesity 

(RR: 5.0 [3.0 to 8.1] in Q4 vs Q1 of MRS, P=1.8x10-10; (Supplementary Table 29). The 

array-based MRS also replicated in the 2,664 South Asians from the LOLIPOP study, 

despite the reduced number of available CpG sites (RR: 6.8 [5.1, 8.9] in Q4 vs Q1 of MRS, 

P=1.1x10-41), and in a fully independent cohort of 255 East Asians in the SCHS study (RR: 

8.0 (2.8 to 22.7) in Q4 vs Q1 of MRS, P=9.9x10-5; Supplementary Table 29). The 

relationships of MRS with T2D in the replication were also independent of BMI and 

measured glycaemic risk factors. 

 We hypothesised that CpG sites assessed through resequencing would enable us to 

improve on the array-based MRS. We applied LASSO modelling to the sequence dataset, 

starting with the set of 165 CpG sites captured by fine-mapping that were associated with 

T2D at P<3.7x10-6 (Supplementary Table 31) The sequence-based MRS based on 60 

LASSO-selected CpGs, which represents a 2.2-fold improvement over our array-based 

MRS (RR for T2D per 1SD increase in MRS: 2.59 [2.07 to 3.25], P=7.7x10-17 vs 1.73 [1.56 

to 1.91], P=1.9x10-27; Phet=0.001) and for Q4 vs Q1 of MRS (RR: 8.3 [4.5 to 15.3], P=1.0x10-

11 vs 3.9 [3.0 to 5.2], P=1.6x10-22 in the same set of samples; Phet<0.05). (Supplementary 
Table 32; Supplementary Table 33). Our sequence-based MRS remains strongly 

predictive for future T2D after adjusting for prediabetes (RR in Q4 vs Q1: 5.8 [3.0 to 11.3], 

P=2.4x10-7), and was highly discriminatory amongst a prespecified group of 

normoglycaemic individuals with overweight or obesity achieving a RR for T2D of 9.6 [3.8 - 
24.2] between Q4 and Q1 (P=1.5x10-6). AUCs for prediction of diabetes were similar for 
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MRS and prediabetes as separate exposures (0.72 [0.68 to 0.76] vs 0.72 [0.68 to 0.76] 

respectively, P=0.98). The addition of the sequence-based MRS to prediabetes as a risk 

factor improved prediction significantly (AUC for T2D: 0.80 [0.77 to 0.84], P=4.8x10-6 

compared to Prediabetes alone). The prospects for clinically useful risk stratification are thus 

strengthened by sequencing-based approaches, which show improved discrimination 

compared to array-based MRS. 

 
Methylation Risk Scores vary between ethnic groups. 
 The incidence and prevalence of T2D are recognised to vary greatly both between Asian 

ethnic groups, and amongst Asians compared to Europeans1,3–5. Similarly, we show that 

there is a 4.5 fold higher risk of diabetes amongst South Asians, compared to people of 

Chinese ancestry, amongst our Asian participants (Supplementary Table 34). We find that 

MRS varies between Asian ethnic groups in close relationship to their different metabolic 

risk (P=4.13x10-40; Figure 6). Array-based MRS is elevated amongst South Asians and 

Malays compared to Chinese (mean: 0.52 and 0.50 vs -0.10 AU respectively; P=1.2x10-18) 

and explains 51% of the 4.5 fold excess risk for T2D in South Asians, and 67% of the 3.1 

fold excess risk for T2D in Malays. In contrast, PRS for T2D are similar between Asian ethnic 

groups, and explains just 13% of the excess risk of T2D amongst South Asians, and only 

1% of the excess risk In Malays, compared to Chinese. Similarly, array-based MRS is raised 

in South Asians compared to Europeans living in the UK (LOLIPOP study; 0.02 vs -0.36; 

P=2.6x10-6), and explains ~24% of the 3.1 fold increased risk of diabetes in Asians. Given 

the improved discrimination of sequencing-based compared to array-based MRS, we 

anticipate that sequencing-based MRS are likely to further improve the ability to explain the 

difference in risk for T2D between populations.  
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DISCUSSION 
 The burden of T2D is high and rising amongst Asian populations, including early-onset, 

lean and insulin resistant phenotypes, that appear distinct from European metabolic 

phenotypes6,7. Building on previous work, we set out to both understand the nuclear 

regulatory mechanisms underlying increased susceptibility to diabetes and related 

metabolic disturbances in Asian populations, and to identify potential biomarkers to advance 

risk stratification. We focused on exploring DNA methylation at CpG dinucleotides, one of 

several reversible chemical modifications to the structure of DNA, which contributes to both 

physiological regulation of gene expression, as well as the perturbations in genome 

regulation that contribute to developmental disorders, senescence, cancer and other chronic 

diseases44.  

 

DNA methylation loci associated with future diabetes in Asian populations.  
 We carried out epigenome-wide association in peripheral blood white cells, from three 

longitudinal cohorts, comprising Asian people well-characterised for incident T2D. 

Methylation profiles vary by cell lineage44, and our observations thus relate primarily to 

regulatory disturbances in blood cells. Nevertheless, our choice of tissue was motivated both 

by the close involvement of white cells in the aetiology of insulin resistance, inflammation, 

lipid metabolism and the vascular consequences of diabetes, as well as by the suitability of 

blood cells for clinically applicable biomarker discovery. 

 We found 323 Sentinel CpGs from 314 loci associated with future T2D. We replicate all 

previously reported associations of DNA methylation in whole blood with future T2D, 

including the ABCG1, SREBF1 and TXNIP loci4,10–14, but also identify more than 300 novel 

methylation loci predictive for diabetes. Effect sizes of the methylation sites for T2D risk are 

higher than for common genetic variants and are consistent across both cohorts and Asian 

ethnic subgroups. We note that perturbed methylation at our Sentinel CpGs identifies both 

genetic and environmental exposures known to be involved in the aetiology of diabetes, 

including adiposity, educational attainment, and unfavourable dietary intake. This not only 

lends plausibility to the involvement of the methylation loci in the pathways to diabetes, but 

also highlights the CpGs as potential biomarkers to identify multifactorial exposures 

influencing metabolic health. 

 We used cis-acting genetic instruments, and colocalization analyses, to show that DNA 

methylation at the BAIAP2, CPNE6, H1-10, HMGA1, INAFM2, JARID2, MDM4, RPS6KA2, 

SLC12A2 and TGM4 loci may be causally linked to the development of T2D, and that 

multiple methylation loci may share a common genetic basis with adiposity, lipid metabolism 
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and cardiovascular risk. BAIAP2 functions as an insulin receptor tyrosine kinase substrate, 

and may be involved in insulin signalling in the central nervous system, and hypothalamic 

pathways for regulation of adiposity45. INAFM2 encodes InaF-motif containing 2, a protein 

of unknown function. Genetic variants at INAFM2 are associated with T2D in Asian, but not 

European populations46,47. MDM4 regulates p53 during embryonic development and 

adulthood in a cell and tissue-specific manner, and is required for development of endocrine 

pancreas. MDM4-/- mice show inhibition of islet cell proliferation, and pancreatic beta cell 

dysfunction48. JARID2 encodes a DNA binding transcriptional repressor with a key role in 

the development of the endocrine pancreas49. Jarid2-/- mice have reduced beta-cell mass, 

impaired insulin secretion and glucose intolerance49. SLC12A2 encodes an ion transporter 

expressed in pancreatic β-cells. Mouse models with an Slc12a2-/- knockout have reduced in 

vitro insulin responses to glucose and islet hypoplasia, and demonstrate weight gain and a 

progressive metabolic syndrome phenotype50. The methylation loci thus identify cis-

candidate genes, with compelling evidence for a role in metabolic health.  

 

DNA methylation patterns identify disturbances of immune and metabolic control. 
 Multiple lines of evidence suggest that the Sentinel CpG identify functionally relevant 

genomic regions, including trans-acting nuclear pathways. We took advantage of additional 

multi-ethnic Asian population studies, with rich and molecular phenotyping to understand 

the exposures, genes and biological processes involved. Using trans-acting genetic 

instruments, we show that the Sentinel CpGs are components of transcription factor 

pathways that regulate key co-ordinated inflammatory, lipid and glucose metabolic pathways 

of T2D. In particular, the CpGs intersect, and are causally influenced by NKFB1, NFKBIA, 

NFKBIE, NF1A, COMMD7, IKZF3, MADD and other nuclear transcription factors involved 

in immune regulation and metabolic control. Immune activation is a well-recognised 

manifestation of increased adiposity and diabetes, and is reported to contribute to pancreatic 

beta cell dysfunction, insulin resistance, atherosclerosis and steato-heptatitis51. We show 

that both measured adiposity and genetically inferred adiposity are associated with NFKB1 

activation, which correlates closely with methylation at multiple Sentinel T2D CpG sites in 

trans. Interestingly, our genetic instrument analyses confirm causal association between 

NFKB1 expression and DNA methylation, but also suggests that the NFKB1 activation may 

reduce the risk of T2D. Some aspects of immune activation may thus operate to mitigate 

against the increased risk for diabetes characteristic for excess adiposity. 

 The trans-acting networks also include CDKAL1, CPT1A, CYP7B1, PDK4, LDLRAD2, 

SREBF1, SH2B2, SOCS3, TANK and TXNIP, genes reported to impact pancreatic beta cell 
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function, insulin signalling and action, glucose sensing, metabolism of glucose, cholesterol 

and lipids, fatty acid beta oxidation, mitochondrial biology, thermogenesis, and 

adipogenesis52–59. Using genetic variants as instrumental variables, we further show that 

these trans-acting pathways, and their associated CpGs are causally linked to diabetes, as 

well as to closely related phenotypic disturbances such as adiposity, lipid levels, systemic 

inflammation, and cardiovascular disease. Our Sentinel CpGs thus identify both genes and 

pathways contributing to the pathogenesis of diabetes and its related cardiovascular and 

metabolic abnormalities.  

 

Disturbances in ABCG1 and SREBF1 as early markers for T2D susceptibility 
 DNA methylation at the ABCG1 and SREBF1 loci showed the strongest relationship to 

future T2D in both our array and targeted sequencing datasets, with increased methylation 

associated with lower expression of the respective genes in white cells, and a higher risk of 

T2D. Increased methylation at ABCG1 and SREBF1 is also linked to obesity, insulin 

resistance, atherogenic dyslipidaemia and cardiovascular risk, as well as to the 

unfavourable dietary habits that drive these conditions43,60–63. Suppression of ABCG1 and 

SREBF1 gene expression thus appears to contribute to risk for diabetes and related 

metabolic disturbances. 

 ABCG1 is an ATP-binding cassette (ABC) transporter, and a critical component the 

cholesterol and phospholipids from cells, including reverse cholesterol transport64. Abcg1-/- 

mice have impaired cholesterol efflux from macrophages, resulting in the accumulation of 

cholesterol in tissues, disruption of insulin release by pancreatic beta cells, foam cell 

formation and atherosclerosis65,66. SREBF1 is recognised to be a key regulator of lipid 

metabolism, which induces both fatty acid biosynthesis and de novo lipogenesis in the liver 

and other tissues, through binding to SRE67,68. In addition, knockout and over-expression 

studies show that increased expression of SREBF1 in the pancreas promotes β-cell 

proliferation and insulin secretion, providing a potential compensatory mechanism to 

metabolic stress69, potentially mitigating against the lipo-toxicity and the development of 

pancreatic β-cell failure, which underpins the transition to diabetes. Our pathway analyses 

using trans-acting genetic instruments further link ABCG1 and SREBF1, and other genes 

also documented to play key roles in fatty acid and lipid metabolism, including FADS1, 

FADS2, SCARB1, DHCR24 and OMALINC37–39. Our findings thus identify aberrant lipid 

metabolism and transport as early, predictive and predominantly environmentally-driven 

phenotypes, in the development of diabetes in Asian populations. 
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Fine mapping of the T2D associated methylation loci 
 The MethylEpic array assays just 3% of genomic CpG sites40; this sparse coverage limits 

insights into biological mechanisms and clinical utility for risk prediction. To move beyond 

state-of-the-art, we carried out fine-mapping of T2D associated CpGs, using a combination 

of whole-genome methylation sequencing to inform correlation structure, and targeted high-

depth methylation sequencing to quantify disease associations. These approaches have not 

previously been deployed in studies of DNA methylation and metabolic disease.  

 We show that pairwise correlation between markers is typically short range (<500bp), in 

contrast to the long-range LD that is well established for DNA sequence variation. Complete 

resequencing of the ABCG1 and SREBF1 loci revealed multiple CpGs that associate with 

T2D, and located almost exclusively in intronic enhancer regions of the respective candidate 

genes. At other loci, we also find multiple additional, and previously uncharacterised CpGs 

associated with T2D. Furthermore, at 195 of the 314 loci, the most closely associated CpG 

was not the marker identified by the array. Resequencing of the primary intervals thus offers 

new insights into genomic regulation, and identifies additional CpG sites associated with 

T2D, including multiple CpG sites that are more strongly predictive than evaluation based 

on low-coverage microarray. 

 

Prediction of T2D and potential clinical utility 
 Clinical intervention studies show that T2D can be prevented through lifestyle and 

pharmacological interventions. As a result, there is considerable interest in accurate 

identification of people at risk for T2D, to enable them to be offered effective therapeutic 

interventions. Current approaches to risk stratification for T2D rely heavily on markers of 

disturbed glucose metabolism, including impaired fasting or post-load glucose 

concentrations, or an elevated HbA1c. Whilst these markers do identify people with a high 

risk for T2D, abnormal glucose metabolism represents a late stage in the progression to 

diabetes. Risk of both micro-vascular and macrovascular disease is already increased 

amongst people with impaired glucose handling70. 

 To address the need for biomarkers that improve prediction of T2D, in particular amongst 

people with normal glucose concentrations, we tested the potential utility of DNA methylation 

for prediction of T2D. We show that a methylation risk score, comprising a parsimonious set 

of 42 array-based CpGs, is strongly predictive for future T2D, with similar discrimination to 

polygenic information. MRS remained predictive after adjusting for BMI, glucose and HbA1c 

concentrations, and remained predictive for future T2D amongst the subset of 

normoglycaemic people with overweight and obesity. Incorporation of information from 
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targeted sequencing further improved model performance. Specifically, our sequence-

based MRS, based on 60 CpGs, achieved a 2.2-fold improvement in risk ratio compared to 

our array-based methylation score. The potential importance of MRS for risk stratification is 

further illustrated by comparison between our Asian ethnic subgroups. In particular, we show 

that MRS explains much of the difference in risk for T2D between people Asian subgroups, 

and an important component of the difference between South Asians and Europeans. In 

contrast, polygenic information provides little explanation for the differences in metabolic 

outcomes between Asian populations. Our findings thus strengthen the basis for the 

potential utility of DNA methylation to identify individuals at high-risk of T2D for preventative 

interventions, including amongst people in the earliest stages of the progression to diabetes 

who have not yet developed impaired glucose metabolism.   

 
Summary  
 We found disturbances in DNA methylation at hundreds of CpG sites in peripheral blood 

white cells that predict future T2D. These highlight a critical role for nuclear regulatory 

disturbances, including in both immune activation pathways, and metabolic networks 

involving FADS1/2, SREBF1, ABCG1 and other genes causally implicated in pancreatic 

beta cell function, insulin signalling, fatty acid metabolism and lipid transport. The CpGs are 

highly predictive for future T2D, independent of adiposity and glycaemic risk factors, and 

additive to genetic risk. Our research thus provides new insights into the regulatory 

disturbances that precede development of T2D, and reveals the potential for DNA 

methylation biomarkers to identify genetic and non-genetic exposures influencing diabetes, 

and inform risk stratification in diabetes prevention.  
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METHODS 
Population samples description 
Multi-Ethnic Cohort (MEC) 

 MEC is a prospective population study of men and women of Chinese, Indian or Malay 

ethnicity, aged 21 to 85 years, and living in Singapore. Participants were recruited from the 

general population, between 2004 to 201015. At enrolment all participants completed a 

detailed interview, physical examination, and provided blood samples at each visit. 

Anthropometric measures such as height, weight, waist and hip circumferences were 

measured in the physical examination. T2D status, age, gender, smoking and alcohol 

drinking patterns, medication history and other covariates were collected through detailed 

interview. All participants provided written formed consent, and all protocols associated with 

the study were approved by the National University of Singapore Institutional Review Board. 

 

The iHealth-T2D study 

 iHealth-T2D is a prospective study of Indian Asian men and women living in West London, 

and recruited in 2016. At enrolment all participants completed a structured assessment of 

cardiovascular and metabolic health, including anthropometry, and collection of blood 

samples for measurement of fasting glucose, lipid profile and HbA1c. Identification of 

incident T2D was done through face-face follow-up, supplemented by linkage to medical 

records. Epigenome-wide association was performed using genomic DNA from peripheral 

blood collected at enrolment. The study is approved by the National Research Ethics Service 

(16/WM/0171) and all participants gave written informed consent. 

 

The London Life Sciences Prospective Population Study (LOLIPOP) 

 LOLIPOP is a prospective cohort study of ~28K Indian Asian and European men and 

women aged 35 to 75 years, recruited from the lists of 58 General Practitioners in West 

London, United Kingdom between 2003 and 2008. At enrolment all participants completed 

a structured assessment of cardiovascular and metabolic health, including anthropometry, 

and collection of blood samples for measurement of fasting glucose, insulin and lipid profile, 

HbA1c, and complete blood count with differential white cell count. Aliquots of whole blood 

were stored at -80C for extraction of genomic DNA. Epigenome-wide association was 

performed using genomic DNA from peripheral blood collected at enrolment, as previously 

reported4. The LOLIPOP study is approved by the National Research Ethics Service 

(07/H0712/150) and all participants gave written informed consent. 
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Health for Life in Singapore (HELIOS) 

 The HELIOS study recruits Singaporean citizens and permanent residents aged 30 to 84 

years old from the general population17. Study participants complete questionnaires on 

demographic and medical information, have measurements across various system domains 

including anthropometry, and collection of blood samples for measurement of fasting 

glucose, insulin and lipid profile, HbA1c, and complete blood count with differential white cell 

count. Aliquots of whole blood were stored at -80C for extraction of genomic DNA. 

Epigenome-wide association was performed using genomic DNA from peripheral blood 

collected at enrolment. The HELIOS study is approved by the Nanyang Technological 

University Institutional Review Board (IRB-2016-011-030), and all participants gave written 

informed consent.  

 

Singapore Chinese Health Study (SCHS) 

 The Singapore Chinese Health Study (SCHS) is a prospective cohort study of 63,257 

Chinese men and women aged 45 to 74 years, residing in Singapore, and recruited between 

1993 and 1998  as previously described71. At baseline, all participants completed structured 

interviews capturing demographic data, dietary patterns, lifestyle behaviours, and medical 

history. Anthropometric measurements, including height and weight, were recorded, in two 

subsequent follow-ups carried out in 1999-2004 (Follow-up I) and 2006-10 (Follow-up II), 

which also included collection of blood samples from a subset of participants. The study was 

ethically approved by the relevant Institutional Review Boards, and informed consent was 

obtained from all participants.  

 Within the SCHS cohort, a nested case-control study for diabetes was completed, as 

previously described72. In brief, we this comprised participants who were free of diabetes, 

cardiovascular disease, and cancer both at baseline and Follow-up I. Cases included 

participants diagnosed with diabetes during Follow-up II (2006-2010). Controls were 

selected from those free of the specified diseases at Follow-up II, matched on age, date of 

blood collection, sex, and dialect group. The present study included 255 cases of incident 

diabetes and controls, who had samples of whole blood available from the first follow-up 

evaluation.  

 

SG10K_Health 

The SG10K_Health study is part of the Singapore National Precision Medicine programme, 

and represents a collaboration between five adult population cohorts and one paediatric 

cohort in Singapore. Participants were of Chinese, Indian and Malay ethnicities and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 14, 2025. ; https://doi.org/10.1101/2025.02.14.25322264doi: medRxiv preprint 

https://doi.org/10.1101/2025.02.14.25322264
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

recruited with approval of a relevant institutional ethics review board, as previously 

described73. For the current study, we used the whole genome genotyping and DNA 

methylation profiles (Illumina HumanMethylationEPIC array) previously generated for the 

adult participants only (N=7,749).  
 
Quantification of DNA methylation and quality assessment of samples and markers 
 DNA methylation was quantified using the Illumina HumanMethylationEPIC array (EPIC 

array) for the MEC, iHealth-T2D, HELIOS and SCHS samples. Genomic DNA was bisulfite 

converted using the EZ DNA methylation kit according to manufacturer’s instructions (Zymo 

Research). Bisulfite converted genomic DNA was quantified using the EPIC array, according 

to manufacturer’s instructions. Bead intensity was retrieved using minfi R package, and 

downstream analyses are conducted using minfi and R74. Illumina background correction 

was applied to all intensity values using minfi. Methylation markers on sex chromosomes 

are excluded. A detection P-value threshold of P<0.01 was used to set intensity values to 

NA. The proportion of missing data points per sample or per marker were determined, and 

samples or markers with low call rate (<98%) were excluded. Gender swapped samples 

identified by minfi were also excluded.  

 A total of 12 samples were excluded for MEC due to gender swaps, leaving 1,492 

samples for analysis. No sample in the MEC cohort failed the call rate threshold of 98%. Of 

the 846,459 autosomal CpG markers assayed by the EPIC array, 3,465, 3,539 and 3,762 

markers with call rates <98% were excluded in the MEC Chinese, Malay and Indian 

subgroups respectively, leaving 842,994, 842,920 and 842,697 markers on the autosomes. 

In the iHealth-T2D study, 50 samples were excluded for low sample call rate and 12 for 

gender swaps, leaving 1,663 samples for analyses. 3,446 markers were removed for low 

marker call rates (<98%), This left 843,013 markers on the autosomes. Processing of 

samples for the LOLIPOP study has been previously described4. 

 In HELIOS, 837,722 CpG markers were successfully assayed. In total 58 samples were 

excluded; two for array scanning failure, 39 for gender inconsistency and 17 duplicates. A 

further 105 samples that were not from the three major Asian ethnic groups, were also 

excluded. This left us with  2,237 samples for analysis. There were 255 samples successfully 

assayed on the SCHS study. 

 

Statistical analyses of epigenome-wide data 
 Primary analysis of epigenome-wide data was performed as described previously75. 

Briefly, marker intensities were quantile normalised. Normalised intensity values were then 
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used to calculate the beta value (methylation level at each CpG site). Control probes of EPIC 

array intensities were retrieved using minfi. Principle component analysis (PCA) of control 

probe intensities was performed and the resulting PCs 1 to 30 were included as predictors 

in the subsequent regression models to adjust for technical biases. The proportion of six 

white blood cell sub-populations (CD8 T cells, CD4 T cells, Natural Killer cells, B-cells, 

Monocytes, Granulocytes) were estimated using the Houseman methods76. The association 

of each autosomal CpG site with incident T2D was tested using logistic regression, adjusted 

for confounders such as age, gender and further adjusted for imputed white blood cells 

(WBC) proportion and PC1-30 of control probe intensities, as these progressively reduced 

test statistic inflation. 

 

𝑇2𝐷	~	𝐵𝑒𝑡𝑎	(𝑄𝑁) + 𝐴𝑔𝑒 + 𝑆𝑒𝑥 +𝑊𝐵𝐶	𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠 + 𝑃𝐶1 − 30!"#$%"&'(%")*+ 

 

 The regression analyses were performed on individual ethnic groups separately for MEC. 

Results were combined across the three ethnic groups by meta-analysis using METAL77. 

We then performed a second round of meta-analysis to combine results between MEC, 

iHealth-T2D and LOLIPOP datasets. Epigenome-wide significance was set at P<8.62x10-8; 

this threshold was based on the results of permutation testing16, and is similar to the 

threshold that would have been obtained via Bonferroni correction for the 848,166 

autosomal markers tested. 

 

Phenome-wide association analysis 
 We tested the associations between the 323 Sentinel CpGs (1 sentinel CpG not in the 

850K EPIC array), and 185 trait-exposures, including directly measured phenotypes as well 

as genetically inferred exposures calculated as Polygenic Risk Scores (PRS). The summary 

statistics of the different traits were obtained from the PGS Catalog23,24,78–82 and the PLINK 

score function83 was used to estimate the PRS for the individuals in the HELIOS cohort.  We 

then performed regression analysis for association of methylation with the respective trait, 

with adjustment for age, sex, ethnicity, methylation array control probe PCs, and proportion 

of six white blood cell sub-populations estimated by the Houseman method76. 

 

𝐶𝑝𝐺	𝐵𝑒𝑡𝑎	(𝑄𝑁)	~	𝑆𝑐𝑎𝑙𝑒𝑑	(𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒) + 𝐴𝑔𝑒 + 𝑆𝑒𝑥 +𝑊𝐵𝐶	𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠

+ 𝑃𝐶1 − 30!"#$%"&'(%")*+ 
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To estimate the enrichment of associations within the sentinel CpG sites compared to 

background, we repeated the regression analysis for 1000 matched random sets of 323 

CpGs. The matching was performed based on mean methylation beta (± 5%), standard 

deviation (± 0.5%), and presence in methylation array (present in 850k array only or present 

in both 450k and 850k array).  For each trait, we calculated the fold enrichment (FE) as ratio 

of number of sentinel CpG set (observed) to the mean number of CpGs (1000 random sets, 

expected) associated with trait at P<0.05, The empirical P value for the FE was obtained 

based on the distribution of expected (i.e.: Pperm = N(Random sets with count≥ Sentinel 

Count)/1000) 

 

Functional Annotation of Sentinel CpGs 
 We performed functional overlap analysis of the sentinel CpGs to evaluate the enrichment 

of the 323 sentinel CpG sites across DNase I hotspots, 5 histone marks and 15 chromatin 

states across 39 cell types from the Roadmap Epigenomic Consortium 

(https://egg2.wustl.edu/roadmap/web_portal/index.html)84. We mapped the genomic 

location of each of the sentinel CpG to understand whether they were present at the different 

biologically relevant locations in the genome. To determine whether the overlap occurred 

more often than expected by chance, we determined the total number of CpGs overlapping 

with the different locations. For each epigenetic mark, we calculated the number of 

overlapping sites amongst the 323 replicating markers (observed) and all the array based 

CpGs (expected). We calculated FE as proportion of observed count /proportion of 

expected. The P-value for enrichment and depletion was estimated using hypergeometric 

test for over-representation and under-representation respectively, which were then 

adjusted using FDR to correct for multiple testing.   

 

Transcription Factor (TF) Enrichment 
 The binding site information for 1210 human TFs tested was obtained from the Remap 

database, 2022 release (https://remap.univ-amu.fr/)85. We used the Homo sapiens Cis 

Regulatory Modules (CRM) peaks for this analysis. We first determine how many of our 

sentinel CpGs overlap with the binding sites of the different TFs, and then estimated FE and 

the hypergeometric P value for enrichment by comparing the proportion of overlap of our 

sentinels to the proportion of overlap of all CpG probes. We then applied FDR based P value 

adjustment to correct for multiple testing.  
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Methylation and Gene Expression  
 Gene expression data was available for 12,434 genes and 1,228 participants from the 

HELIOS study. Generation and processing of the RNA sequencing data has been previously 

described17.  We performed association analysis between DNA methylation at sentinel 

CpGs and gene expression to identify both cis- and trans-eQTMs associated with the 

sentinel CpGs. Analysis was performed using matrixQTL tool86 adjusting for Age, Sex, 

Ethnicity, RIN, top six PEER factors and the six white blood cell proportion estimates. 

 

𝐺𝑒𝑛𝑒	𝐸𝑥𝑝(𝑡𝑚𝑝)	~	𝐵𝑒𝑡𝑎	(𝑄𝑁) + 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 + 𝑅𝐼𝑁 + 	𝑃𝐸𝐸𝑅	𝐹𝑎𝑐𝑡𝑜𝑟𝑠

+𝑊𝐵𝐶	𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠 

 

Significant associations were determined after Bonferroni correction for the number of 

pairwise test performed. For the cis-eQTMs, we evaluated the importance of gene proximity 

by investigating associations under different distance thresholds (nearest gene, genes 

within 500KB, genes with 1MB). We observed enrichment for association of CpGs only with 

nearest gene in cis. For functional genomic analysis of CpGs in cis, including annotation of 

cis-eQTMs, we therefore only consider nearest gene. In our trans-eQTM analysis, we tested 

associations between sentinel CpG and all the quantified trans-genes (distance between 

CpG-Gene >10MB) in the dataset. CpG-Gene pairs with P<0.05/12,434 were considered 

significant (ie Bonferroni correction for number of genes tested).  

 To determine if the sentinel CpG sets have a greater number of cis and trans eQTMs 

compared to the background, we repeated the eQTM analyses for the 1000 random sets of 

CpGs, using the same methods. FE and empirical P value for enrichment of both cis- and 

trans-eQTM counts amongst sentinel CpG, was determined in comparison to the respective 

eQTM counts for the random CpG sets.  

 We investigated whether the sentinel CpGs, and their associated gene expression 

signatures, show covariation that is greater than under the null expectation (random CpG 

sets). We calculated all pairwise correlations between the sentinel CpGs to obtain the 

Observed distribution. We repeated the same in the 1000 randoms sets (Background). We 

then absolute values for pairwise correlation between Observed and Background, and 

determined the FE (mean[absolute pairwise correlation in Observed]/ mean[absolute 

pairwise correlation in Background]) and P value (t-test). Similar analysis was performed for 

the cis and trans-eQTM signatures of the sentinel CpGs.  
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Gene Set Enrichment Analysis (GSEA)  
 Pathway enrichment analysis of the cis- and trans-eQTMs was performed using the 

gprofiler2 tool87. We obtained the observed overlap and the total term sizes for different 

pathways [GO:BP, KEGG, Reactome, Wiki pathways] to estimate the FE and the 

hypergeometric P value of enrichment for each pathway terms. Pathways were considered 

enriched after Bonferroni correction for multiple testing.   

 

Whole genome sequencing (WGS) 
 Whole genome sequencing (WGS) was carried out in the SG10K_Health participants 

using Illumina Hiseq X platform, as previously described73. Quality control (QC) and 

imputation of unmeasured genotypes were carried out, as described in Yew et al88. In brief, 

to address missingness created by the 15X sequencing, the TopMed Imputation Server was 

used to impute autosomal SNPs to the TopMed (Version R2) reference panel using the 

EAGLE2+Minimac4 pre-phasing and imputation pipeline for n=9,766 individuals in 

SG10K_Health. Approximately 285 million autosomal SNPs were available following 

imputation. Post-imputation quality control excluded imputed SNPs with MAF <0.001 in at 

least one of the three main ancestral groups (Chinese, Indians, and Malays), as well SNPs 

with imputation INFO score <0.30 and RUTH Hardy-Weinberg Equilibrium test89 P <10-3. A 

total of 7,857,631 imputed autosomal SNPs formed the final dataset, with 7,150,557 SNPs 

remaining with a MAF filter of 0.01.  
 
Identification of SNPs influencing the Sentinel CpGs  
 We carried out genome-wide analyses of the Sentinel CpGs to identify mQTL SNPs. 

Genetic association testing was done in 7,429 individuals from the five adult cohorts within 

SG10K_Health for which both DNA methylation and imputed genotype data was available. 

In brief, the methylation array data were quality controlled within each of the cohorts, 

adopting the identical approaches to those used in our epigenome-wide association 

analyses. Mixed Linear Model (MLM) based GWAS was performed to identify the genetic 

variants associated with the sentinel CpGs. The analysis was performed using the MLMA 

method implemented in GCTA tool90 while controlling for age, sex, ethnicity, proportion of 

six white blood cell sub-populations estimated by the Houseman method76, and the control 

probe PCs.  

 
𝐶𝑝𝐺(𝐵𝑒𝑡𝑎	(𝑄𝑁))	~	𝑆𝑁𝑃 + 𝐺𝑅𝑀 + 𝐴𝑔𝑒 + 𝑆𝑒𝑥 + 𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 + 	𝑊𝐵𝐶	𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑠 +	𝑃𝐶1 − 30!"#$%"&'(%")*+ 
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The cis-mQTL for each sentinel CpG was determined based on the strongest associated 

SNP significant at P< 2.7x10-8 (i.e. P<0.05 after Bonferroni correction for the number of cis-

mQTLs tested). The trans-mQTLs were SNPs (at least beyond 10MB remote) from the CpG 

site and associated at P<5x10-8. We noted that multiple SNPs were associated with more 

than one CPG locus. To explore these pleotropic effects, we therefore quantified the number 

of CpGs associated with each mQTL SNP. We selected the Sentinel mQTL SNPs as being 

those with the highest number of associated sentinel CpGs and the lowest p-value for 

association with any sentinel CpG. We performed clumping of the trans-mQTLs into 

genomic loci based on 1MB intervals. This generated 242 independent Sentinel trans-

mQTLs, each with at least one CpG associated. 

 The Variance explained and the heritability of the mQTLs for each CpG was calculated 

using the Genomic-relatedness-based Restricted Maximum-Likelihood (GREML) analysis91 

implemented in the GCTA tool90. We calculated the variance explained by the top cis-mQTL, 

all cis-SNPs, and genome wide SNPs adjusting for the same covariates as used in the 

GWAS analysis. The R2 for each set was taken as the genetic variance explained by the 

SNPs (Vg), and the Heritability estimate was calculated as the ratio of genetic variance (Vg) 

to the total Phenotypic variance after adjusting for the covariates (Vp).  

 

𝑆𝑁𝑃	𝐻𝑒𝑟𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐺𝑒𝑛𝑒𝑡𝑖𝑐	𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑉𝑔)

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐	𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒	(𝑉𝑝)	 

 
Functional enrichment of cis- and trans-mQTLs  
 To examine the functional relevance of the mQTL SNP pathways to T2D, we tested 

whether the mQTLs were enriched for association with 16 key cardio-metabolic traits in 

published GWA studies. We determined the number of cis- and trans-mQTLs associated 

with the respective phenotypes at two thresholds (nominal: P<0.05; suggestive: P<1x10-5). 

To determine whether Sentinel mQTLs are enriched for phenotypic association compared 

to expectations under the null hypothesis, we determined background counts of phenotypic 

associations amongst 1000 random matched sets of SNPs (MAF and LD based matching). 

FE for each trait was calculated as the ratio of proportion of sentinel mQTLs associated to 

mean proportion of random SNPs associated and the P value was obtained from the 

distribution in the random sets. 
 We evaluated the (Observed) enrichment of the trans-mQTLs SNPs for association with 

multiple Sentinel CpGs, in comparison to expectations under the null hypothesis 

(Background), by hypergeometric testing. To determine Background expectations, we 
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identified the number of Sentinel mQTLs, and the total number of CpGs associated with 

each mQTL, on a genome-wide basis across all quantified MethylEPIC array probes 

(n=837,222 CpGs). Fold enrichment (FE) for each mQTL was calculated as the ratio of 

proportion of Sentinel CpGs associated with an mQTL compared to the proportion of 

Background CpGs associated with an mQTL. The P value for enrichment was determined 

using the hypergeometric test, with Bonferroni correction applied for multiple testing (i.e. 

P<2x10-4, correction for N=242 trans-mQTLs tested).  

 
SMR and Colocalization analyses 
 We applied techniques to evaluate the potential causal relations of DNA methylation at 

the sentinel CpGs with T2D and other related metabolic phenotypes, as well as methylation 

with gene expression32. Cis- and trans-acting genetic variants influencing methylation were 

selected as described above (see GWAS of Sentinel CpGs in Methods). SNP-phenotype 

associations were from published GWAS studies (as annotated in the respective table), 

while SNP-gene expression (eQTLs) were from eQTLgen34. For loci whereby SMR 

estimates suggest a potential causal relationship for methylation at the sentinel CpGs on 

phenotype or gene expression at P<1.9x10-4 for cis-acting genetic variant (i.e. P<0.05 after 

Bonferroni correction for 264 CpGs) or at P<6.6x10-5 for trans-acting genetic variant (i.e. 

P<0.05 after Bonferroni correction for 759 SNP-CpG pairs), these were followed up with 

colocalization analysis (coloc v5.2.3)33 to assess if sufficient evidence exists for a shared 

genetic basis. For SMR , we performed single variant analyses using the  Wald’s ratio-based 

MR calculation to infer causal relationships. For colocalization analysis, we assumed a 

single causal variant per locus with the default priors (P1 < 1x10-4; P2 < 1x10-4 and P12 < 

1x10-5). As the array only covers 2-3% of all CpG sites in the epigenome, the biologically 

relevant CpGs site colocalises with the T2D might not be represented on the array. We 

therefore inferred potential colocalization based on either posterior probability PP3 (Shared 

loci, but different causal variant) or PP4 (Shared loci with same causal variant) greater than 

0.6 as colocalised.  

  
Organisation of trans-mQTLs into potential networks 
 We clustered trans-mQTL SNPs based on their shared CpG sites, We started by creating 

a similarity matrix by calculating the ratio of shared CpGs compared to the total number of 

unique associated CpGs per SNP pair.  We then computed a distance matrix representing 

the dissimilarity between each pair of SNPs (1 – similarity matrix). Hierarchical clustering 

was performed on the distance matrix using the average linkage method. Based on the 
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silhouette width plot and the dendrogram visualization, we divided the 33 sentinel trans-

mQTLs SNPs into clusters.  

 
Association of rs174598 (GàA) with plasma metabolite levels 
 The generation and QC of the plasma metabolite measurements has been described 

elsewhere17,92. Briefly, untargeted mass spectrometry based metabolomic profiling was 

done using the Metabolon HD4 panel. QC was performed to remove second visit samples, 

outliers and samples with greater than 25% missingness. Association of SNP rs174598 with 

the fatty acid metabolites were obtained from the trans-ancestry GWAS meta-analyses as 

done in the HELIOS study17. The individual GWAS for each ancestry was performed using 

REGENIE93 and the meta-analysis was performed using METAL77 with a fixed effect model 

controlling for genomic inflation across each dataset. 

 

SRE1 Binding motif scanning in the metabolic gene cluster 
 To identify whether the cis-eQTLs and the CpG-Genes in the metabolic gene cluster have 

a SREBF1 binding site in their promoter region, we extracted the DNA sequence up to 

3000bp upstream of each gene. We obtained the position weighted matrix (PWM) for the 

three SRE1 binding consensus sequences from the JASPAR database94 and used them 

alongside the sequences to find matching sequences across the different genes using the 

Find  Individual Motif Occurrences (FIMO) scanning tool95 implemented in the MEME suite 

of motif based sequence analysis tools (https://meme-suite.org/)96. FIMO calculates the 

score of a motif match using the PWM, which represents the log-likelihood of observing a 

given base at each position of the motif and estimates a p-value representing the probability 

of observing a score at least as large as observed under the null hypothesis (random match 

with the background distribution). For all genes with at least one strong SRE1 consensus 

sequence, we determined the association with SREBF1 expression adjusting for age, sex, 

ethnicity, RIN and the top six PEER factors.  

 

  Whole genome bisulfite sequencing 
 We completed whole-genome bisulfite sequencing (WGBS) in 500 individuals (250 

people with incident T2D and 250 controls) from amongst the LOLIPOP cohort. Cases were 

selected at random from amongst the available samples with incident T2D. Controls were 

matched to cases for age, gender, ethnic group and duration of follow-up. All participants 

were free from T2D at baseline. Aliquots of whole blood collected at enrolment, and stored 

at -80C, were used for extraction of genomic DNA. Two hundred nanograms of genomic 
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DNA was used for bisulfite conversion with EZ DNA Methylation Gold Kit (Zymo Research), 

followed by library construction with the Accel-NGS® Methyl-Seq DNA Library Kit (Swift 

Biosciences), according to manufacturers’ protocols as previously described41. Each library 

was spiked in with 5% PhiX to compensate for the reduced sequence diversity in bisulfite 

converted libraries, with sequencing performed on an Illumina® NovaSeq 6000 platform to 

generate 2x150bp paired-end libraries. Data quality analysis and processing were 

performed as outlined in Zhou et al41. Reads are required to have a mapping quality (MAPQ) 

score >=5. Reads and generation of Picard metrics were performed with samtools v0.1.19. 

DNA methylated sites were identified, extracted and counted by 

bismark_methylation_extractor. The ENCODE blacklist was used to remove potentially 

dubious sites97, and sites with 1000 Genome South Asian (SAS) MAF of > 0.01 were 

removed using bedtools v2.30.098  (Extended Data Figure 8). Read depth of coverage and 

insert size were analysed by Picard tools v2.25.299 Effective depth was calculated after 

removing read duplicates, and counting overlapping bases only once. Only CpG sites with 

depth of coverage >5x were considered for further analysis. All data analyses were 

conducted by custom-made bash and R scripts (R version >= 3.4.4). 

 
Targeted methylation sequencing 
 We carried out targeted methylation for 2,000 samples from the iHealth-T2D cohort, 

comprising 988 incident T2D cases and 1,012 controls, using a custom library (TWIST 

Biosciences). Probes were designed, optimised, and synthesised using TWIST's Custom 

Panel Design and Oligo synthesis solutions to target the 420 T2D associated genomic loci. 

We also included the 450 Houseman probes in the array design, to enable estimation of 

WBC cell type proportions. The total target region for methylation sequencing was 6.61Mb 

(Supplementary Table 24).  

 Sample processing and library preparation followed the TWIST Bioscience end-to-end 

targeted methylation sequencing workflow, as described in the product literature. For each 

sample, 200ng of genomic DNA underwent fragmentation to approximately 265 bp using 

the Bioruptor, end-repaired at 20°C and ligated with an EM-seq adapter, enzymatic 

methylation conversion (New England Biolabs® EMseqTM), and PCR amplification (9 

cycles). Subsequently, 187.5ng of each enzymatically converted, amplified, and indexed 

library was hybridised to a custom methylation panel using the TWIST Bioscience Fast 

Hybridization and Wash Kit in accordance to the vendor's protocols with the following 

modifications. Fast Hybridization was done for 2 hours at 60°C, followed by Fast Wash1 at 

63°C and Fast Wash2 at 48°C. The final libraries were sequenced with the inclusion of 
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negative and positive controls using the Illumina Novaseq platform, employing 150-bp 

paired-end reads.  

 Sequencing data was processed as previously described, with read trimming performed 

using Trim Galore (v0.6.4)100. Methylation levels at individual sites were called using 

MethylDackel (v0.5.3; –minDepth 10–maxVariantFrac 0.25–OT 0,0,0,138—OB 0,0,13,0). 

Three samples were removed from subsequent analyses due to low quality (one with mean 

target coverage <100x, two with poor concordance with respective EPIC data). Prior to 

association testing, 95% marker and sample call rate filtering were performed; and 

subsequently quantile normalised. This results in the remaining of 1,974 samples (978 cases 

and 996 controls).  
 

Methylation Risk Score (MRS) analyses 
Array-based MRS 

Array-based MRS were developed using data from the MEC study (Development set). 

Model performance was then evaluated in the iHealth-T2D samples (Test set) to provide 

independent evaluation. We built the model based using only the 102 sentinel CpGs 

associated with T2D at P<0.05 and spearman correlation of R <0.8 in the MEC study 

(Development set). These were entered into the LASSO model for variable selection101. A 

10-fold cross validation with “lambda.1se” criterion was performed to determine the most 

optimal lambda (λ) where the value of λ represented the most regularised model in which 

the error was within one standard error of the minimum. The MRS was calculated in iHealth-

T2D study (Test set) using the linear combination of z-scaled methylation values and the 

nonzero coefficients retained from the LASSO regression in MEC.  

𝑇2𝐷	𝑀𝑅𝑆 =P𝐿𝐴𝑆𝑆𝑂	𝐵𝑒𝑡𝑎	𝑐𝑜𝑒𝑓𝑓.		 × 	𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛	𝐵𝑒𝑡𝑎	
#

,

 

 

Gene-based MRS based on targeted sequencing 

 We carried out complete gene methylation sequencing at the ABCG1 and SREBF1 loci, 

as described. We found methylation at 21 CpG sites to be associated with T2D at the 

ABCG1 locus, and 5 at the SREBF1 locus The P value thresholds for selection were 

P<2.6x10-6 for ABCG1 and P<3.1x10-6 for SREBF1, representing P<0.05 after Bonferroni 

correction for the 19,217 and 16,283 CpGs sequenced at the ABCG1 and SREBF1 locus 

respectively. We entered these CpGs into LASSO modelling to create gene-based MRS. 

We split the fine-mapping dataset into 70:30 for Development and Testing. Within the 

Development set, we further undertook a 10-fold cross-validation approach to obtain the 
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optimum model, which was then tested in the remaining 30% of the dataset (Test set). This 

resulted in 17 and five CpGs selected by LASSO for inclusion in our gene-based MRS 

model, at ABCG1 and SREBF1 respectively.  

 

Sequenced-based MRS 

 For our sequence-based MRS, we included 165 CpGs within the primary target region 

that were associated with T2D at P<3.7x10-6, representing P<0.05 after Bonferroni 

correction for the 13,338 CpGs sequenced within primary target region, of which 60 were 

selected by LASSO. Similar to the array- and gene-based MRS, we split the dataset 70:30 

for Development and Testing, with a 10-fold cross-validation approach within the 

Development set.  
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Code and Data availability 
 All genomic positions are provided as GRCh38 co-ordinates. The analytic codes are 

available in the study GitHub repository.  The complete association statistics for the EPIC 

array based CpG sites and the targeted sequencing based CpG sites with Type 2 Diabetes 

are also available [upon publication] via our github, along with summary statistics for the cis-

mQTL, trans-mQTL, cis-eQTM and trans-eQTM analyses. Access to individual level 

phenotype and molecular data used in this manuscript can be obtained by contacting the 

respective cohort Data Access Committees.  
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Positioning) (IAF-PP: H17/01/a0/007). The SG10K_Health dataset was created from data / 
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Translational Research Investigator Award (NMRC/STaR/0028/2017) and the IAF-PP: 

H18/01/a0/016); (2) The Growing up in Singapore Towards Healthy Outcomes (GUSTO) 

study, which is jointly hosted by the National University Hospital (NUH), KK Women’s and 

Children’s Hospital (KKH), the National University of Singapore (NUS) and the Singapore 

Institute for Clinical Sciences (SICS), Agency for Science Technology and Research 

(A*STAR) (supported by the Singapore National Research Foundation under its 
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by SICS and IAF-PP H17/01/a0/005); (3) The Singapore Epidemiology of Eye Diseases 

(SEED) cohort at Singapore Eye Research Institute (SERI) (supported by 

NMRC/CIRG/1417/2015; NMRC/CIRG/1488/2018; NMRC/OFLCG/004/2018); (4) The 

Multi-Ethnic Cohort (MEC) cohort (supported by NMRC grant 0838/2004; BMRC grant 

03/1/27/18/216; 05/1/21/19/425; 11/1/21/19/678, Ministry of Health, Singapore, National 
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Figure 1. Epigenome Wide Association Study (EWAS) for incident T2D in Asians. Panel a) Manhattan plot summarizing the association between DNA 
methylation at the ~850K CpG sites assayed in EWAS, and incident T2D. The 10 top-ranking CpGs are annotated with CpG ID and nearest gene. b) Volcano 
plot showing Relative Risk for incident T2D per 1% change in DNA methylation at the ~850K CpG sites assayed. c) QQ-plot of the p-value for association with 
incident T2D in the EWAS analysis. Lambda is the genomic control inflation factor. d) Density plot showing the distribution of mean methylation levels at the 
323 Sentinel CpGs, compared to background CpGs on the array.  
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Figure 2. Genome wide analysis of trans-acting mQTL SNPs. Panel a) The number of Sentinel CpGs (y axis) associated with the genome-wide SNP 
variation (x axis). Results show that there are discrete genomic regions, characterized by the presence of sequence variation that influences multiple Sentinel 
CpGs in trans. The 10 top-ranking Sentinel SNPs that influence the highest number of Sentinel CpG sites in trans (N CpGs≥18) are highlighted in dark blue 
and annotated by nearest genes to the Sentinel SNP. b) Regional plots for the same analysis, showing results at the ERG, NFKB1 and NFKBIE loci, the three 
genomic regions influencing the highest numbers of Sentinel SNPs in trans.  
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Figure 3. NFKB1 expression, trans-regulation of DNA methylation, and risk of T2D. Panel a) Phenome wide association of genomic and epidemiological 
exposures with NFKB1 expression. The x-axis represents the regression effect size per SD change in exposure and the y-axis is the -log10(P) for association. 
Each dot represents an independent phenotype and is coloured by general category. b) Box plot showing the range of NFKB1 expression across the three 
tertiles of BMI levels and genetically inferred BMI score. P value for association is from linear regression analysis of NFKB1 expression with the respective 
phenotype. c) SMR analysis between NFKB1 expression and DNA methylation at sentinel CpGs; and between the CpGs and Type 2 Diabetes using rs2272676 
as the instrument variable. CpGs marked (*) showed a shared causal variant with the phenotype (Coloc. PP.H4>0.9); unmarked CpG sites also colocalized but 
different causal variants (Coloc.PP.H3>0.9). The triangles on top show the direction of SMR analysis. The ball estimate is the fixed effect meta-analysis effect 
size for all the sentinel CpGs together to show the combined average effect across all associated sentinel CpGs.  
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Figure 4. Lipid metabolic gene pathways identified by Sentinel T2D CpGs. Panel a) Sankey plot showing the relationships between the core metabolic 
cluster comprising three trans-acting mQTL SNPs, their nine associated cis-eQTLs and five Sentinel CpGs sites associated with T2D. b) Sequence motifs of 
the three known SREBF1 binding consensus sequences obtained from the JASPAR database. The table below highlights the genes from this cluster that 
have SREBF1 binding sequence in their promoter region, and the association between expression of the named gene and SREBF1 expression. c) Regional 
plots showing the association of the lead trans-acting mQTL SNP (rs174598) at the FADS1/2 locus with cg11024682 methylation, HDL Cholesterol, 
Triglyceride levels, C reactive protein and Type 2 Diabetes. The direction of the triangles shows the direction of effect for each SNP on the trait. The colours 
indicate the strength of LD correlation with the lead SNP. SMR analysis was performed with the lead SNP as the genetic instrument variable, FADS1 and 
FADS2 expression as the exposures and the associated methylation and phenotypes as outcomes. 
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Figure 5. Fine-mapping at ABCG1 locus. Panel a) Top and bottom panel shows the -log10(p) value of association with T2D for CpG sites captured by the 
EPIC array and TWIST targeted sequencing respectively within a 1Mb region around the sentinel CpG (cg06500161). b) Zoomed in regional plot of ABCG1 
genic region, as indicated green rectangle in. Top panel shows the relative risk (RR) for T2D per standard deviation (SD) change in methylation level, whilst the 
lower panel indicates the -log10(P) value of association with T2D for CpG sites within the ABCG1 genic region. Information about the regulatory regions was 
obtained from UCSC genome browser for seven cell lines and are highlighted and labelled in the legend. (GM12878: Lymphoblastoid cells; H1-hESC: H1 human 
embryonic stem cell line; HSMM: Human skeletal muscle myoblasts; HUVEC: Human umbilical vein endothelial cells; K562: human chronic myelogenous 
leukemia (CML) cell line; NHEK: Normal Human Epidermal Keratinocytes; NHLF: Normal human Lung Fibroblasts) 
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Figure 6. Methylation Risk Scores and Type-2 Diabetes in Asian populations. Panel a). Density plot showing the distribution of MRS and PRS values in 
T2D cases and controls (upper two quadrants) and between Asian ethnic subgroups (lower two quadrants) in the HELIOS study. b). Association of Array-based 
and Sequence-based MRS with T2D. Model 1: Array-based MRS and T2D in the 1,663 iHealth-T2D participants (‘Test set’), compared to PRS (Model 2), after 
adjustment for PRS (Model 3) and additional adjustment for Prediabetes (Model 4). Model 5: Sequence-based MRS and T2D in 588 samples from the targeted 
sequencing experiment, used as the ‘Test set’. Model 6: Sequence-based MRS and T2D in the subset of participants with overweight or obesity (BMI>25kg/m2) 
but without Prediabetes. Samples were separated into quartiles based on distribution in the controls. Associations with T2D was tested by logistic regression. 
Relative Risks for T2D are reported relative to Quartile 1 (reference). All analyses are adjusted for age and sex. 
 

  



Extended Data Figure 1. Overview of the study design. 
 

 
 
 
 
 
 
 
 



Extended Data Figure 2: Phenome-wide association of the Sentinel CpGs with epidemiological exposures, amongst participants of the HELIOS study. 
The significant associations with permutation P-value <0.001 across the different categories are shown. The x axis represents the Fold enrichment and the y-
axis are the individual traits split by their category. The colour represents the percentage of sentinel CpGs associated with an increased risk (red) and decreased 
risk (blue) for each trait. The numbers next to the plot show the count of CpGs associated with increased / decreased risk respectively.  
 

 
 
 



Extended Data Figure 3. Functional Enrichment of Sentinel CpGs. Panel a) Functional annotation and 
enrichment of Sentinel CpGs across different cell types. Enrichment is shown as observed count vs expected 
background count across DNase 1 Hotspots (DHS); five Histone 3 marks and 15 Chromatin 
States. b) Enrichment of Sentinel CpGs across 1210 transcription factors (TFs) from the ReMAP database. 
The top 25 significantly enriched TFs are labelled. c) Enrichment of Sentinel CpG associated genes both in 
cis and trans. Cis-genes were annotated using 5 different threshold criteria to identify the extent of enrichment 
compared to the nearest genes vs alternate choices of gene sets within the 1MB region.  

 
 
 
 
 
 



Extended Data Figure 4. Covariation of Sentinel CpG and their associated eQTM Signatures. Pairwise absolute correlation between a) Sentinel CpGs; b) 
cis-eQTMs (nearest gene only); and c) trans-eQTM. Covariation in 1000 random Background sets is shown for comparison, and for probability estimation. The 
fold enrichment was calculated as the ratio of mean absolute correlation in the Sentinel CpG set compared to the mean in the background sets. P-value for 
enrichment was obtained using a two-sided t-test.  
 

 
 
 
 
 
 
 
 
 
 
 
 



Extended Data Figure 5. Enrichment analysis: cis- and trans-acting mQTL SNPs that influence Sentinel CpGs, are enriched for association with T2D 
and other related human metabolic traits. Proportion of Sentinel cis-acting mQTL SNPs associated with cardiometabolic traits compared to background, at 
a GWAS threshold of P<0.05 (a) or at P<1x10-5 (b). Proportion of Sentinel trans-acting mQTL SNPs associated with cardiometabolic traits compared to 
background, at a GWAS threshold of P<0.05 (c) or at P<10-5 (d). 
 

 
 



 
Extended Data Figure 6. Cis-mQTL based colocalization analysis of Sentinel CpGs and Type 2 Diabetes. Regional plots of associations between the ten 
sentinel CpG loci that have a potential casual association with T2D risk using SMR and colocalization analyses. The lead cis-mQTL for each CpG site which is 
used as the instrument variable is labelled and the other SNPs are coloured based on their LD correlation with the lead SNP.  
 

 
 
 
  



Extended Data Figure 7. Trans-acting SNP-CPG clusters. Circos plot illustrating the two largest trans-mQTL clusters influencing methylation at Sentinel 
CpGs. Panel a) Cluster 1: 13 Sentinel trans-mQTL SNPs and 83 CpGs. b) Cluster 2: six trans-mQTL and 58 CpGs. The outer track provides the SNP rsIDs 
(red text) and CpG ID (blue text). SNPs are and CpGs are additionally annotated with the cis-eQTL most closely associated with the SNP, and gene closest to 
the CpG. Inner connections show the trans-acting associations between mQTL SNPs and respective CpGs. The connections are colour coded according to the 
respective trans-mQTL. The identified cis-eQTLs include NKFB1, NFKBIA, NFKBIE, NF1A, COMMD7, IKZF3, MADD and MYBPC3. Many of the genes at the 
linked trans-Sentinel CpG sites also encode recognised inflammatory mediators (eg JAK3, MAP3K2, NOD2, SMAD3, TGFBR1 and TNIP1). However, the 
networks also link to CpG-genes that are components of metabolic pathways directly relevant to the pathophysiology of diabetes, including CDKAL1, CPT1A, 
CYP7B1, PDK4, LDLRAD2, SREBF1, SH2B2, SOCS3, TANK and TXNIP. These genes are reported to impact pancreatic beta cell function, insulin signalling 
and action, glucose sensing, metabolism of glucose, cholesterol and lipids, fatty acid beta oxidation, mitochondrial biology, thermogenesis, and adipogenesis, 
and are thus compelling candidate genes in the pathogenesis of diabetes. 
 
 
 
 
 
 
 
  



Extended Data Figure 8. WGBS Pipeline for Data generation, curation and quality control. Panel a) analytics pipeline used to process the WGBS samples. 
b) Joint plot comparing the common methylation CpG signals between WGBS and its corresponding 450K array across 500 samples – average (S.D.) number 
of CpGs compared is 351,684.3 (± 22,035.5). The main diagram depicts the Pearson Rho and RMSE of the methylation beta value compared, while the top and 
right joint diagrams portray the boxplot distribution of the Pearson Rho and RMSE values respectively. c) Demonstrates the distribution of the mean coverage 
and number of CpGs across the 500 WGBS samples. The top and right joint diagrams provide the histogram distribution of the mean coverage and number of 
CpGs respectively. d) Histogram for the distribution of distance of most outlying CpG with |r|>0.2 within +/-2kb from corresponding discovery CpGs e) Example 
of local correlation structure with discovery CpG (array) from WGBS data, overlaid with UCSC and RefSeq genes and regulatory features (histone marks, DHS 
clusters, TF from ChIP-seq) 
 
 



Extended Data Figure 9. Functional Enrichment of the Fine-mapping loci.  Functional annotation and enrichment of T2D associated methylation sites in 
the ABCG1 Fine-mapped region (a) and the SREBF1 fine-mapped region (b) , compared to all the CpGs in each of the two regions respectively. Enrichment is 
shown as the ratio observed count vs expected background count across DNase 1 Hotspots (DHS); five Histone 3 marks and 15 Chromatin States in different 
cell types. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



Extended Data Figure 10. Fine-mapping at SREBF1 locus. Panel a) Top and bottom panel shows the -log10(p) value of association with T2D for CpG sites 
captured by the EPIC array and TWIST targeted sequencing respectively within a 1Mb region around the sentinel CpG (cg11024682). b) Zoomed in regional 
plot of SREBF1 genic region, as indicated green rectangle in. Top panel shows the relative risk (RR) for T2D per standard deviation (SD) change in methylation 
level, whilst the lower panel indicates the -log10(p) value of association with T2D for CpG sites within the SREBF1 genic region. The correlation with the index 
CpG is highlighted using the different colors. Information about the regulatory regions was obtained from UCSC genome browser for seven cell lines and are 
highlighted and labelled in the legend. (GM12878: Lymphoblastoid cells; H1-hESC: H1 human embryonic stem cell line; HSMM: Human skeletal muscle 
myoblasts; HUVEC: Human umbilical vein endothelial cells; K562: human chronic myelogenous leukemia (CML) cell line; NHEK: Normal Human Epidermal 
Keratinocytes; NHLF: Normal human Lung Fibroblasts) 
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