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1  | INTRODUC TION

China is the third largest country with land area in the world and 
is also a big agricultural country. Every year, the total amount of 
agricultural products is in the forefront of the world. Although the 
output of all kinds of food has increased, a problem that cannot be 
ignored has aroused people's attention, that is, food safety.

In particular, major food safety incidents in recent years, such 
as "red heart" duck eggs, “melamine” incident, and "lean meat pow-
der" pork, once made China's food industry into a state of decline. 
The whole industrial chain from primary agricultural products to 
commodity was greatly affected. These problems not only appear 
in China, but also in other countries of the world. For example in 
2005, the food standard agency of the UK found that salmon sold in 
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Abstract
Food is the foundation of human survival. With the development and progress of 
society, people increasingly focus on the problems of food quality and safety, which 
is closely related to human's health. Thus, the whole industrial chain from farmland 
to dining table need to be strictly controlled. Traditional detection methods are time-
consuming, laborious, and destructive. In recent years, hyperspectral technology has 
been more and more applied to food safety and quality detection, because the tech-
nology can achieve rapid and nondestructive detection of food, and the requirement 
to experimental condition is low; operability is strong. In this paper, hyperspectral im-
aging technology was briefly introduced, and its application in agricultural products 
and food detection in recent years was systematically summarized, and the key points 
in the research process were deeply discussed. This work lays a solid foundation for 
the peers to the following in-depth research and application of this technology.
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the market contained a strong carcinogenic "malachite green," which 
shocked the world and caused panic.

As the saying goes, "food is the most important thing for 
the people," which also contains a meaning that food safety and 
quality is greater than heaven, because it is closely related to the 
health of human. The emergence of food safety incidents poses 
new challenge to traditional detection methods of food quality 
and safety, including the detection of the whole industrial chain 
from farmland to dining table. Traditional methods have great 
limitations, such as long detection cycle, strong destructive, com-
plex operation, and single-point detection. Consequently, spec-
tral technology has gradually been introduced into food quality 
and safety detection, such as hyperspectral technology (Dale 
et al., 2013), infrared spectrum technology (Fu & Ying, 2016; Shi 
et al., 2012), and Raman spectrum technology (Ai et al., 2018). 
Among them, hyperspectral technology has unique advantage and 
has been widely used in astronomy (Hege, O'Connell, Johnson, 
Basty, & Dereniak, 2004), food (Feng & Sun, 2012; Gowen, 
O'Donnell, Cullen, Downey, & Frias, 2007), forensic examination 
(Edelman, Gaston, Van Leeuwen, Cullen, & Aalders, 2012; Malkoff 
& Oliver, 2000), crime scene investigation (Kuula et al., 2012; 
Schuler, Kish, & Plese, 2012), cultural relics protection (Fischer 
& Kakoulli, 2013; Liang, 2012), medicine (Afromowitz, Callis, 
Heimbach, DeSoto, & Norton, 1988; Carrasco, Gomez, Chainani, 
& Roper, 2003), plant and water conservation (Adam, Mutanga, & 
Rugege, 2010; Govender, Chetty, & Bulcock, 2007), and remote 
sensing mapping (Ren, Zabalza, Marshall, & Zheng, 2014). This 
technology not only can carry out large-scale and rapid detection 
of objects, but also can retain the integrity to the greatest extent, 
which is an effective tool in the field of food nondestructive test-
ing. Hyperspectral imaging technology is a image data technology 
with continuous narrow band, which can simultaneously detect 
the spectral and spatial information of objects, thus obtain more 
effective data. However, a obvious shortcoming of this technol-
ogy lies in the high requirement for software and hardware, yet in 
recent years, with the enhancement of technological strength, the 
“short board” is also slowly being overcome.

In this paper, the principle and analysis process of hyperspectral 
imaging technology were briefly introduced, and the application of 
this technology in the field of agricultural products detection in re-
cent years, including grains, fruits, vegetables, and meats, was sum-
marized systematically. In addition, the deficiencies and key points in 
the research were discussed in depth. This work lays a solid founda-
tion for the peers to the following in-depth research and application 
of this technology.

2  | HYPERSPEC TR AL IMAGING 
TECHNOLOGY

As an emerging, nondestructive, and advanced optical technology, 
it is an image data technology with many narrow bands. It com-
bines mechanical vision with spectral technology to detect the 

two-dimensional spatial and one-dimensional spectral information 
of the targets; thus, high-resolution image and spectral data are 
obtained.

Therefore, the emergence of hyperspectral technology makes it 
easier to detect objects that cannot be detected with wide band. 
Moreover, compared with other optical technologies, hyperspec-
tral image is closer to the real properties of objects. At present, this 
technology has developed rapidly, which can be divided into reflec-
tion imaging (Nicolaï, Lötze, Peirs, Scheerlinck, & Theron, 2006), flu-
orescence imaging (Vargas et al., 2010), and transmission imaging 
(Casasent, 2011). Among them, reflective imaging technology is the 
most commonly used.

The hyperspectral imaging system is mainly consisted of four 
parts: hyperspectral camera, light source, carrier stage, and com-
puter software and hardware (Figure 1a; Wu et al., 2012). The light 
emitted by the source is absorbed and then reflected by object sur-
face (Figure 1b; Li & Rao, 2011). After passing through the front lens 
and entrance slit, light with different wavelengths will have bend-di-
vergence propagation of different level. Then, it converges at the 
collimation lens, light of different wavelengths form separate bands 
by splitting. Finally, the spectral signal will be presented to the de-
tector through the imaging lens. The three-dimension data cube rich 
in image and spectral information are obtained by machine sweeping 
(Figure 1c). Moreover, when choosing the light source, we should 
pay attention to highlight the object and weaken the background. 
Meanwhile, to present useful signal as much as possible, the signal-
to-noise ratio of the image should be improved, thus reduce noise in-
terference (Dong, Guo, Xu, & Xu, 2018). Imaging spectrometer is also 
called hyperspectral camera, which can absorb, process, and trans-
mit the reflection spectrum of target, is one of the most core part of 
the whole hyperspectral system. The main function of the electronic 
control platform is to control the moving speed of the object and 
make it consistent with the sampling frequency and exposure time 
of the camera, thus prevent the phenomenon of missing or repeated 
acquisition. Data acquisition software mainly control the operation 
of relevant equipment through parameter setting, thus efficiently 
completing the data acquisition work.

The hyperspectral off-line data are processed by chemometrics 
and computer technology, which is mainly implemented in MATLAB 
and ENVI software. The general flow chart of data analysis is shown 
in Figure 2, in which preprocessing, variable selection, and modeling 
methods are the key steps in the whole analysis process, they all in-
volve a variety of processing algorithms. The selection of algorithms 
has an important influence on the model accuracy and prediction 
performance of different variables. The purpose of pretreatment is to 
remove the noise fluctuation and baseline change generated in the 
process of data acquisition, so as to enhance the spectral signal. The 
commonly used spectral pretreatment methods include multiplicative 
scatter correction (MSC) and standard normal variate (SNV). The spec-
tral information generated in data acquisition originates in the overlap 
of signals of various chemical substances of sample. The characteristic 
wavebands closely related to the variables are selected by some meth-
ods, which is helpful to improve the predictive effect of the model on 
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F I G U R E  1   The principle and process of hyperspectral imaging technology. (a) Hyperspectral imaging system (Wu et al., 2012). (b) 
Diagram of hyperspectral imaging principle (Li & Rao, 2011). (c) Three-dimension data cube of hyperspectral imaging

F I G U R E  2   Analysis flow chart of 
hyperspectral imaging
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variables. The commonly used screening methods include successive 
projections algorithm (SPA), principal component analysis (PCA), or a 
combination of various methods, which can further reduce the amount 
of calculation and improve work efficiency. For different characteriza-
tion indicators, different models are used for rapid prediction, which 
is conducive to improving the prediction performance of the model. 
The commonly used methods of preprocessing, variable selection, and 
modeling are shown in Table 1.

3  | APPLIC ATION OF HYPERSPEC TR AL 
TECHNOLOGY IN THE FIELD OF 
AGRICULTUR AL PRODUC TS AND FOOD 
DETEC TION

Food detection includes safety and comprehensive detection 
(Huang, Yao, Hui, Sun, & Xing, 2012). Among them, safety detection 
refers to the detection of substances that may cause harm to human 
health in food. Comprehensive detection is also divided into exter-
nal and internal detection, that is, the detection of external defects 
and internal quality of objects. Detection is usually carried out by 
random sampling combined with chemical analysis, which will inevi-
tably prolong the detection time and reduce the accuracy of the re-
sult. With the introduction of hyperspectral technology, it has been 
widely used in the field of food detection (Table 2).

3.1 | Plant-product industry

Planting industry is the basic sector of the whole agriculture and is 
also the foundation of human existence, such as grain, cotton, and oil. 

Plant-product industry mainly cultivates a variety of crops, accord-
ing to the property and purpose of products, which can be divided 
into grain crops, cash crops, feed and manure crops, vegetables, etc.

Grain crop is one of the most important food for human beings, 
but it is easily infected by fungi during growth and storage, which 
leads to the decline of the yield and nutritional value (Orina, Manley, 
& Williams, 2017). In order to identify the situation of food infected 
by fungi, we can only wait for visible colonies on the surface, or 
conduct early identification by microbial culture, but this method is 
time-consuming and laborious. Williams et al. (Williams, Geladi, Britz, 
& Manley, 2012) used hyperspectral to detect the changes of fungi 
on maize surface after infection with Fusarium verticillioides. It was 
found that the fungal change could be identified by hyperspectral 
technology in the early stage of infection; meanwhile, the content 
changed significantly after starch and protein were utilized by fungi. 
However, the infection ability of fungi to different biological sam-
ples is different, which will interfere with the establishment of the 
model, so more systematic research is needed to verify its feasibility. 
In addition, whether brown rice is infected by fungi during storage 
can also be detected by hyperspectral technology, and the spectral 
signal decreases with the increase of fungal colonies (Siripatrawan & 
Makino, 2015). Once grains are infected by fungi, these fungi usually 
produce toxins that can cause serious harm to human health, such as 
aflatoxin in corn (Fiore et al., 2010). At present, traditional methods 
cannot effectively identify aflatoxin in early stage, yet hyperspectral 
technology can quickly identify it within 48 hr after artificial inoc-
ulation with Aspergillus flavus, which may be related to the detec-
tion limit of the method. In the early stage, the amount of aflatoxin 
produced by fungi is low, and the consumption of aflatoxin cannot 
be avoided by the solution transfer in the traditional detection pro-
cess, so it cannot be effectively identified by this method. However, 

TA B L E  1   Statistical tables of commonly used spectral pretreatment, variable selection, and modeling methods

Pretreatment methods Variable Screening Methods Modeling methods

Multiplicative scatter correction 
(MSC); normalized; standard normal 
variate

(SNV); Savitzky-Golay 1st order 
(SVG-1) and 2nd order derivatives 
(SVG-2; Crichton et al., 2017)

Successive projections algorithm (SPA);
regression coefficient (Caporaso, Whitworth, 

Grebby, et al., 2018)

Genetic synergy interval partial least square (GA-
Si-PLS) algorithm (Ling et al., 2017)

Autoscale (Sun et al., 2017) Competitive adaptive reweighted sampling (Tian 
et al., 2018)

Partial least squares discrimination analysis 
(PLS-DA; Sun et al., 2017)

De-trending (Caporaso, Whitworth, 
Grebby, et al., 2018)

Weighted values (Qu et al., 2017) Partial least square regression (PLSR; Cheng 
et al., 2018)

Principal component analysis (PCA; Munera 
et al., 2017)

Linear and quadratic discriminant analysis (LDA and 
QDA)；support vector machine (SVM; Munera 
et al., 2017)

Genetic synergy interval partial least square (GA-
Si-PLS) algorithm (Ling et al., 2017)

Artificial neural network (ANN)；multi-layer 
perceptron (MLP) neural networks (Orina 
et al., 2017)

Two-wavelength combination method (Xie 
et al., 2018)

East squares-support vector regression (LS-SVR; 
Wei et al., 2019)

Random frog (RF) algorithm -SPA (Wei 
et al., 2019)



5210  |     ZHU et al.

hyperspectral detection is realized by capturing the spectral signal 
reflected from the aflatoxin, which is relatively sensitive. In addition, 
the data collection does not result in the consumption of aflatoxin. 
Therefore, hyperspectral technology can quickly identify it.

With the improvement of people's living standards, healthy life-
style accelerates the consumption of fruits and vegetables. Safety is 
the foundation and quality is the guarantee, that is, only when the 
safety problem is solved can the quality be improved. The traditional 
methods of quality detection cannot preserve the integrity of food 
even cannot be eaten, resulting in a lot of waste, but hyperspectral 
technology can solve this problem very well. Therefore, hyperspec-
tral technology has been widely used in the field of nondestructive 
detection of fruits and vegetables. With the invasion of microbes and 
their own respiration, the chlorophyll content in the tissue structure 
gradually decreases, which affects the quality of fruits and vegeta-
bles and greatly reduces commodity value. So, Sun et al. (2017) used 
hyperspectral to detect the content of chlorophyll to reflect the spa-
tial distribution of diseased peach parts. The discovery can provide 
a new perspective for the identification and classification of fruit 
quality. In addition to the irreversible effect of decay on the quality 
of fruits and vegetables, some physicochemical properties also have 
adverse effects on their taste, nutrition, and shape. Tian, Li, Wang, 
Fan, & Huang (2018) used hyperspectral technology combined with 
partial least squares (PLS) model to establish a two-layer model of 
soluble solid in apple. It was found that carotenoids have an import-
ant impact on the prediction of soluble solid content. Hyperspectral 
technology is also suitable for rapid prediction of color, quality, and 
hardness of other fruits (Rajkumar, Wang, Eimasry, Raghavan, & 
Gariepy, 2012; Xie, Chu, & He, 2018), such as the maturity of per-
simmon (Munera et al., 2017), anthocyanin in grape (Fernandes 
et al., 2011), and the difference of trace components in rape under 
different fertilization conditions (Zhang, Fei, Yong, & Gong, 2013). 
Hyperspectral technology can also be used to identify the damage 
of vegetables, so that there is quality assurance before sale, which 
cannot only ensure the freshness of vegetables in the storage cycle, 
but also make consumers feel at ease to buy. Mushroom is easy to 
be damaged in the process of transportation. To solve this prob-
lem, Gowen et al. (2008) effectively detected the damage of white 

mushroom during transportation through hyperspectral technology, 
and the technology can be used for rapid identification the damage 
of white mushroom on the production line. Therefore, these stud-
ies show that hyperspectral technology can effectively achieve the 
rapid and nondestructive detection of internal and external quality 
of fruits and vegetables, so as to ensure the freshness and quality.

3.2 | Animal husbandry

Meat products are nutritious and delicious, and are very popular 
with consumers. However, some illegal trader sell unqualified meat 
for their own huge benefit, which seriously violates the rights and 
interests of consumers. Kamruzzaman, Elmasry, Sun, & Allen (2011) 
not only used hyperspectral technology to quickly discriminate the 
muscle of three different parts of lamb, but also established pre-
diction models for the identification of muscle pH, color, and mass 
loss (Kamruzzaman, Elmasry, Sun, & Allen, 2012). In order to further 
reveal the adulteration of meat products, the team (Kamruzzaman, 
Sun, Elmasry, & Allen, 2013) again used hyperspectral to quickly and 
effectively detect the content distribution of adulterated ingredi-
ents in lamb meat. Chicken is a kind of meat food which is easy to 
deteriorate even in low temperature. Total volatile basic nitrogen 
(TVB-N) is an important indicator to detect the deterioration of 
chicken. Hyperspectral imaging technology can detect it quickly and 
nondestructively (Khulal, Zhao, Hu, & Chen, 2016), prevent spoiled 
chicken from entering the market, and endanger human health. 
Deep-frozen can prolong the shelf life of meat, which is a common 
method for meat storage. However, due to oxidation reaction and 
mechanical damage, the flavor of meat will decrease seriously during 
freezing. With carbonyl content as an indicator, the oxidative dam-
age of pork myofibrils during frozen storage can be well measured by 
hyperspectral technology (Cheng, Sun, Pu, & Wei, 2018). With the 
pH value, color, and tenderness of beef as indicators, hyperspectral 
technology can detect the difference in beef with different fresh-
ness (Crichton et al., 2017), the water holding capacity of fresh beef 
(Eimasry, Sun, & Allen, 2012) and accurately classify the beef grade 
(Elmasry, Sun, & Allen, 2011). In addition, the content of melamine 

Plant-product industry
Animal 
husbandry

Aquatic farming 
industry Others

Maize Lamb Cod slices Nutriments

Brown rice Chicken Grass carp fillets Cocoa beans

Corn Pork Shrimp Coffee bean

Peach Beef Nongfu mountain 
spring

Apple Milk powder

Persimmon

Grape

Rape

Mushroom

TA B L E  2   Application of hyperspectral 
technology in food detection
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in milk powder can also be effectively determined by hyperspectral 
technology, so this technology can be used as an effective tool to 
detect illegal additives in milk powder, thus ensuring the health of 
consumers (Lim et al., 2016).

3.3 | Aquatic farming industry

Parasite is major factor that endangers the health and growth of ani-
mals in aquaculture. Once the case broke out, it would cause exten-
sive death and heavy loss. Aquatic products have the characteristics 
of high protein, low fat, and delicious taste, and are easy to become 
hosts of parasites. If the food contaminated by parasites is not han-
dled properly, it will cause the symptoms of vomiting, diarrhea, etc. 
Every year, food safety incidents caused by eating parasites emerge 
in endlessly. However, there has been a lack of effective technol-
ogy for nondestructive detection of aquatic products that may 
contain parasites, yet the emergence of hyperspectral technol-
ogy makes up the deficiency. Based on hyperspectral technology, 
Sivertsen, Heia, Hindberg, & Godtliebsen (2012) proposed an ef-
fective and rapid method to identify nematodes in cod slices, which 
proved the advantage of hyperspectral detection in meat parasites. 
This method is suitable for large-scale detection of aquaculture in-
dustry. Meanwhile, hyperspectral technology has also been intro-
duced into the detection of viable count on the surface of fish (Wu 
& Sun, 2013). For aquatic products, in addition to the detection of 
parasites and microorganisms, some chemical compounds are also 
important indicators of internal quality (Elmasry, Sun, & Allen, 2013). 
Qu, Sun, Cheng, & Pu (2017) established a visual distribution map 
of the moisture content of grass carp fillets during freeze-drying by 
hyperspectral technology. Moreover, they also successfully identi-
fied different grades of shrimp using hyperspectral technology (Qu 
et al., 2015). However, some important information may be lost in 
spectral preprocessing, and the established model is not universal. 
Therefore, how to improve the accuracy and prediction performance 
of the model is one of the important research directions.

3.4 | Others

Hyperspectral technology has been widely used in the food field. In 
addition to the primary agricultural products and food mentioned 
above, this technology has also been applied to other kinds of food 
detection, such as nutriments (Shi et al., 2017) and cocoa beans 
(Caporaso, Whitworth, Fowler, & Fisk, 2018). Moreover, hyperspec-
tral technology is first used to quantitatively predict the content of 
sucrose, caffeine, and triglycerides in single coffee bean (Caporaso, 
Whitworth, Grebby, & Fisk, 2018). The research of hyperspectral 
technology is not just a small-scale validation test, but also has 
been industrialized. The scientific and technological product line of 
Nongfu Mountain Spring (a famous drinking water manufacturing 
enterprise in China) is a typical example of industrialized applica-
tion of hyperspectral imaging technology. Through hyperspectral 

photography system combined with computer technology, the types 
and area of fruit surface defects are identified, and the illumination 
sorting of fruit is realized. Meanwhile, the near-infrared detection 
system form spectral curve by irradiating fruit surface to realize non-
destructive detection of sugar and acidity. Before doing this work, it 
is necessary to establish a very large database, the more databases 
there are, the higher the accuracy of detection data will be.

4  | DISCUSSION

Hyperspectral imaging technology has unique advantages in the 
field of nondestructive testing compared to traditional methods. 
The traditional detection methods cannot be inseparable from a 
large number of reagent preparation, instrument use, and manual 
operation, so the error caused by those factors cannot be estimated. 
However, for hyperspectral technology, in addition to the basic data 
used in first modeling needs to be obtained by traditional methods, 
we only need to extract the hyperspectral data of the sample by tak-
ing photographs during the detection, which can be combined with 
machine learning algorithm to realize the detection of sample qual-
ity. Therefore, hyperspectral detection avoids many errors caused by 
external factors, such as reagents, instruments, and operators, so as 
to achieve accurate, rapid, and nondestructive detection. However, 
hyperspectral photography system can only obtain the data infor-
mation of the object surface, and cannot irradiate the interior of the 
sample, so it is not suitable for the detection of chemical compo-
nents with poor homogeneity. In addition, due to the complexity of 
samples detected, it should be noted that different kinds of samples 
correspond to different parameter calibration in the process of hy-
perspectral data acquisition, or the effect of image acquisition and 
accuracy of data will be affected, thus seriously reduces the cred-
ibility of the results.

In the process of data analysis, various mathematical algo-
rithms are commonly used to select characteristic bands, which is 
actually controversial. Because for the same detection indicator, 
different algorithms obtain various characteristic bands, so the 
models established are also different. According to the principle 
of spectral molecular vibration, all kinds of particles in each sub-
stance, such as molecules, atoms, nuclei, and electrons, are moving 
continuously at a certain energy state. The maintenance of motion 
needs energy supply, when electromagnetic wave transmits en-
ergy to substance, the particles in the substance undergo energy 
level transition and change from ground state to excitation, the 
state of motion changes accordingly. However, due to the insta-
bility of the particles in the excited state, it releases energy in the 
form of electromagnetic waves and returns to the ground state, 
which resulting in complex absorption, reflection, or transmission 
spectral signal. Therefore, starting from the principle of spectral 
generation, the characteristic absorption signals of chemical indi-
cators are mainly produced by the vibrations of molecular bonds 
and functional groups, which are carried by chemical structural 
formulas of the indicators. In order to improve the robustness 
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and predictive performance of the model, it is suggested that the 
characteristic wavebands of functional groups of the characteri-
zation indexes should be obtained from the relationship between 
absorption spectrum and molecular structure through gradient 
experiment design of the pure material, and then, it is brought 
into the sample to verify the accuracy of the band selection. In 
addition, it is necessary to prevent other compounds' signals from 
concealing the spectral information of the detection indicators, 
which involves spectral decomposition that is a difficult research 
work. Spectral signals can be optimized through well-directed ex-
perimental design or development of new algorithms.

5  | CONCLUSION AND PERSPEC TIVE

As a image data technology, hyperspectral imaging technology has 
the advantage of union of imagery and spectrum. It can simultane-
ously detect the surface and internal information of objects, so as to 
realize the rapid and nondestructive detection of food quality and 
safety. Therefore, it has been widely used in the field of food. In 
this paper, from the perspective of agricultural classification, the re-
search progress of hyperspectral technology in primary agricultural 
products and food in recent years was systematically reviewed. In 
addition, the deficiencies and key points of this technology in the 
research were discussed in depth. This work lays a solid foundation 
for peers to quickly grasp the application progress of hyperspectral 
technology in the field of agricultural products and food, contribut-
ing to the in-depth research and application of this technology.

In China, solid-state brewing (Liu et al., 2004) has a very long his-
tory and peculiar culture, and the open fermentation of multi-strains is 
the main characteristics of making process. Baijiu and vinegar are typical 
representatives of solid-state brewing. Based on hyperspectral technol-
ogy, the distribution of moisture and acidity in vinegar fermented grains 
is quickly detected (Zhu et al., 2016), enabling baijiu enterprises to find 
problems quickly, and adjust processes in time, thus ensure the product 
quality. It shows that it is feasible to apply hyperspectral imaging tech-
nology to the rapid detection of characterization indicators in solid-state 
fermentation process. As one of the six distilled spirits in the world 
(Zhao, Zheng, Song, Sun, & Tian, 2013), chinese baijiu is brewed by open 
fermentation condition with natural inoculation. Because of its complex 
fermentation system, it is difficult to effectively monitor the production 
process. With the arrival of the mechanization and intelligence of chi-
nese baijiu, hyperspectral technology has a broad application prospect in 
the field of baijiu making, which will have important guiding significance 
for the transformation and upgrading of traditional technology and intel-
ligent on-line monitoring of complex fermentation state.
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