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Autoimmune skin diseases are characterized by significant local and systemic

inflammation that is largely mediated by the Janus kinase (JAK)–signal transducer and

activator of transcription (STAT) pathway. Advanced understanding of this pathway has

led to the development of targeted inhibitors of Janus kinases (JAKinibs). As a class,

JAK inhibitors effectively treat a multitude of hematologic and inflammatory diseases.

Growing evidence suggests that JAK inhibitors are efficacious in atopic dermatitis,

alopecia areata, psoriasis, and vitiligo. Additional evidence suggests that JAK inhibition

might be broadly useful in dermatology, with early reports of efficacy in several other

conditions. JAK inhibitors can be administered orally or used topically and represent a

promising new class of medications. Here we review the evolving data on the role of the

JAK-STAT pathway in inflammatory dermatoses and the potential therapeutic benefit of

JAK-STAT antagonism.
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JAK-STAT SIGNALING PATHWAY

The mammalian Janus kinase (JAK) family contains three JAKs (JAK1–3) and tyrosine kinase
2 (TYK2), which selectively bind different receptor chains (1). Upon binding of ligand to its
cognate cytokine receptor, associated JAKs become activated and undergo autophosphorylation
and transphosphorylate the intracellular tail of their receptors. This creates docking sites for the
SH2 domain of the cytoplasmic transcription factors termed signal transducers and activators of
transcription (STATs). The human STAT family contains seven STATs: STAT1, STAT2, STAT3,
STAT4, STAT5A, STAT5B, and STAT6. Following phosphorylation, STATs are translocated to the
nucleus, dimerize, and bind to specific DNA sequences to regulate gene transcription (2). The
JAK-STAT pathway is pivotal for the downstream signaling of inflammatory cytokines, including
interleukins (ILs), interferons (IFNs), andmultiple growth factors (3, 4). Overall, the selective use of
JAKs by different receptors coupled to downstream STAT signal transduction results in an elegant
mechanism to achieve exquisite in vivo specificity for more than 60 cytokines and growth factors
(Figure 1).

Identification of selective pharmacologic JAK inhibitors (JAKinibs) has been an ongoing
research and development goal. The first JAKinib to gain FDA approval in 2011 was ruxolitinib
for intermediate or high-risk myelofibrosis, thereby showing that JAK inhibition was not only
possible, but safe and effective for its intended uses. More recently, selective JAK inhibitors have
been explored for specific inflammatory disease indications (Table 1).

THE JAK-STAT PATHWAY AND T HELPER SUBSETS

The differential fate of naive T cells into committed T helper (Th) subsets is orchestrated under
the instruction of professional antigen-presenting cells within a JAK-STAT–dependent cytokine
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milieu (Figure 2). In vivo Th1 differentiation depends on JAK-
mediated signaling through the IFNγ receptor (IFNGR), the IL-
12 receptor (IL-12R), and downstream STAT1/4 phosphorylation
culminating with T-bet gene transcription (5). Ultimately, IFNγ

signaling initiates the Th1 differentiation program and IL-12
perpetuates it. In contrast, Th2 cells arise after occupancy
of the IL-4Rα by its ligands IL-4 and IL-13, triggering
JAK1/3 and subsequent activation of STAT6 (6), and leading
to transcriptional regulation of the GATA3 target gene (5).
More recently, the critical role of IL-17–producing Th cells
(termed Th17 cells) in host defense against extracellular
bacteria, maintenance of epithelium barrier integrity, and
autoimmune pathogenesis has become increasingly clear. Within
the immunologic microenvironment, IL-6 produced by activated
dendritic cells (DCs) is a key factor in promoting Th17
differentiation via STAT3 and retinoic acid receptor–related
orphan receptor γ (RORγt) induction (7) with IL-23 critical for
memory Th17 in vivo function (3, 8).

ATOPIC DERMATITIS

Atopic dermatitis (AD) is a chronic, inflammatory skin disease
that typically begins in early childhood and occurs more
frequently in families with a history of other atopic diseases
(bronchial asthma and/or allergic rhinoconjunctivitis). Overall,
the prevalence of AD is up to 20% in children and 10% in adults,
with rates varying geographically (9, 10). AD clinically manifests
as recurrent eczematous lesions that negatively affect quality of
life through sleep disturbances due to chronic itch (pruritus)
(11, 12), increased likelihood of developing depression (13), and
significant economic burden (14).

The cellular infiltrate of AD lesions mainly consist of CD4+

T cells, which are considered key drivers of inflammation
(15). Lesional skin is characterized by an overexpression of
inflammatory Th2-cytokines (IL-4, IL-13, IL-31), and Th22-
cytokines (IL-22) (16). Crucially, the cytokines IL-4, IL-13,
IL-31, and IL-22 require JAK-STAT downstream signaling
(3) for their biological function (Figure 3). Spontaneous and
induced rodent dermatitis models have been extensively used
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Severity Index; EPO, Erythropoietin; FDA, US Food and Drug Administration;

FLG, Filaggrin; GATA-3, GATA transcription factor 3; GH, Growth hormone;
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Ig, Immunoglobulin; IL, Interleukin; ILC2, Type 2 innate lymphoid cells; IGA,

Investigator global assessment; INV, Involucrin; JAK, Janus kinase; JAKinibs,

Janus kinase inhibitors; LOR, Loricrin; MHC, Major histocompatibility complex;

NK, Natural killer cell; NKD2D, Natural Killer Group 2D; NKD2DL3, Natural

Killer Group 2D ligand 3; PASI, Psoriasis Area and Severity Index; pDC,

Plasmacytoid dendritic cell; PGA, Physician Global Assessment; QD, Once daily;
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3-kinases; RAET1L, Retinoic acid early transcript 1L; RORγt, Retinoic acid

receptor-related orphan receptor γ; SALT, Severity of Alopecia Tool; STAT,

Signal transducer and activator of transcription; T-bet, T-box transcription factor

TBX21; TGF, Transforming growth factor; Th, T helper; TNFα, Tumor necrosis

factor alpha; TPO, Thrombopoietin; TSLP, Thymic stromal lymphopoietin; TYK2,

Tyrosine kinase 2; VASI, Vitiligo Area Scoring Index.

to explore the effectiveness of small-molecule JAK inhibitors on
reducing inflammation. Delgocitinib (pan-JAK) inhibited skin
inflammation in hapten-induced chronic dermatitis in mice,
as evidenced by reduced levels of inflammatory cytokines in
the skin and IgE in serum (17). In addition, momelotinib
(JAK1/JAK2) downregulated IL-4 expression, reduced the skin
severity scores and reduced total serum IgE levels in the 2,4-
dinitrochlorobenzene (DNCB)-induced AD mice (18). Similarly,
tofacitinib (JAK1/3) and oclacitinib (JAK1) inhibited the
production of proinflammatory Th2 cytokines, including IL-
4, in the toluene-2,4-diisocyanate (TDI) dermatitis model (19).
Moreover, tofacitinib demonstrated anti-inflammatory activity
in the oxazolone-induced chronic allergic contact dermatitis
model (20).

Interleukin-22 is elevated in AD lesions and is associated
with epidermal thickening, skin barrier disruption, and increased
expression of thymic stromal lymphopoietin (TSLP) and IL-33
cytokines (21). In addition, IL-22 potently induces the expression
of gastrin-releasing peptide, a neuropeptide pruritogen, in
dermal cells, dermal afferent fibers, and skin innervating ganglion
neurons that positively correlate with the scratching behavior
(22). The relevance of IL-22 in AD pathogenesis was emphasized
by the observation of sustained clinical improvements in patients
with moderate to severe AD receiving anti–IL-22 therapy (23).
IL-22 binds its cognate receptor comprising a heterodimeric
complex of IL-22RA1 and IL-10R2 subunits, leading to activation
of JAK1 and TYK2 and phosphorylation of STAT3 (24).

Thymic stromal lymphopoietin and IL-31 cytokines also
significantly contribute to triggering of inflammatory itch,
under the control of IL-4, IL-13, and IL-33 (25). Crucially,
pruritogenic cytokines IL-31 and TSLP use JAK1 and JAK2
downstream signaling (26, 27). Additionally, preclinical evidence
has confirmed that pharmacologic inhibition of the JAK-STAT
pathway is sufficient for the amelioration of pruritus-associated
dermatitis. Examples include oclacitinib, which is licensed for
pruritus associated with allergic dermatitis in dogs (28). Similarly,
topical application of ruxolitinib (JAK1/JAK2) ameliorated
TSLP-induced inflammation in mice (29). In the TDI-induced
mouse model of dermatitis, oclacitinib and tofacitinib inhibited
itch symptoms and significantly reduced IL-31, tumor necrosis
factor–α (TNFα), and TSLP cytokine secretions (19). Moreover,
TSLP can activate tissue resident dendritic cells that promote the
transformation of Th-naïve lymphocytes to the Th2 phenotype
thereby facilitating tissue inflammation (30). Finally, neuronal
IL-4Rα acting via JAK1 signaling can also significantly contribute
to chronic itch (31).

Skin barrier disruption and the resulting continuous exposure
to allergens are presumed to be responsible for the development
of atopic dermatitis (AD). JAK1-mediated Th2 cytokines IL-4
and IL-13 acting in a STAT-dependent manner (32) negatively
affect skin barrier integrity by inhibiting the expression of
filaggrin, loricrin, and involucrin, resulting in destabilization of
tight junctions (33, 34). JAK inhibition restored filaggrin and
loricrin expression following in vitro pretreatment with IL-4 /IL-
13 cytokines of human keratinocyte. Moreover, mice harboring a
point mutation leading to JAK1-specific hyperactivation develop
spontaneous skin barrier disruption and a dermatitis phenotype
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FIGURE 1 | JAK-STAT signaling pathways. Janus kinases (JAK1-3, TYK2) are activated by more than 60 extracellular stimuli and phosphorylate downstream STAT

proteins, which translocate to the nucleus and activate target genes. EPO, erythropoietin; GH, growth hormone; GM-CSF, granulocyte-macrophage

colony-stimulating factor; IFN, interferon; IL, interleukin; JAK, Janus kinases; JAKinibs, Janus kinase inhibitors; STAT, signal transducer and activator of transcription;

TPO, thrombopoietin; TSLP, thymic stromal lymphopoietin; TYK2, tyrosine kinase.

(35). Topical application of delgocitinib ameliorated spontaneous
AD-like skin inflammation and barrier disruption in an NC/Nga
“dry skin” mouse model and restored filaggrin levels in an
experimental human skin graft model leading to improved
barrier function (36). Moreover, downstream signaling of IL-
4 and IL-13 also suppresses the induction of innate immune
response genes, such as β-defensins (33), thereby facilitating skin
microbiome dysbiosis, including aberrant Staphylococcus aureus
colonization (37).

The role and activation of Th1 and Th17 cell-mediated
responses require further elucidation, but these pathways appear
to be overexpressed in chronic disease stages, children, and
people of Asian ethnicity (38, 39).

Targeting the JAK family of kinases in AD has proven, in
recent years, to be therapeutically beneficial. Oral tofacitinib
administration was evaluated in 6 patients with moderate
to severe AD and showed a promising reduction in skin
severity (40). The next generation of orally administered
JAKinibs includes baricitinib (JAK1/2) along with two JAK1
selective molecules, upadacitinib (JAK1) and abrocitinib (JAK1).
In clinical trials in moderate to severe AD patients, oral

administration of these JAKinibs significantly reduced the
eczema area severity index (EASI) scores by more than
50%. More specifically, in one clinical trial (ClinicalTrials.gov
identifier, NCT02925117), oral administration of upadacitinib
(JAK1) resulted in 90% improvement in the eczema area severity
index (EASI) score for ∼50% of enrolled participants after 16
weeks of treatment (41). Results from two baricitinib phase
3 studies showed that more patients achieved an investigator
global assessment (IGA) 0/1 with barcitinib 4mg once daily (QD)
and 2mg QD than with placebo (42). Significant improvements
in EASI and patient-reported outcomes were observed as
early as Week 1 (Table 2) (53). In a recent phase 1b study
(NCT03139981), ASN002, a pan JAK inhibitor that also inhibits
spleen tyrosine kinase (SYK), showed a 50% improvement in
EASI in 100% of participants within 4 weeks (56).

Topical administration of tofacitinib to patients with mild to
moderate AD in a clinical trial (NCT02001181) demonstrated
significant improvement in EASI scores at Week 4 (43) and
improvement in pruritus as early as Day 2. In a phase 2
study (NCT03011892) involving patients with mild to moderate
AD receiving ruxolitinib cream, mean percentage change
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TABLE 1 | Selectivity profiles of clinically active JAKinibs.

Inhibitor JAK1 JAK2 JAK3 TYK2

Tofacitinib* X X X

Ruxolitinib,† Baricitinib,‡

Momelotinib, CTP-543

X X

Oclacitinib,§ Itacitinib,

Upadacitinib, Filgotinib,

PF04965842, LP0184

X

ATI-502 X X

PF-06700841 X X

PF-06651600 X

PF-06826647 BMS-986165 X

Delgocitinib (JTE-052) X X X X

JAK, Janus kinase; JAKinibs, inhibitors of Janus kinase; FDA, US Food and Drug

Administration; TYK, tyrosine kinase.

*FDA approved: rheumatoid arthritis, psoriatic arthritis and ulcerative colitis.
†
FDA approved: adults with polycythemia who have had an inadequate response to or

are intolerant of hydroxyurea, adults with intermediate or high-risk myelofibrosis, acute

graft-vs.-host disease in adult and pediatric patients 12 years and younger.
‡FDA approved: rheumatoid arthritis.
§FDA approved: atopic dermatitis and pruritus from allergic dermatitis in dogs.

from baseline at Week 4 in EASI score demonstrated a
significant improvement and was non-inferior to triamcinolone.
Interestingly, significant reductions in itch were noted as early
as 1 day after initiation of therapy (64, 65). More recently, pilot
studies of topical ATI-502 (JAK1/3) solution (NCT03585296) and
PF-06700841 (JAK1/TYK2) cream (NCT03903822) in AD are
ongoing. Given the early successes of JAKinibs in AD, ongoing
investigation and evaluation is expected to further elucidate the
differential effects of JAK selectivity.

ALOPECIA AREATA

Alopecia areata (AA) is an autoimmune disease resulting in
partial or complete nonscarring hair loss, with a prevalence of
∼1.7 to 2.1% (68). Susceptibility to AA is indiscriminate between
the sexes and ethnicities, with initial disease onset often occurring
before the third decade of life. Early symptoms are typically
characterized by small, well-defined patches of hair loss that may
spontaneously resolve with time; however subsequent relapses
occur in around a third of cases. Spontaneous remission is rare in
patients with alopecia totalis or alopecia universalis. To date, no
FDA- or EuropeanMedicines Agency–approved treatments exist.

Multiple lines of evidence have demonstrated that AA
pathogenesis is autoimmune in nature, with loss of immune
privilege and associated T cells infiltration selectively attacking
growth at the hair follicle (i.e., anagen phase) (69–72). Healthy
hair follicles achieve immune privilege at the anagen phase
by downregulation of expression of major histocompatibility
complex (MHC) class I and class II molecules (70, 73) and by
expression of NK and CD8+ cell inhibitors, such as macrophage
migration inhibitory factor (MIF) and transforming growth
factors (TGF) β1 and β2, which generate an immunosuppressive
microenvironment (74–76). Importantly, hair follicle epithelial
stem cells are usually spared during the autoimmune attack,

which provides a potential mechanism of hair growth recovery
with effective anti-inflammatory treatment (70).

Many different mammalian species, including rodents, are
susceptible to AA and this has facilitated preclinical models
for the elucidation of cellular and molecular immune pathways
(77, 78). The inbred C3H/HeJ strain spontaneously develops
alopecia in up to 20% of mice via an IFNγ- and inflammasome-
sensitive mechanism (79); however recipient C3H/HeJ animals
that receive skin grafts from donor alopecic C3H/HeJ mice
develop an accelerated phenotype with nearly 100% disease
penetrance (80). Transfer or deletion of effector CD8+ T cells
is sufficient to induce or block disease in preclinical models (70,
71, 81), which in consistent with the observation that cytotoxic
CD8+NKG2D+ T cells expressing granzyme B (82) infiltrate
around the hair follicles and are major contributors of hair loss
(81, 83).

Global transcriptional analyses of mouse and human affected
skin identified expression signatures indicative of cytotoxic T-cell
infiltration, such as increased production of IFNγ and γ-chain
(γc) cytokines, including IL-15 (81, 84). Furthermore, inhibiting
IFNγ either by genetic deletion or neutralizing antibody
significantly ameliorates AA development and severity (85),
supporting the hypothesis that IFNγ drives AA pathogenesis
by inducing ectopic expression of MHC molecules and ligands
that stimulate NK-cell receptors (NKG2D) in the anagen hair
bulb leading to the collapse of the hair follicle immune privilege
(70, 86–88). An important cellular source of IFN is plasmacytoid
dendritic cells (pDCs), which are normally absent from healthy
skin, but migrate into tissues in response to inflammatory stimuli
or infection. Infiltrating pDCs have been identified around hair
follicles of patients with AA (89) and, upon activation, produce
large quantities of type I IFNs (90).

The IFNγ-induced chemokine receptor CXCR3 and its
ligands CXCL9 and CXCL10 are upregulated around hair follicles
during early AA pathogenesis (Figure 4), thereby facilitating
lymphocyte recruitment (82, 91). CXCR3 is primarily expressed
on Th1 CD4+ T cells, CD8+ T cells, NK, and PDCs during skin
inflammation (92), whereas CXCR3 ligands are secreted by many
tissue resident cells, including dendritic cells.

Like IFNγ, IL-15 enhances innate and self-reactive memory
T-cell immunity, including autoimmune disease pathogenesis
(84, 93), and signals via the JAK1/3 pathway with downstream
STAT-5 activation (94). Similarly blocking IL-2 or IL-15 receptor
beta (IL-15Rβ) ameliorated disease development by inhibiting
CD8+NKG2D+ T-cell accumulation in the skin (81).

The combination of published genome-wide association
studies in patients with AA that highlighted JAK signaling (87,
95) and the knowledge that IFNγ primarily signals through
JAK1/2 and IL-15 mostly through JAK1/3, provided a compelling
rationale for the exploration of small-molecule JAK inhibitors in
AA disease (81, 96). Preclinical evaluation of orally administered
ruxolitinib and tofacitinib in the skin graft C3H/HeJ mouse
model demonstrated disease prevention (81). Marked decreases
of CD4, CD8, and MHC class I and II as well as a reduced
numbers of CD8+/NKG2D+ cells were observed in the skin
(81). Subsequently, prophylactic and therapeutic baricitinib
treatment ameliorated disease and normalized the Alopecia
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FIGURE 2 | JAK-mediated cytokine signaling in T helper subsets. Ligand binding to its cognate receptor triggers JAK-STAT activation and plays a central role in naive

T-cell differentiation into Th1, Th2, and Th17 subsets. ACT, Nuclear factor NF-kappa-B activator 1; GATA, GATA transcription factor 3; IFN, interferon; IL, interleukin;

JAK, Janus kinase; PI3K, Phosphoinositide 3-kinases; RORγt, retinoic acid receptor-related orphan receptor γ; STAT, signal transducer and activator of transcription;

T-bet, T-box transcription factor TBX21; Th, T helper; TGF, transforming growth factor; TNF, tumor necrosis factor; TYK, tyrosine kinase.

FIGURE 3 | Immunopathogenesis of atopic dermatitis. Allergen entry through the disrupted epidermal barrier stimulates keratinocytes to express cytokines, such as

IL-33 and TSLP, which trigger ILC2 and Th2 cell mediated inflammation. Skin-resident dendritic cells take up exogenous and self-antigens released from damaged

cells and promote type 2 immunity. CD8+ T cells infiltrate atopic dermatitis skin and activate Th2 cells to further release IL-4 and IL-13, which promotes IgE class

switching. Cytokines released from skin infiltrating Th17 and Th22 lymphocytes synergize, leading to further barrier impairment and epidermal hyperplasia. DC,

dendritic cell; FLG, Filaggrin; Ig, immunoglobulin; IL, interleukin; ILC2, type 2 innate lymphoid cells; INV, Involucrin; LC, Langerhans cell; LOR, Loricrin; OSM,

Oncostatin M; OSMRβ, Oncostatin M receptor β; Th, T helper; TSLP, thymic stromal lymphopoietin.
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TABLE 2 | Summary of JAK inhibitor use in the treatment of dermatologic conditions.

Study drug Target Company Dermatology indications ClinicalTrials.gov identifier Studystatus References

ORAL JAK INHIBITORS

Tofacitinib JAK 1/2/3 Pfizer AD NCT02001181 (Ph2) Completed (43)

Psoriasis NCT01710046 (Ph2)

NCT01815424 (Ph3)

NCT01309737 (Ph3)

NCT01276639 (Ph3)

NCT01519089 (Ph3)

NCT01241591(Ph3)

NCT01186744 (Ph3)

NCT01163253 (Ph3)

Completed

Completed

Completed

Completed

Completed

Completed

Completed

Completed

(44)

(45)

(46)

(47)

(48)

(49)

AA, alopecia totalis, alopecia

universalis,

NCT02197455 (Ph2) Completed (50)

Dermatomyositis NCT03002649 (Ph1) Ongoing

Discoid lupus erythematosus, NCT03159936 (Ph1) Ongoing

cutaneous lupus NCT03288324 (Ph1/2) Ongoing

Abrocitinib

(PF04965842)

JAK1 Pfizer Psoriasis NCT02201524 (Ph2) Terminated (51)

AD NCT02780167 (Ph2)

NCT03915496 (Ph2) (JADE MOA)

NCT03627767 (Ph2)

NCT03349060 (Ph3) (JADE Mono-1)

NCT03575871 (Ph3) (JADE Mono-2)

NCT03422822 (Ph3) (JADE EXTEND)

NCT03720470 (Ph3) (JADE Compare)

NCT03796676 (Ph3) (JADE TEEN)

Completed

Ongoing

Ongoing

Completed

Completed

Ongoing

Ongoing

Ongoing

PF-06651600 JAK3 Pfizer AA NCT02974868 (Ph2)

NCT03732807 (Ph2/3) (ALLEGRO-2b/3)

Completed

Ongoing

Vitiligo NCT03715829 (Ph2) Ongoing

PF-06700841 JAK1/ TYK2 Pfizer Psoriasis NCT02969018 (Ph2) Completed

AA NCT02974868 (Ph2) Completed

Vitiligo NCT03715829 (Ph2) Ongoing

PF-06826647 TYK2 Pfizer Psoriasis NCT03210961 (Ph1)

NCT03895372 (Ph2)

Completed

Ongoing

Baricitinib JAK1/2 Eli Lilly/ Incyte Psoriasis NCT01490632 (Ph2) Completed (52)

AA NCT03570749 (Phase 2/3)(BRAVE-AA1)

NCT03899259 (Ph3) (BRAVE-AA2)

Ongoing

Ongoing

AD NCT02576938 (Ph2)

NCT03334396 (Ph3) (BREEZE-AD1)

NCT03334422 (Ph3) (BREEZE-AD2)

NCT03334435 (Ph3) (BREEZE-AD3)

NCT03428100 (Ph3) (BREEZE-AD4)

NCT03435081 (Ph3) (BREEZE-AD5)

NCT03559270 (Ph3) (BREEZE-AD6)

NCT03733301 (Ph3) (BREEZE-AD7)

NCT03952559 (Ph3) (BREEZE-AD-PEDS)

Completed

Ongoing

Completed

Ongoing

Ongoing

Ongoing

Ongoing

Ongoing

Ongoing

(53)

(42)

(42)

Ruxolitinib JAK1/2 Incyte AA NCT01950780 (Ph2) Completed (54)

Itacitinib JAK1 Incyte Psoriasis NCT01634087 (Ph2) Completed (55)

INCB054707 JAK1 Incyte Hidradenitis suppurativa NCT03569371 (Ph2)

NCT03607487 (Ph2)

Completed

Ongoing

Upadacitinib JAK1 AbbVie AD NCT03646604 (Ph1)

NCT02925117 (Ph2)

NCT03569293 (Ph3) (Measure Up 1)

NCT03568318 (Ph3) (AD Up)

NCT03738397 (Ph3) (Heads Up)

NCT03607422 (Ph3)

NCT03661138 (Ph3)

Ongoing

Completed

Ongoing

Ongoing

Ongoing

Ongoing

Ongoing

(41)

ATI-501 JAK1/3 Aclaris AA, alopecia totalis, alopecia

universalis

NCT03594227 (Ph2) Completed

(Continued)
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TABLE 2 | Continued

Study drug Target Company Dermatology indications ClinicalTrials.gov identifier Studystatus References

ORAL JAK INHIBITORS

ASN002 JAK1/2/3 Tyk2

SYK

Asana

BioSciences

AD NCT03139981 (Ph1)

NCT03654755 (Ph2)

NCT03531957 (Ph2) (RADIANT)

Completed

Ongoing

Ongoing

(56)

Chronic hand eczema NCT03728504 (Ph2) Ongoing

Filgotinib JAK1 Galapagos NV Cutaneous lupus NCT03134222 (Ph2) Ongoing

GSK2586184 JAK1 GSK Psoriasis NCT01782664 (Ph2) Completed

BMS-986165 TYK2 BMS Psoriasis NCT03004768 (Ph1)

NCT02931838 (Ph2)

NCT03924427 (Ph3)

NCT03624127 (Ph3) (POETYK-PSO-1)

NCT03611751 (Ph3) (POETYK-PSO-2)

Completed

Completed

Ongoing

Ongoing

Ongoing

(57)

Lestaurtinib JAK2 Teva/Cephalon Psoriasis NCT00236119 (Ph2) Completed

Peficitinib JAK3 Astellas Psoriasis NCT01096862 (Ph2) Completed (58)

CTP-543 JAK1/2 Concert

Pharma-ceuticals

AA NCT03137381 (Ph2)

NCT03898479 (Ph2)

NCT03941548 (Ph2)

NCT03811912 (Ph2)

Completed

Ongoing

Ongoing

Ongoing

Study drug Target Manufacture Dermatology indications ClinicalTrials.gov identifier

TOPICAL JAK INHIBITORS

Tofacitinib JAK1/2/3 Pfizer Psoriasis NCT01831466 (Ph2)

NCT01246583 (Ph2)

Completed

Completed

(59)

(60)

AD NCT02001181 (Ph2) Completed (43)

AA NCT02812342 (Ph2) Completed (61)

PF-06700841 JAK1/ TYK2 Pfizer Psoriasis NCT03850483 (Ph2) Ongoing

AD NCT03903822 (Ph2) Ongoing

Ruxolitinib JAK1/2 Incyte Psoriasis NCT00820950 (Ph2)

NCT00778700 (Ph2)

NCT00617994 (Ph2)

Completed

Completed

Completed

(62)

(63)

AD NCT03257644 (Ph2)

NCT03011892 (Ph2)

NCT03745638 (Ph3) (TRuE-AD1)

NCT03745651 (Ph3) (TRuE AD2)

Ongoing

Completed

Ongoing

Ongoing

(64, 65)

AA NCT02553330 (Ph2) Terminated

Vitiligo NCT03099304 (Ph2)

NCT02809976 (Ph2)

Ongoing

Completed

(66, 67)

ATI-502

(ATI-50002)

JAK1/3 Aclaris AD NCT03585296 (Ph2) Completed

AA, alopecia totalis, alopecia

universalis

NCT03315689 (Ph2-AU and AT)

NCT03551821 (Ph2-eyebrow)

NCT03354637 (Ph2)

NCT03759340 (Ph2)

Completed

Completed

Ongoing

Ongoing

Androgenetic alopecia NCT03495817 (Ph2) Ongoing

Vitiligo NCT03468855 (Ph2) Ongoing

Delgocitinib

(JTE-052)

JAK1/2/3 Tyk

Syk

Japan Tobacco

Inc.; Leo

AD NCT03826901 (Ph1)

NCT03725722 (Ph2) (mild to severe AD)

Ongoing

Ongoing

Chronic hand eczema NCT03683719 (Ph2) Ongoing

AA NCT02561585 (Ph2)

NCT03325296 (Ph2-eyebrow)

Completed

Terminated

Discoid lupus NCT03958955 (Ph2) Ongoing

AA, alopecia areata; AD, atopic dermatitis; JAK, Janus kinase; TYK, tyrosine kinase.
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FIGURE 4 | IFNγ-driven inflammation in alopecia areata is JAK mediated. CD8+ T cells infiltrate the dermis, localize to the hair follicle bulb, and release IFNγ. IFNγ

binds the IFN receptor on the surface of the follicular epithelial cell, which in turn signals via JAK1 and JAK2 to promote production of IL-15, a mediator of CD8+ T-cell

activation. IL-15 binds IL-15 receptor on the CD8+ T cell surface, resulting in signaling via JAK1 and JAK3 to enhance the production of IFNγ and amplify the

feedback loop. CD8+ T cells then attack the hair follicle, which causes hair loss. CXCL, chemokine (C-X-C motif) ligand; IFN, interferon; JAK, Janus kinase.

Areata Disease Activity Index (ALADIN) IFNγ gene expression
signature (80). Topical administration of JAK inhibitors reversed
AA in C3H/HeJ mice (81); however, murine skin is significantly
thinner and easier to penetrate, and, therefore the translational
validity of these data is still unknown. In addition to its
proinflammatory activity, IFNγ-induced JAK/STAT signaling
and the recruitment of CD8+ T cells through CXCL9 and
CXCL10 can directly interfere with the hair growth cycle via
suppressed proliferation and activation of hair stem cells (97) and
reduction of angiogenesis (98).

Several case studies have reported improvement of
AA in patients who received JAK inhibitors for other
autoimmune/autoinflammatory disorders or JAK-STAT
gain-of-function mutation diseases (99–103).

Oral tofacitinib has been tested in two open-label studies
(NCT02197455 and NCT02312882) and several case reports.
In one trial, tofacitinib 5mg twice daily (BID) was given
to patients with severe AA, alopecia totalis, or alopecia
universalis. After the 12-week treatment period, nearly two-
thirds of patients showed some hair regrowth and 32% of
patients achieved a 50% improvement in their Severity of
Alopecia Tool (SALT) score (50). The second smaller open-
label study in moderate to severe AA demonstrated improved
results by increasing the dose of tofacitinib to 10mg BID

(104). Recently, two retrospective studies showed successful
treatment of severe AA, alopecia totalis, or alopecia universalis
for up to 18 months using tofacitinib, with 58% achieving
a 50% improvement 20% achieving a 90% improvement in
their SALT score (105–107). Oral ruxolitinib was tested in an
open-label study in 12 patients with moderate to severe AA
and treatment with 20mg ruxolitinib BID for 6 months was
associated with ≥50% improvement in SALT score for 75% of
patients (NCT01950780) (54). Regrowth was seen, in patches as
soon as 1 month after study medication was initiated. Following
cessation of treatment, shedding was observed, suggesting that
pharmacologic JAK inhibition suppresses AA pathogenesis but
does deplete autoreactive lymphocytes. Topical formulations of
ruxolitinib, tofacitinib, ATI-502 (JAK1/3), and delgocitinib have
reported mixed efficacy results in case studies and small proof-
of-concept clinical trials (61, 108, 109). At present, there are
several clinical trials testing topical JAK inhibitors in patients
with different forms of AA, but published results are not yet
available (Table 2).

PSORIASIS

Psoriasis is a chronic, autoimmune, erythematosquamous
dermatosis disorder that affects 2 to 3% of the world
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population. Skin lesions appear with scaling and redness (110)
and are characterized by excessive keratinocyte proliferation
(acanthosis), as well as retention of nuclei in the stratum corneum
owing to aberrant keratinocyte differentiation (parakeratosis).
Multiple inflammatory cell populations are observed within the
lesions, including T cells, B cells, neutrophils, and DCs (110).
Infiltrating autoreactive T lymphocytes, mainly represented by
Th17, Th1, and Th22 cells, release IL-17, IFNγ, IL-22, and TNFα
to potentiate disease pathogenesis. All of these cytokines induce
keratinocyte-mediated recruitment and activation of additional
DCs and lymphocytes, thereby perpetuating the pathogenic cycle
(111, 112).

Many of the critical pathogenic mediators of psoriasis are
linked to the JAK-STAT signaling pathway. For example, IL-
23 engagement with its cognate receptor uses JAK1/2/TYK2
signaling, resulting in downstream STAT3 and STAT4 activation.
Within psoriatic skin, dendritic cells and macrophages produce
IL-23, which promotes Th17 cell expansion and survival (113).
Furthermore, IL-23 together with IL-1β activates γδ T cells to
amplify IL-17 production (114). Th17 and γδ T cells found in
psoriatic skin are the primary source of IL-22, and this cytokine
triggers reduced differentiation, increased proliferation, and
acanthosis in psoriatic keratinocytes via STAT3 activation (115).
IL-22 binds to its IL-10R2 and IL-22R1 heterodimeric cell surface
receptor coupled to JAK1/TYK2 and STAT3 signaling (111, 116).
Moreover, gene polymorphisms of IL23A, IL23R, STAT3, RUNX3,
and TYK2 have also been identified as susceptibility factors for
developing psoriasis (117). More recently, JAK1 expression has
been reported to positively correlate with disease duration and
Psoriasis Area and Severity Index (PASI) (118) score. Within
the inflamed tissue psoriatic lesion microenvironment, other
cytokines, such as IL-6 and IL-21, can enhance IL-17 production
from Th17 cells in a JAK-STAT–dependent manner (119, 120).

Various rodent models have mechanistically evaluated the
importance of JAK-STAT signaling in psoriasis-like lesion
formation and disrupted barrier function. Intradermal injection
of IL-23 induces a psoriasis-like pathophysiology in mice (121).
Oral administration of delgocitinib or topical administration
of ruxolitinib significantly inhibited ear swelling (29, 122), and
efficacy was associated with reduced IL-22 expression (29).
Tofacitinib, modulates both innate and adaptive immunity
leading to inhibited pathogenic Th17 cell differentiation
via reduced IL-23 expression (123). In human keratinocyte
cultures activated with psoriasis-relevant proinflammatory
cytokines, tofacitinib suppressed expression of IFNγ-dependent
inflammatory genes and normalized keratinocyte responses.
Similarly, in the imiquimod-induced psoriasis model that is
IL-23/IL-17/IL-22–dependent (121), tofacitinib significantly
reduced epidermal thickening and IL-17+ or IL-22+ lymphocyte
infiltration into the dermis (124). Furthermore, a small molecule
JAK3 / SYK inhibitor (R348, Rigel Pharmaceuticals), attenuated
T-cell–dependent psoriasiform skin lesions in the CD18 mutant
PL/J mouse model, including significant reductions in epidermal
and dermal lesion scores (125). In T cells, IL-12 induces IFNγ

production, IL-23 enhances the differentiation of Th17 cells, and
both require TYK2 signaling (126, 127). TYK2 knockout reduced
inflammatory response and limited epidermal hyperplasia in the
intradermal IL-23 model (128). Furthermore, TYK2-deficient

mice were more resistant to several Th1 and Th17 cells
autoimmune disorders, including imiquimod-induced psoriasis-
like dermatitis (128). The combined JAK1/TYK2 inhibitor,
SAR-20347, demonstrated in vitro and in vivo concentration-
dependent reduction of IL-12, IL-22, and IFNγ-mediated
inflammation and tissue pathology in the imiquimod-induced
psoriasis model (129). Finally, experimentally induced skin
trauma in the keratin5.Stat3C transgenic mice (130), which
constitutively overexpresses active STAT3 in keratinocytes,
develops T-cell– and IL-23–dependent psoriasis-like lesions.
Topical administration of a STAT3 inhibitor prevented disease
symptoms (130–132). These preclinical findings are consistent
with the postulate that the JAK-STAT pathway plays a central
role in psoriasis pathogenesis.

Clinically, the efficacy of oral tofacitinib in moderate to severe
plaque psoriasis was demonstrated in two phase 3 randomized
controlled trials (46). Tofacitinib at 10mg BID was determined
to be non-inferior to etanercept (50mg subcutaneously twice
weekly) (47). Baricitinib was reported to be efficacious in
moderate to severe psoriasis in a phase 2 trial (NCT01490632).
In this 12-week dose-ranging study, a 75% reduction in PASI
was achieved by 43% and 54% of patients treated with baricitinib
8 and 10mg QD, respectively (52). Itacitinib (JAK1) was
evaluated in a phase 2 dose-escalation study in which patients
experienced a significant improvement in the Physician Global
Assessment (PGA) score at Week 4 with itacitinib 600mg QD
vs. placebo (NCT01634087) (55). Peficitinib (JAK1/3) reported
improvements in PASI, PGA, and body surface area at higher
dose (50mg QD) at Day 42 in a phase 2 study (58). In another
phase 2 study, 57% of patients treated with GSK2586184 (JAK1)
400mg QD achieved a 75% reduction in PASI at Week 12 (133).

Topical tofacitinib has been tested in patients with psoriasis,
with conflicting results (52, 60, 134). Three psoriasis clinical
trials have been completed using topical ruxolitinib cream.
In a phase 2 vehicle-controlled study in mild to moderate
psoriasis (NCT00778700), ruxolitinib reported PASI reduction,
although no clear dose-response was observed. A subsequent
trial in 29 patients with psoriasis compared ruxolitinib cream
to two active comparators (calcipotriene 0.005% cream and
betamethasone dipropionate 0.05% cream; NCT00820950). Both
ruxolitinib 1% QD and 1.5% BID achieved clinical efficacy,
with 1.5% BID topical ruxolitinib cream being non-inferior to
active comparators (62). Finally, a third study conducted in
25 patients with limited psoriasis (covering <20% of the body
surface area; NCT00617994) showed that epidermal hyperplasia
and dermal inflammation were reduced with ruxolitinib in
most patients, along with immunohistochemical markers of
inflammation (CD3, CD11c, Ki67, and K16). No significant
inhibition of phosphorylated STAT3 in peripheral blood cells was
observed, suggesting limited systemic exposure (63). A number
of other JAK inhibitors have been studied in psoriasis (Table 2).

VITILIGO

Vitiligo is a chronic, autoimmune depigmenting disorder that
results from destruction of melanocytes, causing white spots on
the affected skin. The global vitiligo prevalence is ∼0.5 to 2.0%
and varies geographically, with no epidemiologic differences

Frontiers in Immunology | www.frontiersin.org 9 October 2019 | Volume 10 | Article 2342

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Howell et al. JAK-Mediated Inflammatory Skin Diseases

FIGURE 5 | IFNγ-driven inflammation in vitiligo is JAK mediated. Intrinsic and/or extrinsic factors induce the cellular stress response in melanocytes, which then

activates innate immunity within the skin to trigger the initial inflammation that leads to autoimmunity. As a result, CXCL9 and CXCL10 are released from keratinocytes

leading to recruitment of CD8+ T cells. Activated CD8+T cells produce IFNγ which trigger more CXCL9 and CXCL10 production from keratinocyte through JAK1 and

JAK2 signaling and recruit more CD8+ T cells to the inflamed sites. CD8+ T cells then destruct melanocytes and lead to depigmentation. CXCL, chemokine (C-X-C

motif) ligand; IFN, interferon; IL, interleukin; JAK, Janus kinase; NKD2D, natural killer group 2D.

between sexes or races (135, 136). Vitiligo can be stigmatized by
society, resulting in a significant impact to patient quality of life
(137, 138). It is therefore inappropriate to categorize vitiligo as
simply a cosmetic problem.

In vitiligo, the frequency of anti-melanocyte CD8+ T cells
in the blood and skin correlates with disease severity, and
lesional CD8+ T cells in vitro induce melanocyte apoptosis in
unaffected skin (139, 140). These data support the rationale that
cytotoxic T lymphocytes are directly responsible for melanocyte
destruction in human vitiligo (Figure 5). Expression analysis
reveals an IFNγ-specific signature that is associated with
infiltrating autoreactive CD8+ T cells (140, 141). Transcriptome
analysis on the skin and blood of patients with vitiligo revealed
IFNγ-induced chemokines CXCL10 and CXCL9 were increased
(142, 143), which is consistent with the observed abundance
of autoreactive T cells expressing the cognate CXCR3 receptor
(144). Furthermore, serum CXCL10 levels were associated with
Vitiligo Area Scoring Index (VASI) of patients with progressive

vitiligo, suggesting that the CXCL10/CXCR3 axis mediates T-cell
recruitment into the skin of progressive vitiligo.

Consistent with active human vitiligo reports, an adoptive
transfer of melanocyte-specific CD8+ mouse model shows
epidermal depigmentation but sparing of the hair follicle.
Mechanistic studies, including neutralizing antibodies, have
demonstrated that depigmentation is IFNγ-dependent via
the local accumulation of melanocyte-specific CD8+ T cells
within the skin. Adoptive transfer of CXCR3-deficient T
cells or inhibition of CXCL10 signaling ameliorated overall
disease phenotype, whereas CXCL9 promoted autoreactive T-cell
recruitment to the skin but did not significantly contribute to
effector function (141, 145). Keratinocytes appear to significantly
contribute to the disease process as major chemokine producers
via IFN signaling, resulting in augmented autoreactive T-cell
homing to the epidermis (146).

Given the apparent critical role for IFNγ in driving vitiligo
inflammation and its downstream signaling dependent on
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the JAK1-JAK2 heterodimer, it is perhaps not surprising
that intense and diffuse JAK1 expression is more present
within vitiliginous skin compared with healthy tissue.
Moreover, high JAK1 expression was associated with
short disease duration and a lower percentage of surviving
melanocytes (118, 147, 148).

Multiple case reports suggested that orally administered
JAK inhibition significantly modulated the vitiligo autoimmune
response and facilitated repigmentation (102, 108, 149).
Another possible approach to diminish local inflammation
and promote repigmentation in vitiligo, but minimize systemic
drug exposures, is the use of topical JAK inhibitors. Recently,
Rothstein et al. reported a very small open-label trial without
placebo control (NCT02809976) in which nine patients
completed the 20 week study period. Twice daily ruxolitinib
cream demonstrated time-dependent improvement in facial
VASI (F-VASI) in the majority of the enrolled vitiligo patients
(67). Recently, ruxolitinib cream was tested in a randomized,
double-blinded, dose-ranging, vehicle-controlled, phase 2 study
in 157 adult patients with vitiligo (NCT03099304). The results
show that significantly more patients treated with ruxolitinib
cream for 24 weeks achieved a≥50% percent improvement from
baseline in the facial VASI score compared with patients treated
with a control vehicle [(66); World Congress of Dermatology;
June 2019; Milan, Italy].

CONCLUSIONS

Despite phenotypic differences in the inflammatory
mediators responsible for driving disease pathogenesis,
these aforementioned dermatoses are characterized by
increased inflammatory mediators that signal through the
JAK-STAT pathway.

JAK inhibitors are emerging as an exciting class of
treatments in the field of dermatology. In murine models
of skin inflammation, JAK inhibitors significantly modulated
key mechanistic phenotypes that correspond with clinical

readouts, such as acanthosis and pruritus. Early phase clinical
reports confirmed the positive concept of JAK-STAT antagonism
in dermatology, and randomized clinical trials have shown
promising results in AD, psoriasis, and vitiligo. Encouraging
data were observed in a proportion of AA participants; however,
additional studies are needed to fully elucidate the disease
pathophysiology and the role for JAK-STAT inhibition.

Larger clinical studies of oral and topical JAK inhibitors in AD,
psoriasis, and vitiligo are currently ongoing. These pivotal trials
are expected to provide additional insight into the efficacy and
safety of JAK inhibitors in dermatology. Safety information for
Jakinibs in inflammatory disease indications is mostly based on
randomized clinical trials for investigational uses and extension
studies. Recent, comprehensive, summaries of the key laboratory
changes and clinical adverse events have been reported (150, 151).

Based on the promising results so far and the large number
of ongoing clinical trials, it is possible that JAK inhibitors
will become an important part of the dermatologist’s treatment
armamentarium in the future.
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