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Stimulation of naïve CD4 T cells with weak T cell receptor agonists even in the absence 
of T helper-skewing cytokines can result in IL-4 production which can drive a Th2 
response. Evidence for the in vivo consequences of such a phenomenon can be found 
in a number of mouse models and, importantly, a series of monogenic human diseases 
associated with significant atopy which are caused by mutations in the T cell receptor 
signaling cascade. Such diseases can help understand how Th2 responses evolve in 
humans, and potentially provide insight into therapeutic interventions.
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iNTRODUCTiON

Within the vast legacy of Bill Paul’s career, one theme that emerged was the search for a source of 
IL-4 that would meaningfully provide differentiating naïve CD4 T cells sufficient signal to develop 
into memory Th2 cells during an immune response that required such a program. Mast cell (1), 
basophil (2–4), and NK T (5) IL-4 production were observed, but whether they are the key initiators 
of most Th2 responses continues to be a matter of debate. It was therefore in the course of that search 
that attention was turned to IL-4 production by the naïve T cell itself (6, 7). Kim Bottomly, herself a 
trainee of Bill’s, had observed that in vitro priming of naïve T cells by relatively weak, but not strong, 
agonist peptides, in the absence of other priming cytokines, could lead to a Th2 response (8–15). 
Bill’s lab later showed that “strong” agonist peptides themselves could prime such a response, when 
provided at a sufficiently low dose (16), and that in lymphopenic states or when TCR of high affinity 
for a given peptide are removed, stimulated naïve cells will differentiate into Th2 cells (17, 18). The 
mechanisms for these observations continue to be unraveled, but include the notion that responses 
to IL-2 become blunted at higher dose of peptide, preventing the necessary STAT5b activation and 
nuclear translocation for transcription of key Th2 lineage transcription factor as well as poor ERK 
activation, as MEK inhibition could recapitulate the Th2 bias even in the presence of high dose strong 
TCR agonism (9, 16).

In vivo, indeed TCR/MHC interactions may even predominate over exogenous adjuvant activ-
ity in determining Th1/Th2 balance (19), although it may not always be via IL-4 production itself 
(20). One potential teleologic reason for the phenomenon could be that parasitic products which 
could evade immune responses by downregulating TCR-MHC interactions [such as the omega-1 
component of schistosome egg antigen which can prime Th2 responses, potentially by weakening 
TCR/MHC interactions (21, 22)] resulted in the evolution of anti-parasitic cytokine profiles which 
are derived from differentiation under low-affinity conditions. Whatever the cause, and whether IL-4 
itself is the key driver of Th2 differentiation in vivo is a matter of debate, the success of IL-4 receptor 
blocking antibodies in treating human atopic disease has been impressive, strongly suggesting this 
pathway is critical for the pathogenesis of human atopic disease (23).

Another set of observations have further buttressed the notion that altered TCR signaling could 
lead to Th2 phenotypes. A series of mouse lines derived spontaneously or via random mutagenesis 
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with missense mutations in key TCR signaling molecules were 
observed to develop Th2-related pathology spontaneously. These 
included LAT, ZAP70 (in several independent mutant lines), and 
CARMA1 (24–28). Null mutations in most of these molecules 
lead to impairment of effector function which precludes most 
Th differentiation altogether, and as such it is the hyopomorphic 
loss-of-function mutations which lead to the phenotype.

Of course, a major consequence of this basic observation 
could be that certain human disease could also be driven by 
this phenomenon and would most likely include an atopic 
phenotype. With the exponential growth of patients undergoing 
next-generation sequencing, multiple newly described immune 
disorders which include atopic disease have been identified, some 
of which may well be due to impaired TCR signaling. This review 
therefore provides a series of examples of human monogenic dis-
orders associated with atopy which may be caused by imbalances 
in TCR signaling which fail to prevent Th2 responses.

OMeNN SYNDROMe (OS)

Before directly addressing the propensity for mutations to intrin-
sically bias a T  cell toward Th2 differentiation, it is critical to 
distinguish one congenital atopic phenotype, namely, that seen in 
OS (29). Mutations that are known to lead to massive curtailment 
of T cell function and/or number—both intrinsic to signaling and 
extrinsic to it—can nonetheless permit “leaky” peripheral T cell 
populations which can progress to CD4 lymphoproliferation, 
organomegaly, and Th2-like disease associated with marked IgE 
elevation, erythroderma, and eosinophilia. Why OS is associated 
with the Th2 phenotype is not clear, but hypotheses have included 
a failure of central tolerance due to abnormal thymic develop-
ment which hinders both AIRE-induced negative selection and 
the generation of a normal repertoire of FOXP3+ regulatory 
T cells (Tregs) (30–32). The lymphopenic state also may lead to 
the absence of sufficient high-affinity competition for antigen 
which would then permit low-affinity cells to be stimulated and 
proliferate, leading to the Th2 phenotype (17, 18).

MUTATiONS iN GeNeS eNCODiNG 
CLASSiCAL TCR SiGNALiNG PROTeiNS

Similar to the mouse, human mutations in ZAP70 can lead to 
varied phenotypes from SCID, to autoimmunity, to highly atopic 
phenotypes (33–37). In the case of one of the reported atopic 
phenotype in humans, it is not clear whether it was caused by 
intrinsic Th2 bias similar to the mouse model, or due to the 
limited repertoire associated with OS (35).

Stronger evidence for the link between TCR intrinsic signaling 
defects and atopy in human disease can be found in hypomorphic 
mutations of two members of the CBM complex, such as MALT1 
(38) and CARMA1 (39, 40). The CBM complex, which includes 
MALT1, CARD11, and BCL10, is required for normal NFkB 
activation after TCR ligation, as well as mTORC1 activation (41, 
42). Complete loss-of-function mutations of any of the three 
CBM complex members lead to a SCID-like illness (43–47), 
but recently, hypomorphic MALT1 mutations were described 

in a patient with recurrent infection, marked IgE elevation, and 
severe eczema (38). Even more recently, dominant-negative 
mutations leaving residual, hypomorphic CARD11 activity were 
identified in a cohort of patients with severe atopic disease with, 
and in some cases, without, comorbid infection. The finding is of 
particular interest since, in addition to the possibility that severe 
atopy without comorbidity could be explained by a single-gene 
mutation, CARD11 has been identified in GWAS studies of com-
mon atopic dermatitis (48).

While numerous patients with defects in nearly every NFkB 
subunit have been identified, atopy has not been reported to be 
associated with any of them. The lack of atopy argues that defects 
in another pathway in which CARD11 is involved might explain 
the allergic disease these patients have. Recent evidence suggests 
that CARD11 may also participate in mTORC1 activation (42) 
by recruiting, upregulating, and/or activating of the glutamine 
transporter ASCT2, which in turn leads to increased intracellular 
glutamine needed for mTORC1 activation. ASCT2−/− mice have 
a Th2 phenotype (49), potentially due to inadequate glutamine 
transport, which may be required for normal Th1 differentia-
tion and the prevention of excessive Th2 differentiation (50, 51). 
The CARD11DN patients have evidence of impaired mTORC1 
activation and reduced Th1 cytokine production, rescuable by 
exogenous glutamine (39), raising the possibility that glutamine 
supplementation could be of clinical benefit in these patients. Of 
note, glutamine supplementation of premature infants is associated 
with protection from the development of atopic dermatitis (52, 53).

MUTATiONS iN GeNeS eNCODiNG ACTiN 
CYTOSKeLeTON PROTeiNS

Following TCR ligation, Wiskott–Aldrich syndrome protein 
(WASP) dissociates from its stabilizing partner WASP-interacting 
protein (WIP) and binds actin-related protein (ARP) 2/3 (54) to 
begin the actin assembly cascade.

Loss of WASP leads to Wiskott–Aldrich syndrome, which is 
characterized by severe atopic dermatitis, increased gut sensitiza-
tion and clinical food allergy, thrombocytopenia, and combined 
immunodeficiency (55, 56). A similar phenotype occurs with loss 
of WASP-interacting protein family member 1 (WIPF1) encoding 
WIP (57) as well as an ARP2/3 subunit, actin-related protein 2/3 
complex subunit 1B (ARPC1B) (58–60).

WASP-interacting protein also appears to associate with 
dedicator of cytokinesis 8 (DOCK8) a guanine nucleotide 
exchange factor whose activity is critical for normal WASP 
function (61). Loss of function in DOCK8 leads to significant 
elevations in IgE, combined immunodeficiency, and other many 
clinical features in common with WAS, including severe atopic 
dermatitis and food allergy, and even autoimmunity (62, 63). 
Thrombocytopenia is not seen in DOCK8 deficiency, while 
severe viral skin infections and anaphylaxis are not as common 
in WAS, potentially due to differences in redundancy, function, 
and tissue expression (56, 64, 65).

Once again, we know less about why Th2 phenotypes emerge 
from these actin cytoskeleton-related mutations. DOCK8 patient 
lymphocytes have a T cell-intrinsic bias toward Th2, and away 
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from Th1 differentiation (66), and WASP transcriptional activity 
appears to be critical for Th1 differentiation (67, 68). Another 
possible mechanism suggests these proteins have critical roles 
in Treg function, potentially via IL-2 activity, the impairment of 
which therefore would lead to immune dysregulation of all types, 
including Th2 (56, 69–73).

On this point, it is important to note that Treg failure is always 
a consideration when trying to understand how impaired TCR 
signaling could lead to Th2 phenotypes, since an ideal TCR signal 
is necessary for normal Treg development, differentiation, and 
function (74). While CARD11DN patient Tregs appeared quan-
titatively and qualitatively normal, the mouse model suggested 
otherwise (26). It is further noteworthy that while the mechanism 
of weak TCR signal failing to curtail STAT5b activity has not 
yet been studied in the human TCR signaling defects, gain-of-
function missense mutations in STAT5b, and JAK1—which 
activates STAT5b—are associated with syndromes characterized 
by profound early onset dermatitis and eosinophilia (75, 76). That 
said, while STAT5bGOF mutations lead to a Th2 phenotype, so 
too can STAT5bLOF mutations, which are associated with severe 
Treg impairment (77). While in humans it is difficult to tease 
apart the relative contributions of effector T cell intrinsic predis-
position toward Th2 responses and responsiveness to extrinsic 
regulation from the number and function of Tregs themselves, it 
is still important to study both in the context of human diseases 
of impaired TCR signaling.

CONCLUSiON

A great deal remains unknown or unproven with respect to the 
direct role for TCR signaling defects and/or weak TCR signaling 

in human allergic disease. The limitations which exist when 
studying human T helper differentiation make it harded to 
directly demonstrate causality. However, the preponderance of 
evidence coupling mouse and human in vitro studies with ex vivo 
human studies suggests disruption of a number of TCR signaling 
pathways could well lead to a Th2 phenotype which in turn drives 
an organismal atopic disease. Apart from the mechanistic insight 
this provides, how such knowledge could be translated into 
positive therapeutic manipulation remains a question. Balancing 
the therapeutic manipulation with risk and cost is of course key. 
While indeed targeting Th2 cytokines has been quite successful 
in the clinic, the use of such medications is still in its early phases, 
and they are extremely expensive. Of course, depending on the 
severity of disease, bone marrow transplant can be an option, 
and in theory so could gene therapy and/or gene editing. Other 
interventions meant to strengthen TCR signaling always run the 
risk of leaning toward aberrant autoreactivity as well. The ulti-
mate consequences of these balances and their perturbation will 
be gleaned from continued mechanistic research into the precise 
mechanisms by which the Th2 phenotypic program emerges 
when TCR signaling is impaired.
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