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Abstract: The selection of a solvent or solvent system and the ensuing polymer–solvent interactions
are crucial factors affecting the preparation of fibers with multiple morphologies. A range of
poly(methylmethacrylate) fibers were prepared by pressurised gyration using acetone, chloroform,
N,N-dimethylformamide (DMF), ethyl acetate and dichloromethane as solvents. It was found that
microscale fibers with surface nanopores were formed when using chloroform, ethyl acetate and
dichloromethane and poreless fibers were formed when using acetone and DMF as the solvent. These
observations are explained on the basis of the physical properties of the solvents and mechanisms
of pore formation. The formation of porous fibers is caused by many solvent properties such as
volatility, solubility parameters, vapour pressure and surface tension. Cross-sectional images show
that the nanopores are only on the surface of the fibers and they were not inter-connected. Further,
the results show that fibers with desired nanopores (40–400 nm) can be prepared by carefully selecting
the solvent and applied pressure in the gyration process.
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1. Introduction

Ultra-thin fibers have been generated by using various fabricating techniques such as self-assembly,
phase separation, drawing, template synthesis, electrospinning [1–4] and pressurised gyration [5–8].
Among these state-of-the-art techniques, more recently discovered pressurised gyration has attracted
much attention due to higher production rate and low cost. Since 2013, this technique is widely
used to prepare nano- to micro-scale fibers for various applications such as drug delivery [9] and
biopharmaceutical applications [8,10]. The pressurised gyration method utilises both centrifugal
spinning and solution blowing simultaneously [5].

The basic gyration set-up consists of a rotary aluminum vessel, which contains a series of pin-hole
type orifices along its circumference, a high-pressure gas supply, a DC motor and a speed controller.
The top of the rotary vessel is connected to a high-pressure gas supply that is capable of producing
pressures up to 3 × 105 Pa, and the bottom is connected to a DC motor—which is used to rotate
the vessel. The polymer solution is placed in the gyration vessel. The centrifugal force created due to
high-speed rotation together with the high-pressure gas supply consequently results in fibers extruding
through the orifices of the gyration vessel. The polymer jet travels through air during which the solvent
evaporates and solid fibers are deposited on the collector. Previous work on pressurised gyration
shows that fiber diameter and morphology can be changed by varying the polymer concentration,
rotational speed of the vessel and the working pressure [5,7,11]. Recent studies of polymer-protein
solutions have also shown that pressurised gyration is capable of generating microbubbles rather than
fibers by controlling the rotational speed and applied pressure within a certain range [9].
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Polymer–solvent interactions determine the properties of the spinning solution [12]. When a polymer
is highly soluble in a solvent, it will form strong polymer–solvent interactions where the polymer
chains swell and expand to maximise the intermolecular interactions and when a polymer is less
soluble the polymer chains contract and stay closer to each other to minimise the polymer–solvent
interactions [6,13]. It is well known that the spinning solution parameters strongly depend on
the polymer and solvent used to dissolve the polymer. Therefore, the properties of the solvent such
as boiling point, surface tension, vapour pressure and the solution parameters show a profound
effect on fiber morphology. The effect of solvents on electrospun nanofibers were reported by
various researchers using different polymers such as poly(methylmethacrylate) (PMMA) [14–16],
zein [17], polystyrene [18], poly(ε-caprolactone) [4,16] and cellulose acetate [19]. These reports
have showed that fibers with hierarchical structures can be obtained when using solvents with
higher vapour pressure [20]. It is a well-known phenomenon that a volatile solvent plays a pivotal
role in the generation of fibers with different surface morphologies such as porous, wrinkled and
smooth [1,14,21]. Even though the formation of these hierarchical structures is not fully understood,
phase separation and breath figure approach can be used to explain the formation of these structures.
Fibers with hierarchical secondary structures have advantages compared to fibers with smooth surfaces
such as higher surface-area-to-volume ratio, super-hydrophobicity or super-hydrophilicity, high rate
of adsorption, low density and high surface volume and fibers with these characteristics can be used
in various areas such as drug delivery, tissue engineering and electronics [22–24].

PMMA is an amorphous, transparent thermoplastic polymer widely used in biomedical applications
such as bone implants [25,26], prosthetics [27], dentistry [28–30], drug delivery [31], cosmetic surgeries
and as intraocular lenses [32] implanted after cataract surgery. PMMA was selected as the model
polymer for this study due to its high solubility in a wide range of solvents. Hierarchical structures
of PMMA were prepared by several researchers [33,34] using electrospinning as the fiber-making
technique. However, such a study has not been performed using pressurised gyration and, in this
work, we are reporting the formation of hierarchical structures of PMMA using this forming route.

2. Experimental Details

2.1. Materials

Poly(methylmethacrylate) of molecular weight 120,000 g/mol, chloroform, acetone,
N,N-dimethylformamide (DMF), ethyl acetate and dichloromethane (DCM) were obtained
from Sigma-Aldrich (Gillingham, UK). All reagents were analytical grade and were used as received.

2.2. Preparation of Spinning Solutions

A series of 20 wt % PMMA solutions were prepared by dissolving PMMA in chloroform, acetone,
N,N-dimethylformamide (DMF), ethyl acetate and dichloromethane (DCM). All the polymer solutions
were magnetically stirred for 24 h to obtain homogeneous solutions.

2.3. Pressurised Gyration

Figure 1 shows the experimental set-up of the pressurised gyration process. The rotary aluminum
cylindrical vessel (∼60 mm in diameter and ∼35 mm in height) contains 24 orifices on its face,
each having a diameter of 0.5 mm; 6 mL of the polymer solution was placed in the vessel and
spun at 36,000 rpm using 0.1 MPa working pressure. Polymer solutions made using chloroform,
DCM and ethyl acetate were spun at 0, 0.2, 0.3 MPa to obtain fiber samples under different working
pressures. PMMA fibers were collected using a rod-collector placed 100 mm away from the vessel.
All the spinning experiments were carried out under ambient conditions (25 ± 2 ◦C and relative
humidity 47% ± 3%).
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Figure 1. Experimental set-up of the pressurised gyration rig used in this work. 

2.4. Fiber Characterisation 

Scanning Electron Microscopy (SEM) 

The fiber morphology was assessed using SEM (Quanta 200 FEG ESEM, FEI, Hillsborough, OR, 
USA and JEOL JSM-6301F, Peabody, MA, USA). Prior to imaging, the samples were coated with 20 
nm of gold under argon using a Quorum Q150T Turbo-Pumped Sputter Coater. All SEM images were 
captured at an acceleration voltage of 5 kV. The average fiber diameter and average pore diameter 
was determined by measuring diameters and pores at over 50 points in the SEM images using the 
ImageJ software (National Institute of Health, Bethesda, MD, USA).  

3. Results and Discussion 

Evaluation of Microstructure of PMMA Fibers 

The selection of an appropriate solvent or solvent system to prepare polymer solutions based on 
the solubility parameters between the polymer and solvent/solvent system is a crucial step in any 
fiber forming process. The solvent with the highest solubility is not always the best solvent for the 
production of fibers as the solvents physical parameters, such as surface tension, viscosity, vapour 
pressure and boiling point affect the spinning process [18]. The Flory–Huggins interaction parameter- 
chi(χ12) [35] gives a measure of the interaction of the polymer chains with the solvent molecules as 
well as the polymer–polymer interaction. The χ12 parameter for polymer solutions was calculated 
from the equation given below [36]. 

χ12 = (δp − δs)2 × (Vmol/RT) 1) (1) 

In here, subscripts s and p denote solvent and polymer, respectively. δ and Vmol are the solubility 
parameter and the molecular volume, respectively, of the solvent at temperature T (298 K). R is a 
universal gas constant. In general, solvents with χ12 between 0 and 0.5 are considered as good solvents 
and the solvents with χ12 > 0.5 are considered as poor solvents[37]. The calculated χ12 values for each 
solvent are listed in Table 1. It is found that χ12 for acetone, chloroform, DCM and DMF is <0.5, hence 
these can be classified as good solvents for PMMA. In these solvents, PMMA chains overlap less and 

Figure 1. Experimental set-up of the pressurised gyration rig used in this work.

2.4. Fiber Characterisation

Scanning Electron Microscopy (SEM)

The fiber morphology was assessed using SEM (Quanta 200 FEG ESEM, FEI, Hillsborough, OR,
USA and JEOL JSM-6301F, Peabody, MA, USA). Prior to imaging, the samples were coated with 20 nm
of gold under argon using a Quorum Q150T Turbo-Pumped Sputter Coater. All SEM images were
captured at an acceleration voltage of 5 kV. The average fiber diameter and average pore diameter was
determined by measuring diameters and pores at over 50 points in the SEM images using the ImageJ
software (National Institute of Health, Bethesda, MD, USA).

3. Results and Discussion

Evaluation of Microstructure of PMMA Fibers

The selection of an appropriate solvent or solvent system to prepare polymer solutions based
on the solubility parameters between the polymer and solvent/solvent system is a crucial step in
any fiber forming process. The solvent with the highest solubility is not always the best solvent for
the production of fibers as the solvents physical parameters, such as surface tension, viscosity, vapour
pressure and boiling point affect the spinning process [18]. The Flory–Huggins interaction parameter-
chi(χ12) [35] gives a measure of the interaction of the polymer chains with the solvent molecules as
well as the polymer–polymer interaction. The χ12 parameter for polymer solutions was calculated
from the equation given below [36].

χ12 = (δp − δs)2 × (Vmol/RT) (1)

In here, subscripts s and p denote solvent and polymer, respectively. δ and Vmol are the solubility
parameter and the molecular volume, respectively, of the solvent at temperature T (298 K). R is
a universal gas constant. In general, solvents with χ12 between 0 and 0.5 are considered as good
solvents and the solvents with χ12 > 0.5 are considered as poor solvents [37]. The calculated χ12 values
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for each solvent are listed in Table 1. It is found that χ12 for acetone, chloroform, DCM and DMF is <0.5,
hence these can be classified as good solvents for PMMA. In these solvents, PMMA chains overlap less
and there is a greater interaction with the polymer–solvent molecules. The above equation does not
account for secondary forces such as polar/non-polar interaction and hydrogen bonding. Therefore,
there are exceptions; the calculated χ12 for ethyl acetate is 0.64, even though ethyl acetate has this high
χ12 value it was able to dissolve PMMA due to its high polarity and greater ability to make hydrogen
bonds with PMMA chains.

Furthermore, the degree of affinities between polymer and solvent can be expressed by
the solubility parameter distance Ra. Values of Ra for the solvents used in this study were calculated
using Hansen solubility parameters for each solvent using Equation (2) [38] and these are listed in
Table 1.

Ra = [4(δd2 − δd1)2 + (δp2 − δp1) 2 + (δh2 − δh1)2]1/2 (2)

Here, δd, δp, and δh are the solubility parameters representing the dispersion, polar and hydrogen
bonding contributions, respectively. Subscripts 1 and 2 represent the solubility parameters for polymer
and solvent, respectively. The calculated values Ra show that Acetone (Ra = 3.72) and DMF (Ra = 3.99)
show higher affinity to PMMA compare to other solvents. This may be one of the factors that cause
non-porous fibers with these solvents.

Table 1. Physical properties of PMMA and solution parameters of solvents used in this study. δ and χ
values were obtained from reference [36].

PMMA Chloroform Acetone DMF Ethyl Acetate DCM

Molecular Volume (cm3·mol−1) - 79.70 73.52 76.95 98.50 63.90
Vapour pressure (mm/Hg) - 160 184 2.70 73 353

Vapour density (vs.·air) - 4.1 2 2.5 3 2.9
Boiling point (◦C) - 61 56 153 77 40
δD (J·cm3)1/2 17.00 17.80 15.50 17.40 15.80 18.20
δP (J·cm3)1/2 5.80 3.10 10.40 13.70 5.30 6.30
δh (J·cm3)1/2 9.20 5.70 7.00 11.30 7.20 6.10
δ (J·cm3)1/2 22.20 18.95 19.93 24.86 18.20 20.20

χ12 - 0.34 0.15 0.22 0.64 0.10
Ra - 8.25 3.72 3.99 5.98 5.67

Figures 2–4 show the low- and high-magnification images of the fibers obtained from various
solvents. Samples prepared from chloroform, DCM and ethyl acetate exhibit surface pores while samples
from acetone and DMF did not show any surface pores. The cross-sectional images of the samples
are shown in Figure 5 and indicate that the pores are only a surface feature. In previous literature,
the formation of hierarchical structures from different solvents was mainly attributed to the volatility
of solvent, phase separation and due to breath figures [1,4]. These researchers paid less attention
to the solubility of polymer in each solvent. The formation of breath figures is a very complicated
process and there is no common mechanism to explain all experimental results [39]. When highly
volatile solvents such as chloroform, ethyl acetate and DCM start to evaporate, the temperature at
the air–liquid interface will decrease rapidly due to the enthalpy of vaporization. It was reported
that the temperature of a chloroform solution can fall between 0 to −6 ◦C during evaporation [40].
This temperature drop significantly lowers the dew point of the atmosphere; thus, water vapour can
condense on the surface of the fiber at random positions. These water droplets then sink in to the fiber
core or cause indentations on the surfaces. When water droplets evaporate from the fibers, their imprints
remain as pores on the fibers [41,42]. Pores are only on the surface because chloroform, ethyl acetate
and DCM are immiscible with water and this limits the penetration of these water droplets to the fiber
core. Also, the rate of solvent evaporation on the surface of the polymer jet and the solvent diffusion
from the core of the jet to the surface of the polymer jet determines the final structure of the fiber.
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pressure, respectively; (E0–E3) fibers made using ethyl acetate 0, 0.1, 0.2, 0.3 MPa working pressure, 
respectively. 
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Figure 5. Scanning electron microscope images of cross sections of PMMA fibers: chloroform (a,a1);
dichloromethane (DCM) (b,b1); ethyl acetate (c,c1).

The measured fiber diameters of the fabricated fibers are listed in Table 2. The fiber diameter
data show that the smallest microfibers (1 ± 0.4 µm) were obtained when using DMF as solvent and
the largest microfibers (11 ± 3 µm) were obtained when using acetone as solvent. Like our previous
work with PEO/water system [5], the fiber diameter did not significantly decrease with increase of
applied pressure in the PMMA/solvent systems. This is likely to be caused by the highly volatile
solvents used in this study. Therefore, increased air flow caused by increase in applied pressure seems
not to appreciably increase polymer jet elongation, resulting in fibers with roughly similar diameters.
The PMMA fibers obtained from DMF show smooth surfaces (Figure 3). DMF has less volatility
compared to other solvents; therefore, DMF evaporation from the surface is slower than the DMF
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diffusion from the core. This allows the formation of cylindrical fibers. DMF and water vapour are
miscible. Therefore, the water vapour formed due to DMF evaporation can diffuse into the polymer jet
rather than deposit on the polymer jet, resulting in fibers with a smooth surface. However, it should
be noted well that recent work done by Kuroda et al. [43] described the formation of surface pores
on a hyperbranched polystyrene film when using tetrahydrofuran as the solvent which is highly
miscible with water. If the solvent evaporation on the surface is faster than solvent diffusion from
the core, it will result in flat fibers with ribbon-like cross-sections [12]. This was observed when using
acetone as the solvent, resulting in fibers with larger diameter. Acetone volatility is relatively similar
to chloroform, ethyl acetate and DCM. However, these fibers were not porous (Figure 3). From this
observation it can be concluded that formation of porous fibers is not purely based on solvent volatility.
When considering acetone–PMMA, DMF–PMMA interaction, χ12 values are 0.15 and 0.22, respectively,
which are relatively similar to chloroform and DCM. This suggests that formation of pores is not purely
due to polymer–solvent interaction. The δP values for acetone (10.4) and DMF (13.7) are significantly
high compared to chloroform (3.1), DCM (6.3) and ethyl acetate (5.3). This may be the reason for
obtaining fibers with smooth surfaces.

Table 2. Measured fiber diameter of the fabricated fibers.

Pressure (MPa)
Fiber Diameter (µm)

Chloroform Dichloromethane Ethyl Acetate DMF Acetone

0 2.9 ± 2.5 5.5 ± 2.2 4.5 ± 2.3 - -
0.1 3.3 ± 1.2 4.3 ± 2.1 5.1 ± 1.1 1 ± 0.4 11 ± 3
0.2 2.9 ± 1.5 3.9 ± 1.6 4.8 ± 2.3 - -
0.3 2.8 ± 1.8 3.7 ± 1.9 4.7 ± 2.8 - -

It was observed from SEM images (C0, D0, E0) that fibers prepared without applied pressure
(0 MPa) have rough/non-uniform surfaces compared to fibers formed with applied pressure. This is
possibly due to the different rate of solvent evaporation in the absence of the working pressure. Further,
it was observed that when the applied pressure increases from 0.1 to 0.3 MPa, the fiber diameter was
slightly reduced for all three solvents (Table 2). This is because higher working pressure promotes
polymer jet elongation thereby reducing fiber diameter. A similar trend was observed with other
polymers such as poly(ethylene oxide) [5] and Nylon [44].

The pore diameters of the fabricated fibers are shown in Table 3. A clear trend between the applied
pressure and pore diameter cannot be established from the experimental observations. The formation
of surface pores is a complex process as described in pervious literature [4,41]. The temperature change
on the surface of the polymer jet during solvent evaporation plays a key role in the formation of
these nanopores [4]. Therefore, varying the applied pressure during gyration alters the rate of solvent
evaporation and, consequently, the temperature of the surface of the fiber jet. However, presented
data clearly shows that fibers with desired nanopores (ranging from 40 to 400 nm) can be fabricated
by carefully selecting the solvent and applied working pressure. Formation of nanopores and their
size cannot be effectively controlled during electrospinning by varying processing parameters such as
applied voltage, flow rate or collection distance. This is a unique advantage of our process compared
to electrospinning and other porous structure-making techniques.

The nanopores on the fibers formed using chloroform were elliptical in shape and their longer
dimension is oriented with the fiber axis, while the pores in fibers from DCM and ethyl acetate were
more spherical (Figure 4). Formation of porous electrospun PMMA fibers were previously reported
when using chloroform, DCM and ethyl acetate as the solvent [14,16]. These observations cannot
directly compare with gyrospun fibers as the surface of the polymer jet in gyration is charge-free
compared to the polymer jet in electrospinning. The electrical charge in the electrospun jet slows
down solvent evaporation from the jet and thereby retards phase separation [16]. Furthermore,
fibers formed using ethyl acetate showed bead-on string morphology. Such structures are formed
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when the concentration of polymer in solution is either low or high compared to critical spinning
concentration [45]. When considering χ12 values, the highest value is obtained for ethyl acetate, which
is 0.64, indicating that ethyl acetate interacts less with PMMA, thereby resulting in beaded fibers.

Table 3. Measured pore size of the fabricated fibers.

Pressure (MPa)
Pore Size (nm)

Chloroform Dichloromethane Ethyl Acetate

0 54 ± 12 42 ± 12 121 ± 23
0.1 126 ± 18 126 ± 33 199 ± 54
0.2 109 ± 20 104 ± 43 400 ± 80
0.3 44 ± 10 220 ± 180 124 ± 23

4. Conclusions

In this study, we examined the formation of different hierarchical structures of PMMA by varying
the solvent. It was clearly evident from the interaction and solubility parameters that each solvent
behaves differently with respect to PMMA. The swelling of PMMA chains and their chain engagement
can be predicted and shows that polymer–solvent interactions vary from solvent to solvent and these
interactions play a major role in formation of the hierarchical structures. This study uncovered that by
selecting appropriate solvent and applied pressure, it is possible to fabricate microfibers of PMMA
with various surface morphologies using pressurised gyration. The creation of microfibers of PMMA
with nanopores on the surface is a distinctive outcome.
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