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Following allogeneic blood and marrow transplantation (BMT), graft-versus-host disease
(GvHD) continues to represent a significant cause of treatment failure, despite the routine
use of conventional, mainly calcineurin inhibitor-based prophylaxis. Recently, post-
transplant cyclophosphamide (PTCy) has emerged as a safe and efficacious alternative.
First, omitting the need for ex vivo T-cell depletion in the setting of haploidentical
transplantation, growing evidence supports PTCy role in GvHD prevention in matched-
related and matched-unrelated transplants. Through improved understanding of GvHD
pathophysiology and advancements in drug development, PTCy emerges as a unique
opportunity to design calcineurin inhibitor-free strategies by integrating agents that
target different stages of GvHD development.

Keywords: GvHD prevention, post-transplant cyclophosphamide, matched-related donor, matched unrelated
donor, bortezomib, calcineurin inhibitor-free

INTRODUCTION

Despite continued improvement in the outcomes of allogeneic blood and marrow transplant
(BMT) over the last decade, the prospects of acute and chronic graft-versus-host disease
(aGvHD and cGvHD) continue to drive treatment-related mortality (TRM) and limit the utility
and wide applicability of this valuable treatment modality (1). Conventional combinations of
calcineurin (CN) or mammalian target of rapamycin (mTOR) inhibitors, coupled with either
methotrexate (MTX) or mycophenolate mofetil (MMF), achieve rates of aGvHD and cGvHD
of approximately 40–75% and 40–70% following matched-related donor (MRD) and matched-
unrelated donor (MUD) transplants (2). In addition to their partial efficacy, these regimens
target T-cells broadly and indiscriminately, therefore delaying immune reconstitution and
hampering graft-versus-leukemia (GvL) effect. Furthermore, both CN inhibitors (CNI) and mTOR
inhibitors (mTORI) have a narrow therapeutic index with multiple drug interactions rendering
prescriber experience and patients’ compliance essential for their safety and efficacy (3). Lastly,
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as these agents are administered for 6 to 9 months, they typically
prevent early post-transplant introduction of interventions and
small molecules aimed to decrease the risk of disease relapse.

Post-transplant cyclophosphamide (PTCy), initially
developed to overcome human leukocyte antigen (HLA)
barriers in the setting of haploidentical transplantation
(4), has proved promising following MRD and MUD
transplants (5–7). Furthermore, PTCy may represent an
ideal platform for the development of CN and mTORI-free
GvHD prevention strategies.

MECHANISMS of PTCy In GVHD
PREVENTION

Cyclophosphamide is an alkylating agent that acts through
its metabolites, phosphoramide and acrolein, to induce DNA
strand breakage that ultimately leads to replication stress in
rapidly dividing cells (8). The efficacy of cyclophosphamide
appears to be cell-cycle dependent and is highest in the G1
and S phases (9). In studies evaluating the specific effects
of cyclophosphamide on cytotoxic T-cell lines, Strauss et al.
observed that increased apoptosis, mediated by increased Fas
expression, may differentiate cyclophosphamide from other
immunosuppressive agents (4, 10, 11).

The biological underpinnings of PTCy-induced immune
tolerance have yet to be fully elucidated. However, there is
evidence to support that PTCy eliminates alloreactive T-cell
clones of both donor and host origin in the early post-
transplantation period with relative preservation of regulatory
T-cells (12, 13). This is supported by early evidence from
murine skin allograft experiments where allografted mice were
treated with cyclophosphamide shortly after engraftment. In
these test animals, donor-derived alloreactive T-cell populations
were eliminated via extra-thymic mechanism, presumably related
to cyclophosphamide administration (14, 15). Simultaneously,
regulatory T-cells were selectively spared, possibly due to their
expression of a specific aldehyde dehydrogenase that confers
resistance to cyclophosphamide (16, 17). Life-long immune
tolerance was subsequently maintained by central, intra-thymic
clonal deletion of the anti-host T-cells derived from donor
hematopoietic stem cells.

The previously demonstrated pivotal role of regulatory T-cells
in PTCy-induced immune tolerance was recently corroborated
by a series of experiments performed by Waschmuth et al. Mice
treated with PTCy at 25 mg/kg on day +3 and +4 following
haploidentical transplantation showed significantly less severe
GvHD than mice treated with 5 or 100 mg/kg a day. In these
experiments, immune tolerance developed despite the persistence
of alloreactive T-cells following optimally dosed PTCy and in
the absence of thymus. Rather than eliminating alloreactive
T-cells, PTCy induced functional impairment of these cells,
supported by robust suppressive mechanisms that included rapid
and preferential recovery of regulatory T-cells (18, 19). Further
validation of these mechanisms will improve our understanding
of PTCy-induced immune tolerance and identify the optimal
dosing of cyclophosphamide.

PTCy IN HAPLOIDENTICAL
TRANSPLANT

An early study established that PTCy can overcome HLA barriers
and omit the need for ex vivo T-cell depletion following a
non-myeloablative preparative regimen and haploidentical bone
marrow transplant (20, 21). In this trial, the investigators
compared one dose of PTCy administered on day +3 and two
doses of PTCy on day +3 and +4, demonstrating a decreased
incidence of cGvHD in the group receiving two doses (25%
versus 5%, p = 0.05%) with no differences in aGvHD, event-
free survival (EFS) or overall survival (OS). The incidence
of grades II-IV and III-IV aGvHD for the entire cohort was
34 and 6%, respectively (21). This data was confirmed in a
larger study conducted by Kasamon et al. and Munchel et al.
In a cohort of 210 patients, the incidence of grades II-IV
acute and cGvHD were 27 and 13%, respectively (22, 23).
The rates of disease relapse, EFS, and OS were 55, 35, and
27%, respectively.

Following the initial studies, which were focused on bone
marrow as the graft source, the safety and efficacy of
PTCy-based GvHD prevention were validated following both
myeloablative and non-myeloablative conditioning regimens by
several investigators. In a study by Solomon et al. using busulfan-
based myeloablative conditioning, the incidence of grade II-IV
and III-IV aGvHD and cGvHD were 30, 10, and 35% (24). Similar
results were reported by Bhamidipati et al. following a non-
myeloablative preparative regimen (25). More recently, Wang
et al. showed that the addition of low dose PTCy (14.5 mg/kg
on day +3 and +4), to the so-called Beijing protocol, reduced
the incidence of grade II-IV aGvHD and improved GvHD- and
relapse-free survival (GRFS) (26).

Based on these studies and others, haploidentical
transplantation has become, with the advent of PTCy, one
of the most commonly used alternative donor strategies.
Multiple retrospective comparisons have demonstrated similar
overall survival of haploidentical transplantation to that of
HLA-matched donor and cord blood transplants (27).

PTCy AS MONOTHERAPY IN MRD AND
MUD TRANSPLANT

Since establishing its role in the haploidentical setting, several
investigators examined the applicability of PTCy to GvHD
prevention in MRD and MUD transplants. Luznik et al. reported
the incidence of acute and cGvHD following myeloablative
conditioning in 117 recipients of MRD (n = 78) and MUD
(n = 39) bone marrow grafts. In this study, GvHD prophylaxis
consisted of a single agent PTCy. Grades II-IV and III-IV acute
GvHD rates were 43 and 10% for the entire cohort. The long-
term incidence of cGvHD was particularly low at 10%. EFS sand
OS were 55 and 39% (5). Interestingly, 43% of patients did
not require any other form of immunosuppressive therapy (28).
These favorable results were corroborated by a similar multi-
institutional trial by Kankary et al. with a low incidence of cGvHD
at 14% (6).
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Unfortunately, when Alousi et al. examined PTCy as the
only GvHD prophylaxis following reduced-intensity preparative
regimen and peripheral blood grafts, the results were strikingly
different (29). In this study, 38 patients received bone marrow
and 11 patients received peripheral blood grafts. Twenty-two
patients received rabbit anti-thymocyte globulin (rATG) before
the study was amended to omit rATG. The rates of grade II-
IV and grade III-IV aGVHD were of 58% and 22%, whereas
the rate of cGVHD was 18%. When the authors compared
the results to a matched, historical cohort of patients receiving
TAC and MTX for GvHD prophylaxis, significantly higher
rates of all grades of aGvHD [46% vs. 19%, hazard ratio
(HR) = 2.8, p = 0.02] as well as inferior TRM (HR = 3.3,
p = 0.035) and OS (HR = 1.9, p = 0.02) were observed
in the PTCy cohort. There were no differences in cGvHD
between the prospectively treated patients and the historical
control (29). Similarly, unsatisfactory results were reported in
a smaller phase II study by Holtick et al. (30). The authors
examined the safety and efficacy of PTCy as monotherapy
for GvHD prevention following reduced-intensity conditioning
and MRD and MUD peripheral blood transplants. The rate
of TRM was unacceptably high at 36%, principally attributable
to an increased rate of severe intestinal aGVHD. A study by
Bradstock et al. was terminated early when four out of the first
five patients developed life-threatening aGvHD, two of whom
died (31).

Cumulatively, the current evidence suggests that, while single-
agent PTCy may represent a viable prophylactic option in
patients receiving myeloablative conditioning and bone marrow

graft, it is inadequate in the setting of reduced-intensity
conditioning and peripheral blood transplantation.

PTCy AND CNI OR mTOR INHIBITORS IN
MRD AND MUD TRANSPLANT

Given the shortcomings of PTCy as monotherapy for GvHD
prophylaxis following MRD and MUD peripheral blood
transplants, several groups reverted to combining PTCy with a
CNI or mTORI with or without MMF, aiming to reduce the
relatively high incidence of cGvHD characteristic of CNI and
mTOR inhibitors-based combinations. To this end, Mierlcarek
et al. combined PTCy with cyclosporine A (CSA) in patients
receiving myeloablative conditioning. The rates of grades II-
IV and III-IV aGvHD were favorable at 77 and 0% and again
with a low incidence of cGvHD at 16%. The rates of TRM and
disease relapse were 14 and 17% (32). Moiseev et al. compared
the outcomes of patients receiving a combination PTCy, TAC
and MMF to the outcomes of consecutive historical control
patients receiving TAC, MMF and rATG following myeloablative
conditioning and MUD or 1–2 HLA loci mismatched-unrelated
donor peripheral blood grafts. The rates of grades II-IV and
III-IV aGvHD were 19% vs. 45% (p = 0.003) and 4% vs. 27%,
(p < 0.001), respectively. The incidence of cGvHD was 16% vs.
65% (p < 0.001). EFS and OS were also improved in the PTCy
group (HR = 0.49, 95% CI 0.31–0.78, p = 0.006, and 0.43, 95%
CI 0.26–0.7, p = 0.007) (33). Carnevale-Schianca et al. employed
the same GvHD prevention regimen in 35 patients receiving RIC

TABLE 1 | Selected registered studies of PTCy-based GvHD prevention in MRD and MUD transplantation.

Study
identification

Study type Intervention Responsible party

NCT04202835 Phase III,
Randomized

rATG versus rATG and PTCy Sarah Kleiboer

NCT04232085 Phase II PTCy, tacrolimus, and MMF in patients with primary bone marrow failure or immunodeficiency syndromes Orly Klein

NCT03357159 Phase II PTCy and rATG Arnon Nagler

NCT02629120 Phase II PTCy and sirolimus in patients with chronic granulomatous disease Elizabeth Kang

NCT02861417 Phase II PTCy, tacrolimus and MMF Uday Popat

NCT03192397 Phase II PTCy, sirolimus and MMF Christine Ho

NCT03818334 Phase III,
Randomized

rATG, CNI, and MMF versus PTCy, CNI and MMF Andreza Feisoa Ribeiro

NCT03945591 Phase II PTCy, bortezomib and rATG A Samer Al-Homsi

NCT03602898 Phase II CNI and MTX versus CNI, MTX, and rATG or PTCy and CNI Masumi Ueda

NCT03959241 Phase III,
Randomized

Tacrolimus and MTX versus PTCy, tacrolimus and MMF (GvHD prevention and stool microbiome) Mary Horowitz

NCT03555851 Phase I PTCy (pharmacogenetics predictors of efficacy) Chojecki, Aleksander

NCT03246906 Phase II Cyclosporine, sirolimus, and MMF versus PTCy, cyclosporine, and sirolimus Masumi Ueda

NCT03263767 Phase II PTCy Patrice Cehvallier

NCT04160390 Phase I PTCy (biomarkers predictors of efficacy) Jeannine McCune

NCT03680092 Phase II Tacrolimus and MTX versus PTCy and abatacept Divya Koura

NCT02556931 Phase II PTCy, tacrolimus (short course) and MMF Amy E. Dezern

NCT02876679 Phase II Cyclosporine, MMF and rATG versus PTCY, cyclosporine, and MMF Mohamad Mothy

NCT02833805 Phase II PTCy, tacrolimus, and MMF in patients with severe aplastic anemia Amy E. Dezern

rATG, rabbit anti-thymocyte globulin; MMF, mycophenolate mofetil; MTX, methotrexate.
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and MRD, MUD, or 1 HLA locus mismatched-unrelated donor
peripheral blood transplants. The patients achieved grades II-IV
aGvHD and cGvHD rates of 17 and 7% with no grade IV aGvHD.
The 2-year TRM rate was 3% with EFS and OS rates of 54% and
77% (34).

Two studies examined the combination of PTCy and
sirolimus. Solomon et al. conducted a phase II study that included
26 patients treated with RIC following MUD and peripheral
blood transplants. Sirolimus was stopped without taper between
day +90 and 100. The rates of grade III-IV acute and cGvHD
were higher than the aforementioned rates with PTCy and
CNI combinations at 16 and 31% (35). Greco et al. elaborated
on the use of PTCy in combination with sirolimus in 28
patients receiving a myeloablative preparative regimen and MRD
or MUD peripheral blood allografts. MMF was added to the
regimen in patients receiving MUD transplants. The incidence
of grades II-IV acute and cGvHD seemed better at 23 and
13% (36).

The most substantial evidence favoring a PTCy-based GvHD
prevention strategy in the setting of MRD or MUD donor
transplants stems from a recent Blood and Marrow Transplant
Clinical Trial Net randomized phase II trial (37). In this trial
patients received RIC and were randomized to one of three
GvHD prevention regimens: TAC, MTX, and bortezomib, TAC,
MTX and maraviroc or PTCy, TAC, and MMF. Patients with
MRD, MUD, or 1 HLA locus mismatched-unrelated donors were
included. Each of the trial’s three groups was then compared
to a contemporaneous prospective control group receiving TAC
and MTX from non-participating institutions. Comorbidities
were more frequent in the control group. The distribution of
the conditioning regimens was also different. Among the three
groups, only the group treated with PTCy-based prophylaxis had
better outcomes in comparison to the control cohort. The rates
of grades II-IV and III-IV aGvHD for the PTCy group were 27%
(90% CI 20%–35%) and 2% (90% CI 0–5%). The corresponding
rates in the control group were 30% (90% CI 25%–36%) and

FIGURE 1 | Mechanism of action of agents that may conceptually be added to PTCy to develop CN and mTORI-free combinations for GvHD prevention. DAMPS,
damage-associated molecular patterns; PAMPS, pathogen-associated molecular patterns; BOR, bortezomib; ABA, abatacept; MHC II, major histocompatibility
complex class II; UST, ustekinumab; TGF-β, transforming growth factor-β; HSC, hematopoietic stem cells; VEDO, vedolizumab; NATA, natalizumab.
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13% (90% CI 9–16%). The 1-year incidence of cGvHD was 28%
(90% CI 20%–36%) and 28% (90% CI 33%–43%), respectively.
The 1-year GRFS rates were also superior in the PTCy group
(HR = 0.72, 95% CI 0.54–0.94, p = 0.044). However, there was no
difference in TRM, DFS, and OS. These results were corroborated
by a prospective randomized trial comparing CSA and MMF
to PTCy and CSA following MRD and MUD peripheral blood
transplants. The group receiving PTCy-based GvHD prophylaxis
had lower rates of acute and cGvHD and improved GRFS (38).

In summary, pending the results of an ongoing phase
III randomized trial (CTN03959241), comparing PTCy in
combination with TAC and MMF to TAC and MTX, PTCy in
combination with a CNI for GvHD prophylaxis may potentially
emerge as a new standard of care for the prevention of GvHD in
the setting of MRD and MUD transplantation.

PTCy AS A PLATFORM FOR CN AND
mTOR INHIBITOR-FREE GvHD
PREVENTION IN MRD AND MUD
TRANSPLANT

Given the previously mentioned pitfalls of CN and mTOR
inhibitor-containing GvHD prevention regimens, our work over
the last several years focused on exploiting PTCy in order develop
CN and mTOR inhibitor-free GvHD preventive combinations.

Proteasome inhibitors have multiple immune modulatory
effects that span different stages of GvHD development including
dendritic and T-cell differentiation, proliferation and function.
Proteasome inhibitors also foster the expansion of regulatory
T-cells (39, 40). Despite the fact that the results of a recent
phase II trial examining the combination of bortezomib with
CN and mTORI compared to a standard TAC and MTX
combination were disappointing (41), we hypothesized based on
pre-clinical data that proteasome inhibitors remain appealing
agents when paired with PTCy. In a murine model, the
combination of PTCy and ixazomib resulted in superior
survival of animals subjected to lethal GvHD in comparison to
either drug alone. Furthermore, PTCy prevented the surge in
interleukin-1β (IL-1β) and donor T-cell expansion characteristic
of delayed administration of proteasome inhibitors following
transplantation. The combination induced profound post-
transplant cytokine suppression including IL-6, IL-1β, and tumor
necrosis factor-α (42). In a clinical trial, bortezomib was added
to PTCy in MRD and MUD transplantation following RIC and
peripheral blood grafts. Patients receiving MUD transplantation
also received r-ATG. Two doses of bortezomib were given 6 h
after graft infusion and 72 h thereafter. All GvHD prophylaxis
was completed on day +4. The rates of aGvHD grades II to IV
and III to IV were 35.9% (95% CI 18.6–53.6%) and 11.7% (95%
CI 2.8%–27.5%). The rate of cGvHD was 27% (95% CI 11.4%–
45.3%). The 2-year GRFS was 37.7% (95% CI 20.1%–55.3%) (43).
When compared to a registry control group the 1-year GRFS was
39% (95% CI 24%–54%) in the study group and 32% (95% CI

27%–38%) in the control group (HR = 0.81, 90% CI 0.52–1.27,
p = 0.44) (unpublished data). These promising results are being
confirmed in a larger trial.

Table 1 provides a summary of selected registered studies
that use PTCy-based GvHD prevention in MRD and MUD
transplantation.

FUTURE DIRECTIONS

Improving upon our understanding of GvHD pathophysiology
and our advancement in drug development offer additional
opportunities to rationally design CN and mTORI-free PTCy-
based GvHD prevention combinations following MRD and MUD
transplantation. Toward this end, T-cell co-stimulation blockade,
integrin antagonists and IL-23 inhibitors seem attractive as these
agents target different phases of GvHD development (Figure 1).
Abatacept, a soluble fusion compound of cytotoxic T-cell
associated antigen-4 (CTLA-4) and immunoglobulin G1 (IgG1)
that binds to CD80 and prevents dendritic cells from delivering
a second stimulation signal for T-cell activation, reduced the
incidence of aGvHD when added to a standard combination of
CNI and MTX in patients receiving matched or one HLA locus
mismatched-unrelated donor transplantation (44). Anti-integrin
therapy, on the other hand, prevents T-cell trafficking into the
guts. Vedolizumab, which acts on a gut-trophic α4β7 integrin and
natalizumab, which acts on α4-integrin are being examined in
GvHD prevention and treatment (45, 46). Lastly, IL-23 subunit
p40 antagonist, ustekinumab, polarizes T-cell differentiation thus
preventing the development of T-helper 1 (Th1) and T-helper
17 (Th17) and favoring the expansion of regulatory T-cells
is also being studied in GvHD prevention (47). Other IL-23
p19 subunit inhibitors including guselkumab, tildrakizumab and
risankizumab may also be of interest. Carefully designed clinical
trials are warranted to examine the potential role of these agents
in the prevention of GvHD.

CONCLUSION

Since establishing its role in HLA-haploidentical transplantation,
PTCy has emerged as an effective platform in GvHD prevention
strategies in MRD and MUD transplantation. Pending ongoing
randomized study, PTCy in combination with TAC and MMF
may represent a new standard of care based on its ease of
administration and efficacy. Furthermore, PTCy offers a unique
opportunity for the development of CN and mTORI-free GvHD
preventive combinations, allowing an early introduction of
immune manipulations and small molecules aimed to prevent
disease relapse following allogeneic BMT.
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