Journal of Pharmaceutical Analysis 13 (2023) 1388—1407

Contents lists available at ScienceDirect sournalof )
Pharmaceutical
Analysis

Journal of Pharmaceutical Analysis

journal homepage: www.elsevier.com/locate/jpa i

Review paper

Recent trends of machine learning applied to multi-source data of N
medicinal plants ot
Yanying Zhang *°, Yuanzhong Wang *

2 Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
b College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China

ARTICLE INFO ABSTRACT

Article history:

Received 27 April 2023
Received in revised form

17 July 2023

Accepted 19 July 2023
Available online 25 July 2023

In traditional medicine and ethnomedicine, medicinal plants have long been recognized as the basis for
materials in therapeutic applications worldwide. In particular, the remarkable curative effect of tradi-
tional Chinese medicine during corona virus disease 2019 (COVID-19) pandemic has attracted extensive
attention globally. Medicinal plants have, therefore, become increasingly popular among the public.
However, with increasing demand for and profit with medicinal plants, commercial fraudulent events
such as adulteration or counterfeits sometimes occur, which poses a serious threat to the clinical out-
comes and interests of consumers. With rapid advances in artificial intelligence, machine learning can be
used to mine information on various medicinal plants to establish an ideal resource database. We herein
present a review that mainly introduces common machine learning algorithms and discusses their
application in multi-source data analysis of medicinal plants. The combination of machine learning al-
gorithms and multi-source data analysis facilitates a comprehensive analysis and aids in the effective
evaluation of the quality of medicinal plants. The findings of this review provide new possibilities for
promoting the development and utilization of medicinal plants.
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1. Introduction

Medicinal plants, which provide raw materials for the prepa-
ration of medicinal products of economical and medicinal value,
have gained prominence and provide an increasing number of
benefits to humans [1]. According to available statistics, medicinal
plants have gradually gained more attention in recent years and the
utilization rate of medicinal plants in developing countries is as
high as 80%, while the market share in developed western countries
such as Europe is also gradually increasing [2—4]. The business
territory of medicinal plants is restricted to developing countries,
but it is being progressively expanded to developed western
countries. People are placing a greater emphasis on medical care,
which has led to an increasing the demand for medicinal plants.
Although millions of people worldwide are engaged in the culti-
vation, processing, and wild harvest of medicinal plants, the
number of medicinal plants available still cannot efficiently satisfy
the high demand [4]. Some species are obtained at lower yields
owing to their strict requirements in terms of the growth
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environment and long duration for development. For unscrupulous
people, commercial fraudulent events such as adulteration and
counterfeits in medicinal plant business are commonplace to
obtain greater profits, mainly because of the increasing demand for
and profit with medicinal plants, which is one of the factors
affecting the quality of medicinal plants. However, the growth of
medicinal plants is affected by various environmental factors, such
as soil, climate, terrain, and so on, resulting in large variations in
active ingredients in the same medicinal plant [5,6]. Therefore, to
maintain consistency in the chemical ingredients and to ensure
drug efficacy, exploring and evaluating the quality of medicinal
plants has become vital. The curative effects of medicinal plants are
attributed to the active ingredients, ineffective components, toxic
substances, and complex interactions [7]. The evaluation indexes of
medicinal plants tend to be a multi-component aspect, but a single
analytical technique cannot fully characterize the active ingredients
of medicinal plants, which makes it difficult to perform quality
evaluation [8].

With advances in modern analytical strategies, multi-source
data analysis has shown more advantages for performing a
comprehensive evaluation of the quality of medicinal plants [9].
The properties of medicinal plants determine the extent of
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advantages in utilizing multi-source data to elucidate changes in
chemical information [10]. This is because multi-source data con-
sists of collaborative information, which provides beneficial infor-
mation for a better understanding or characterizing the quality of
medicinal plants. Although the multi-source data strategy has been
most recently used in studies of medicinal plants, the increase in
data dimensions and quantity also causes analytical issues [11]. As a
common approach to processing multi-source data, data fusion
strategies offer valuable complementary information by integrating
data from multiple sources. This integration leads to enhanced
reliability, accuracy, and efficiency compared to relying on a single
data source [12]. To acquire this complementary information, it is
crucial to carefully select analytical instruments and possess a
sound understanding of chemical knowledge [13]. The multi-
source data of medicinal plants typically originates from various
techniques or medicinal parts, resulting in complex analysis chal-
lenges [14]. However, employing data pre-processing, feature
extraction techniques can simplify the data fusion process to a
certain extent. Moreover, leveraging machine learning to effectively
extract available information from multi-source data can signifi-
cantly improve the robustness and accuracy of the obtained results
[15].

The rapid development of artificial intelligence has played a
pivotal role in revolutionizing data processing and analysis. Ma-
chine learning, as a subset of artificial intelligence, relies on com-
puter algorithms and models to learn complex functions [16]. Over
time, it has evolved into a powerful tool for statistical data
modeling and mining. In the context of medicinal plants, the pro-
portions of chemical components are sensitive to external factors
and exhibit significant variations, which further complicates the
quality evaluation process [17]. Thus, the need for techniques to
prevent partial data loss has underscored the importance of
employing machine learning algorithms with multi-source data of
medicinal plants. Machine learning is recognized as a promising
tool that can enhance the overall performance of data fusion due to
its exceptional computing and analytical capabilities [18,19]. This
review provides a comprehensive overview of the process of
applying machine learning to multi-source data of medicinal plants
for quality evaluation (Fig. 1). The review framework encompasses
three essential modules. The first module summarizes the charac-
teristics and applicability of different techniques (Table 1). The
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Fig. 1. The complete process of quality evaluation of medicinal plants.
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second module introduces data processing methods, including pre-
processing, feature extraction, and data fusion strategies. The third
module provides a specific summary of the application of machine
learning in conjunction with multi-source data for the quality
evaluation of medicinal plants. Furthermore, the review also dis-
cusses the limitations and future development trends in this field.
By offering reference methods and improvement measures, this
review serves as a valuable resource for enhancing the quality
evaluation of medicinal plants.

2. Multi-source data of medicinal plants

Multi-source data for medicinal plants can be categorized into
two main types. The first type involves detecting the same part of
medicinal plants using different analytical techniques. The second
type involves detecting different parts of medicinal plants using the
same analytical technique. In the subsequent section, a brief
introduction is provided for these two types of multi-source data.

2.1. Different detection techniques

2.1.1. Spectroscopy and spectrometry

With the continuous innovation and advancement of tech-
niques, numerous spectroscopy and spectrometry methods have
emerged. These methods, including ultraviolet-visible (UV-Vis),
infrared, Raman spectroscopy, and nuclear magnetic resonance
(NMR), play a crucial role in the quality assessment of medicinal
plants. They are widely utilized as qualitative tools to obtain diverse
chemical information from medicinal plants.

UV-Vis primarily focuses on analyzing chemical components or
groups in medicinal plants that exhibit a tendency to absorb UV-Vis
radiation [20]. This technique enables the identification and char-
acterization of compounds. Infrared spectroscopy, operating within
a wavelength range of 780—100000 nm, is an important non-
invasive and rapid analysis technique [21]. Near-infrared (NIR)
spectroscopy and mid-infrared (MIR) spectroscopy, subsets of
infrared spectroscopy, provide spectral information about func-
tional groups such as C—H and O—H in medicinal plant components
by absorbing incident light energy at different frequency bands
[22]. NIR primarily characterizes high-frequency combinations and
complex overtones of hydrogen-containing groups, while MIR of-
fers insights into the vibrational forms of organic compound mol-
ecules [23]. The development of the Fourier transform (FT)
techniques has overcome the limitations of NIR and MIR, signifi-
cantly improving the signal-to-noise ratio [24,25]. Raman spec-
troscopy, another widely used vibrational spectroscopic technique,
captures information about nonpolar covalent bonds like C=C in
medicinal plant components by including vibrational and rota-
tional changes with a laser beam [26]. NMR spectroscopy, on the
other hand, detects and quantifies chemical mixtures based on the
interaction between the magnetic moments and magnetic fields of
different atomic nuclei [27]. The introduction of chemical imaging
techniques enables the simultaneous acquisition of spatial and
spectral information regarding the chemical components of me-
dicinal plants. Hyperspectral imaging (HSI) creates hypercube im-
ages for each wavelength, enhancing the accuracy of distinguishing
medicinal plant components and providing detailed fingerprint
information [25,28].

Given the complex and diverse nature of the chemical compo-
nents in medicinal plants, it is essential to utilize qualitative tools
sensitive to different chemical characteristics in order to fully
identify their constituents. The limitations of relying on a single
data source highlight the significance of using multi-source data for
the evaluation of medicinal plant quality. Spectroscopy and spec-
trometry methods, serving as complementary sources, have
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analysis of medicinal plants

Low training complexity;
Not sensitive to outlier

Table 1
Application characteristics, advantages, and disadvantages of different techniques in quality evaluation of medicinal plants.
Types Techniques/  Application characteristics Advantages Disadvantages
algorithms
Spectroscopy and spectrometry  UV-Vis = Spectral region: 100—780 nm; = Rapid detection; = Poor selectivity;
= Mainly used in quantitative analysis = Simple operation; = Vulnerable to interference
of medicinal plants; = High sensitivity from multiple factors
= Less applied in qualitative analysis of
medicinal plants
NIR = Spectral region: 780—2500 nm; = Rapid detection; = Low sensitivity;
= The most frequently used quality = Simple operation; = Severe signal overlap
evaluation technique for medicinal = Non-destructive
plants and pollution-free
MIR = Spectral region: 2500—25000 nm; = High sensitivity; = Susceptible to moisture;
= Commonly used in qualitative = High selectivity = Slow detection speed
analysis of medicinal plants
FT-IR = Spectral region: 2500—25000 nm; = High sensitivity; = Tablet pressing is easily affected by
= Commonly used in qualitative = High resolution; moisture;
analysis of medicinal plants = High accuracy; = Long detection time
= Rich spectral information
Raman = Less applied in the quality evaluation = Not affected by moisture; = Susceptible to fluorescence
of medicinal plants = High sensitivity;
= Simple operation
NMR = Rarely used in the quality evaluation = Good reproducibility; = Severe signal overlap
of medicinal plants = No need for complex
preprocessing
HSI = A promising technique for = Simultaneously obtaining = Easy to generate
evaluating the quality of medicinal spectral and spatial redundant information;
plants information; = Time consuming
= Wide scanning wavelength
Chromatography HPLC = Commonly used for quality control = High separation efficiency; = High cost;
of medicinal plants = High sensitivity = Environmental pollution
UHPLC = Commonly used for quality control = Low solvent consumption; = Expensive equipment
of medicinal plants = Quick analysis speed
GC = Mainly used for the analysis of = High specificity; = Weak qualitative ability;
volatile or semi-volatile components = High sensitivity; = Reference substance required
in medicinal plants = Strong separation ability
Elemental analysis ICP-MS = Mainly used for element detection in = High sensitivity; = Complex sample preparation;
medicinal plants = Wide linear dynamic range = Environmental pollution
LIBS = Mainly used for element detection in = No sample preparation = Affected by matrix interference;
medicinal plants required; = Self-absorption effect
= Real time and fast;
= Low cost
Artificial sensing technique E-nose = More and more applications for = Quick analysis; = Difficult to quantify
quality evaluation of medicinal = Small sample size required;
plants
E-tongue = Quality evaluation of medicinal = Simple and fast; = Susceptible to humidity
plants mainly used in liquid form m Cross-sensitivity; and temperature
= Non-destructive and
pollution-free
(oY = More and more applications in the = Simple and fast; = Limited information obtained
classification of medicinal plants = Non-destructive and
pollution-free
Traditional machine learning PCA = Commonly used for exploratory m Less information loss; = Poor robustness;
analysis and feature extraction in = Simple operation; = Local optimal solution
quality evaluation of medicinal = Low computational cost
plants
t-SNE = Rarely used for exploratory analysis m Preserve local structure of = Time-consuming;
in quality evaluation of medicinal information; = Slow training speed
plants = Strong ability to visualize
high-dimensional data
HCA = Mainly used for exploratory analysis m Less restrictive factors; = Vulnerable to singular value;
in quality evaluation of medicinal m Easy to define proximity = Computational complexity
plants
PLS-DA m» The most commonly used methods = Eliminating noise; n Affected by the number of latent
in qualitative analysis of medicinal = Strong ability to solve high variables
plants multi-collinearity
SVM = Commonly used for qualitative = Strong robustness; = Difficulty in multi-classification;
analysis of medicinal plants = Avoiding dimensional = Training time consumption
disasters;
= Strong generalization ability
LDA m Less commonly used in qualitative m Capable of classification and m Risk of overfitting;
analysis of medicinal plants dimensionality reduction = Not suitable for non-Gaussian dis-
tribution data
k-NN m Less commonly used in qualitative = Simple concept; = High computational complexity;

Weak interpretability
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Table 1 (continued)
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Types Techniques/  Application characteristics Advantages Disadvantages
algorithms
RF = Commonly used for qualitative = Fast training speed; = Risk of overfitting;
analysis of medicinal plants = Excellent ability to handle = Vulnerable to noise interference
high-dimensional data;
= Strong robustness
ELM m Less commonly used in qualitative m Fast learning speed; = Vulnerable to outlier;
analysis of medicinal plants = Strong generalization ability = Risk of overfitting
SIMCA = Less commonly used in qualitative = Eliminating noise; = Vulnerable to outlier;
analysis of medicinal plants m Eliminating irrelevant m Lack of robustness
variables;
= Maximizing the retention of
complete information
PCR = Less commonly used in quantitative = Simple calculation; = Poor robustness;
analysis of medicinal plants m Effectively handle multi- = Poor interpretability
collinearity
PLSR =» The most commonly used methods = Strong interpretability; = Vulnerable to outlier;
in quantitative analysis of m High prediction accuracy; m Affected by sample distribution
medicinal plants m Effectively handle multi-
collinearity
MLR = Less commonly used in quantitative = Simple operation; = Vulnerable to outlier;
analysis of medicinal plants = Good predictive = Vulnerable to factors limitations
performance
SVR = Commonly used for quantitative = Minimizing total loss; = High computational cost;
analysis of medicinal plants m Effectively processing high- = Vulnerable to sample size influence
dimensional data
Deep learning ANN m Less commonly used in qualitative m Flexible and automatic m Lack of interpretability;
analysis of medicinal plants feature extraction; = Information loss
= Parallel distributed
processing;
= Robustness and fault
tolerance
CNN = Less commonly used in qualitative = Flexible and automatic = Lack of interpretability;
analysis of medicinal plants feature extraction; = Gradient disappearance
m Effectively avoid overfitting;
= Strong ability to handle
high-dimensional data
ResNet = Less commonly used in qualitative = Flexible and automatic m Lack of interpretability;

analysis of medicinal plants

Redundant information

feature extraction;
Protecting information
integrity;

Simplify learning objectives

UV-Vis: ultraviolet-visible; NIR: near-infrared; MIR: mid-infrared; FT-IR: Fourier transform infrared; NMR: nuclear magnetic resonance; HSI: hyperspectral imaging; HPLC:
high performance liquid chromatography; UHPLC: ultra-high performance liquid chromatography; GC: gas chromatography; ICP-MS: inductively coupled plasma-mass
spectrometry; LIBS: laser-induced breakdown spectroscopy; E-nose: electronic nose; E-tongue: electronic tongue; CV: computer vision; PCA: principal component anal-
ysis; t-SNE: t-distributed stochastic neighbor embedding; HCA: hierarchical clustering analysis; PLS-DA: partial least squares discriminant analysis; SVM: support vector
machine; LDA: linear discriminant analysis; k-NN: k-nearest neighbors; RF: random forest; ELM: extreme learning machine; SIMCA: soft independent modeling of class
analogy; PCR: principal component regression; PLSR: partial least squares regression; MLR: multivariate linear regression; SVR: support vector regression; ANN: artificial
neural networks; CNN: convolutional neural networks; ResNet: residual convolutional neural network.

become effective means of qualitative analysis. Complementary
sources should be combined based on data attributes, such as the
combination of Raman and NIR spectroscopy, which yields excel-
lent results.

2.1.2. Chromatography

The advantages and disadvantages of utilizing chromatography
for evaluating the quality of medicinal plants are undeniable. This
technique requires expensive equipment and time, and its
involvement in chemical applications contradicts the concept of
environmentally friendly practices. However, due to its powerful
separation abilities, chromatography has become the predominant
technique in the quantitative analysis of medicinal plants, with
even recently developed quantitative techniques unable to chal-
lenge its dominant position. This section provides a review of
commonly used chromatography methods for evaluating the
quality of medicinal plants.

Liquid chromatography (LC), particularly high performance
liquid chromatography (HPLC) and ultra-high performance liquid
chromatography (UHPLC), is the primary tool employed to deter-
mine the secondary metabolites of medicinal plants, thereby
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facilitating quality control [29]. The high precision and resolution of
these techniques make them crucial in quantitative analysis and
adulteration detection of medicinal plants [30]. However, LC has
limitations in terms of the types of compounds it can analyze, and
its detection range is determined by the polarity of the tested
substances [31]. Gas chromatography (GC), on the other hand, ex-
hibits robust analytical capabilities for volatile or semi-volatile
secondary metabolites in medicinal plants [32]. To further charac-
terize the chemical structure of complex mixtures, continuous
advancements and development of chromatographic devices are
inevitable trends [33]. Mass spectrometry (MS), a conventional
detection technique, enables the elucidation and quantification of
secondary metabolites in medicinal plants on a large scale by
providing MS" information and a wide dynamic linear range [29].
The integration of chromatography and MS offers a viable scientific
solution for the quality evaluation of medicinal plants, and this
hyphenated technique enhances analytical capabilities through
coupling, ensuring high accuracy and precision [33,34].
Chromatography serves as an advantageous platform for both
quantitative and qualitative analysis of medicinal plants. When
combined with spectroscopy as complementary analysis methods,
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chromatography has demonstrated exceptional outcomes in pre-
dicting the content of medicinal plants. However, for the long-term
development of chromatography, it is crucial to prioritize research
and development efforts toward environmentally friendly solvents.
Additionally, it should be noted that there is a lack of existing data
processing methods for chromatography, which hinders the
acquisition of excellent fingerprints. In future research, greater
attention should be given to the data processing and analysis of
chromatography to obtain more accurate results.

2.1.3. Elemental analysis

Trace elements, as one of the fundamental components of me-
dicinal plants, make significant contributions to various aspects
such as disease prevention, human growth and development, and
other aspects. The data on trace elements provide much available
information for evaluating the quality of medicinal plants,
including indications of pesticide or fertilizer usage [35]. Conse-
quently, elemental analysis holds great research significance in the
quality evaluation of medicinal plants. Inductively coupled plasma-
mass spectrometry (ICP-MS) occupies a prominent position in
elemental analysis [36]. However, it requires a complex sample
pretreatment process hampers its development due to the chal-
lenges of real-time detection [37]. In contrast, laser-induced
breakdown spectroscopy (LIBS) utilizes an ultra-strong laser
beam to generate plasma, enabling real-time elemental composi-
tion analysis of the sample [38]. LIBS offers a crucial advantage by
directly measuring elements in medicinal plants with high speed
and resolution under atmospheric conditions, eliminating the need
for time-consuming pre-processing [39]. Both ICP-MS and LIBS are
employed techniques for elemental analysis in medicinal plants.
Overall, elemental analysis has received limited attention in the
context of medicinal plants, and further research in this area is
warranted. However, it is crucial to recognize the importance of
multi-element monitoring as a standard for assessing the quality of
medicinal plants. Monitoring multiple elements is essential to
obtain a comprehensive understanding of the plant's quality.

2.14. Artificial sensing technique

The color, morphology, and flavor are important properties for
evaluating the quality of medicinal plants. Traditionally, sensory
evaluation and modern analytical techniques such as spectroscopy
and chromatography have been employed for this purpose. How-
ever, some of these methods exhibiting subjective differences are
time-consuming and costly, making real-time monitoring chal-
lenging in the market [40]. The emergence of artificial sensing
techniques has opened up new possibilities for the quality evalu-
ation of medicinal plants. Artificial sensing techniques such as
electronic nose (e-nose), electronic tongue (e-tongue), and com-
puter vision (CV) systems are commonly used to replace human
olfactory, gustatory, and visual senses in analyzing the sensory
properties of complex mixtures in medicinal plants.

In many studies, the combination of e-nose and e-tongue is
utilized as an analytical tool, especially for assessing the flavor in-
formation in medicinal plants. These sensor systems consist of a
sensor array, data processing units, and pattern recognition sys-
tems [41]. Although they share similar working principles, the
sensor arrays used in e-nose and e-tongue differ due to the distinct
objects being studied. The e-nose employs gas sensor arrays to
identify volatile or semi-volatile components in medicinal plants
inspired by the human olfactory nervous system [42,43]. Metal
oxide sensors are widely used in e-nose as a key component of the
gas sensor array [44]. On the other hand, the e-tongue employs
liquid sensor arrays driven by different measurement principles,
such as optics and electrochemistry, to analyze specific chemical
components by generating electrical signals [45]. Among the
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measurement methods, the electrochemical approach takes the
lead in the analysis of liquid substances [46]. Both e-nose and e-
tongue employ data processing units to mitigate the impact of
environmental factors on sensors, while the pattern recognition
systems recognize sets of response outputs from sensor arrays and
determine their categorical attributes [47]. CV is a rapidly devel-
oping electronic sensor technique that accurately describes the
color, size, and surface structure of medicinal plants by capturing,
processing, and analyzing images [48]. Proper illumination plays a
crucial role in obtaining high-quality images, as a good light source
effectively reduces interference factors such as reflections,
shadows, and noise, thus reducing the workload of image pro-
cessing [49]. However, the CV system has limitations, as it can only
obtain chemical composition information of medicinal plants at
specific spectral wavelengths, making it challenging to obtain
additional information [50].

The highly complex chemical composition of medicinal plants
necessitates the integration of multiple artificial sensing techniques
for comprehensive evaluation. Combining multiple artificial sensor
techniques has become a popular trend in the quality evaluation of
medicinal plants. While the above-mentioned three artificial
sensing techniques are excellent qualitative tools, achieving accu-
rate quantification remains a challenge. Ongoing research in arti-
ficial sensing techniques is necessary for further improvement and
refinement.

2.2. Different medicinal parts

As is well known, the clinical efficacy of traditional Chinese
medicine results from its synergistic effect of multi-component,
multi-target, and multi-channel. The quality of medicinal plants,
as the material foundation of traditional Chinese medicine, signif-
icantly influences their safety. Holistic quality evaluation of me-
dicinal plants primarily focuses on analyzing the chemical
information of the same medicinal part using various analytical
techniques. Previous studies have demonstrated that the accumu-
lation and distribution of secondary metabolites in medicinal
plants vary across different medicinal parts [51,52]. The environ-
ment plays a crucial role in regulating the chemical composition
content of medicinal plants, and different medicinal parts exhibit
distinct responses to the environment, as well as internal and
external influences that contribute to these variations [53]. How-
ever, the evaluation of medicinal plants using chemical information
from different medicinal parts as multi-source data is rare and
often overlooked in existing research. The chemical information
from different medicinal parts can provide robust support for the
comprehensive evaluation of medicinal plant quality and better
reflect their response and adaptability to the environment [54].

3. Data processing for multi-source data

Data processing forms the core component of multi-source data
analysis. The volume of information in multi-source data is enor-
mous. Data processing methods can eliminate redundant infor-
mation, extract key variables, and greatly accelerate the analysis
process. Therefore, it is considered an effective measure to improve
the results and predictive performance of the model.

3.1. Data pre-processing

Various data pre-processing methods are available for multi-
source data obtained from different techniques. In the case of
spectral data, one key challenge is dealing with artifacts, including
baseline offset, noise, and multiplicative effects. There are various
methods for baseline correction, such as data-driven and coarse to
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fine baseline correction scheme based on empirical mode decom-
position, adaptive iteratively reweighted penalized least squares
(airPLS), and other algorithms can effectively handle baseline drift
introduced by spectroscopy, MS, chromatography, and other
multivariate analysis techniques. This drift can otherwise blur the
signal and lead to undesirable results [15,55—57]. Baseline correc-
tion produces sharper and more accurate outcomes. Standard
normal variate (SNV) and multiplicative scatter correction (MSC)
are powerful means to reduce the influence of scattering effects,
solid particle size, and optical path variation in spectral data [58].
Normalization is primarily used to scale multi-source data pro-
portionally, aligning them to the same range and interval. This
normalization process is beneficial for reducing the impact of dis-
tribution differences, scales, and features on data fusion or
modeling results. Orthogonal signal correction (OSC) demonstrates
satisfactory performance in improving the model's prediction
ability and simplifying the analysis process. OSC can filter out
spectral changes that are orthogonal and uncorrelated with the
response variables to a certain extent [15]. Derivative combined
with Savitzky-Golay (S-G) smoothing, as a pre-processing method
for spectral data, enhances spectral resolution and sensitivity
without introducing additional noise, while preserving valuable
signal characteristics such as height, width, and shape [15,59].
Finding the optimal pre-processing method typically involves using
a trial and error approach to explore all available options, which can
be time-consuming [60]. However, the emergence of ensemble pre-
processing methods provides a fast and effective solution for
determining the best approach. The main advantage of ensemble
pre-processing is its ability to eliminate artifacts by combining
multiple pre-processing methods, as opposed to using a single
method [61]. A design of experiments (DOE)-based approach
evaluates the performance of corresponding models based on the
order in which pre-processing strategies are applied, enabling the
identification of the optimal combination of pre-processing [62].
With the growing recognition of complementary information,
multi-block analysis based on sequential methods is gaining
popularity. For example, sequential pre-processing through
orthogonalization (SPORT) can sequentially extract different pre-
processed information from various blocks, thus, elucidating the
maximum variability of the response variables [63].

Data pre-processing plays a crucial role in chromatographic
analysis as well. The complex signals present in chromatographic
data, along with standard baseline drift and small time offset, in-
crease the challenges of extracting important information [64].
Assisted baseline estimation and denoising using sparsity (BEADS)
has demonstrated favorable results in addressing baseline drift and
noise in chromatographic data [65]. Another common pre-
processing method for chromatographic data is the correlation-
optimized warping (COW) algorithm, primarily employed to cor-
rect retention time shifts between samples [66]. Furthermore, the
application of image recognition in the quality evaluation of me-
dicinal plants has emerged as a prominent research direction.
Various factors, such as inadequate lighting, low resolution, and the
distance of imaging equipment, can lead to imperfect image
acquisition [67]. Therefore, image pre-processing becomes an
essential step to ensure the smooth progress of the image analysis
process. Common image pre-processing operations include gray-
scale adjustment, geometric correction, noise reduction, contrast or
sharpness enhancement, and defocus correction [49,68].

Selecting appropriate pre-processing methods based on the
attributes of different types of multi-source data is essential for
improving the final data analysis process. Ensemble pre-processing
methods offer significant advantages in selecting the best pre-
processing approaches and acquiring complementary informa-
tion, making them highly appealing. While ensemble preprocessing
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is commonly applied to spectral data and suitable for situations
where determining a single optimal option is challenging, it is
worth noting that integrated pre-processing is rarely utilized in
other types of data [61]. Exploring the integration of preprocessing
techniques in different data types could serve as a potential
breakthrough for future research.

3.2. Feature extraction and variable selection

Feature extraction and variable selection are essential steps in
simplifying data analysis and mid-level data fusion. Feature
extraction involves extracting variables from vector combinations,
while variable selection focuses on selecting raw data variables that
significantly contribute to the target attributes [42]. Principal
component analysis (PCA) and partial least squares discriminant
analysis (PLS-DA) are the simplest and most commonly used
feature extraction methods that extract principal components (PCs)
and latent variables (LVs) from data, respectively. However, these
methods are primarily designed for small datasets and face chal-
lenges when dealing with large volumes of data. On the other hand,
orthogonal total variation component analysis (OTVCA) has been
proven superior to several commonly used feature extraction
methods as it can preserve the spatial structure of features and
greatly reduce data dimensions [69]. Autoencoder, as a nonlinear
feature extraction tool, can effectively enhance model performance,
particularly when spectral features are not apparent [70]. Con-
volutional neural networks (CNN), benefiting from convolutional
and pooling layers, demonstrates strong feature extraction capa-
bilities, especially for large datasets [71]. Variable selection
methods include successful projections algorithm (SPA), competi-
tive adaptive reweighed sampling (CARS), uninformative variable
elimination (UVE), variable importance in projection (VIP), and
interval partial least squares (iPLS). When faced with multiple op-
tions, the selection should be based on the characteristics of the
data.

Implementing feature extraction and variable selection leads to
improved predictive results in the assessment of medicinal plant
quality. There is an increasing emphasis on the interpretability of
extracted features or selected variables in evaluating the quality of
medicinal plants. Future attention should focus more on detailed
descriptions of variables or features.

3.3. Data fusion strategy

Data fusion strategies play a significant role in comprehensively
evaluating the quality of medicinal plants by integrating multi-
source data. These strategies can be categorized into three types:
low-level data fusion, mid-level data fusion, and high-level data
fusion. Fig. 2 showed the flow chart of three data fusion strategies,
each with distinct characteristics. A deep understanding of these
strategies is necessary to effectively apply them to multi-source
data of medicinal plants.

The three types of data fusion integrate multi-source data in
different ways, but their common goal is to obtain a more
comprehensive response than a single data source. Low-level
fusion involves simply concatenating data from different analysis
platforms or biological entities to create a new matrix. It is also
known as data-level fusion. Given that multi-source data may have
different scales, variable scaling before concatenation is necessary
to combine the data effectively [10,72]. Low-level fusion has the
lowest operational difficulty and simplest principle among the
three fusion strategies, as it directly fuses the data while retaining
the raw data [73]. Although the direct combination method may
introduce redundant information, which can slow down analysis
speed and affect result accuracy. Pre-processing is strongly
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Fig. 2. The flow chart of three types of data fusion strategy.

recommended to improve the accuracy of qualitative or quantita-
tive analysis results. Mid-level fusion, also performed at the data
level, implements feature extraction or variable selection methods
within each dataset. The fused data comprises the extracted fea-
tures or selected variables from each dataset. It is referred to as
feature-level fusion and overcomes the drawback of low-level
fusion by reducing the volume of data. Mid-level fusion enhances
result interpretability by visualizing the contributions of each
dataset [74]. It is the most popular fusion strategy in the quality
evaluation of medicinal plants. However, mid-level fusion may still
encounter issues such as noise data or collinearity between
different data sets, which can impact the model's predictive per-
formance [75]. The application of high-level fusion in the field of
medicinal plants is relatively limited. High-level fusion is typically
used to address multi-classification problems and differs from low-
level and mid-level fusion as it is performed at the prediction level
[76]. In high-level fusion, each dataset independently establishes a
classification or regression model, and the final decision result is
obtained by fusing all the outputs. High-level fusion (decision-level
fusion) is less susceptible to interference, resulting in stronger
robustness [77]. However, it should be noted that directly fusing
decision results can lead to information loss, and careful data
processing is required [13]. What is more, high-level fusion is time-
consuming and labor-intensive, as it involves establishing models
for each dataset. Due to these reasons, its application in the quality
evaluation of medicinal plants is relatively limited.

When choosing a data fusion strategy, the crucial aspect to
consider is the relationship between samples and variables. It is
essential to select an appropriate strategy based on the underlying
data structure [11]. As technical analysis platforms continue to
diversify, existing data fusion strategies are also influenced and
may need to adapt accordingly. Looking ahead, an important focus
will be on enhancing the generalization ability of the three data
fusion strategies.

4. Machine learning
4.1. Traditional machine learning

Traditional machine learning is particularly well-suited for
addressing learning problems that arise in situations with limited
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sample sizes. There exists a wide range of methods within the
realm of traditional machine learning. Notably, unsupervised
learning and supervised learning have found extensive application
in the evaluation of medicinal plants’ quality. These methods
encompass three fundamental types of analysis: Exploratory anal-
ysis, classification analysis, and regression analysis [67]. The sum-
marization of these analyses is provided below.

4.1.1. Exploratory analysis

Exploratory analysis, grounded in statistical principles, uncovers
the relationships between samples, variables, and sample-variable
associations [78]. Each of these three types of information carries
distinct meanings. Utilizing the inter-sample information, one can
visualize sample distribution trends and detect outliers. The inter-
variable relationships aid in discerning complementary, redundant,
and similar information. Moreover, the sample-variable associa-
tions reflect the significant contribution of variables to sample
classification.

Within the realm of medicinal plant quality evaluation, three
commonly employed exploratory techniques are PCA, t-distributed
stochastic neighbor embedding (t-SNE), and hierarchical clustering
analysis (HCA). PCA serves the purposes of data exploration, feature
extraction, and dimensionality reduction. It achieves orthogonal
projection, transforming spatial data into a set of mutually
orthogonal principal components (PCs), thereby eliminating
redundant information. Given the abundant information in multi-
source medicinal plant data, PCA is frequently employed for data
visualization and dimension reduction before qualitative and
quantitative analysis [79]. By utilizing multiple PCs to express high-
dimensional data, PCA maximizes the preservation of original in-
formation while mitigating the challenges of high-dimensional
multi-objective optimization [80,81]. As a nonlinear dimension-
ality reduction algorithm, t-SNE excels in visualizing high-
dimensional data and compensates for PCA's limitation in
preserving the local data structure [79]. HCA, on the other hand,
adopts a connectivity-based model that generates a hierarchical
clustering structure by assessing the proximity between observa-
tions [82]. Various proximity measures, such as Mahalanobis dis-
tance, Euclidean distance, Manhattan distance, and D value, can be
employed. The resulting clustering outcomes are easily compre-
hensible as they present the multi-level organization of clusters
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through a dendrogram. HCA and PCA are often regarded as com-
plementary approaches, and their combined usage in medicinal
plant quality evaluation is not uncommon [83]. The significance of
exploratory analysis is frequently undervalued, despite its crucial
role in comprehending data relationships before engaging in clas-
sification and regression analysis. It indirectly guides model selec-
tion by providing a deeper understanding of the interplay among
various data elements.

4.1.2. Classification analysis

In the context of medicinal plant quality evaluation, classifica-
tion models play a vital role in conducting qualitative analysis.
Specifically, they are employed for geographical traceability, adul-
teration identification, and variety identification. These models fall
under the domain of supervised learning, necessitating the training
of the model using prior knowledge to distinguish unknown sam-
ples. Classification models can be categorized into two types based
on the specific problems they aim to address. The first type is
discriminant analysis, which evaluates predefined categories of
target substances. The second type is class modeling, which as-
sesses the assignment of the target object to a selected category of
interest [84].

Several discriminant analysis methods are frequently utilized in
the quality evaluation of medicinal plants, including PLS-DA, sup-
port vector machine (SVM), linear discriminant analysis (LDA), k-
nearest neighbors (k-NN), random forest (RF), and extreme learning
machine (ELM). Among these, PLS-DA has emerged as the most
commonly employed method shown in relevant research papers.
PLS-DA is a linear discriminant analysis technique that establishes
correlations between independent and dependent variables to
assign objects to known groups [85]. It exhibits exceptional per-
formance when applied to quality evaluation tasks involving
limited sample sizes of medicinal plants. Its ability to handle highly
collinearity and noise data is nearly flawless, which explains its
status as a mainstream discriminant analysis method [86]. Another
popular classification analysis method is SVM, which constructs an
optimal hyperplane in high-dimensional space to separate positive
and negative classes [87]. While SVM demonstrates excellent
generalization and recognition capabilities, its extensive compu-
tational requirements and time-consuming nature make it a less
preferred choice. In contrast, soft independent modeling of class
analogy (SIMCA) represents the most classical class modeling
method. It evaluates the distance between a sample and the model
by performing PCA on each predefined class [88]. Unlike discrimi-
nant analysis methods, SIMCA has the ability to assign objects to
multiple classes or to none at all [89].

The aforementioned classification analysis methods heavily
depend on manual labeling, and their performance in classifying
large sample datasets requires enhancement to remain competitive
in market applications. Various approaches for improving these
methods have been proposed, but they often consist of partial op-
timizations. The crucial aspect lies in enhancing their ability to
analyze big data and increase their applicability in the market.

4.1.3. Regression analysis

The regression analysis method employs mathematical calcula-
tions to examine the relationship between data properties and cor-
responding continuous variables, such as the chemical composition
content and adulteration rate of medicinal plants. It plays a crucial
role in the quality evaluation of medicinal plants, primarily for
content prediction and quantitative analysis of adulterants [90]. The
regression analysis methods commonly used in medicinal plant
quality evaluation include principal component regression (PCR),
partial least squares regression (PLSR), multivariate linear regression
(MLR), and support vector regression (SVR). Among these methods,

1395

Journal of Pharmaceutical Analysis 13 (2023) 1388—1407

PLSR, a linear regression analysis method, is widely utilized in
quantitative analysis of medicinal plants. PLSR divides the data into
scores and loadings and performs least squares regression on the
extracted scores, which exhibit maximum covariance with the
response [91]. By extracting important variables to explain the
dependent variable, PLSR mitigates the risk of overfitting [92]. On the
other hand, SVR, the most prevalent nonlinear regression analysis
method, employs rigorous mathematical derivation to conduct
regression analysis. It delivers excellent prediction results for low-
dimensional data with small sample sizes [93]. However, when
confronted with regression analysis involving large sample sizes,
SVR's prediction outcomes are not satisfactory, and a practical so-
lution to this limitation has yet to be identified.

It should be noted that the aforementioned regression analysis
methods are solely applicable to the analysis of single modal data.
However, the multi-source data of medicinal plants is not only
multivariate but also multimodal. Consequently, the trend in sub-
sequent applications for quantitative analysis of medicinal plants is
to employ multimodal prediction modeling. Such an approach
effectively enhances prediction performance and facilitates the
interpretation of shared and distinct information within multi-
source data.

4.2. Deep learning

Deep learning, also known as deep neural networks, possesses
inherent strengths in capturing data-driven patterns and auto-
matically extracting feature information and hidden data structures
from large datasets [94]. It relies on nonlinear information pro-
cessing to extract multi-level features for data exploration and
prediction, making it a valuable tool for addressing qualitative and
quantitative challenges in medicinal plant quality evaluation
involving large sample sizes [95]. Artificial neural networks (ANN)
and CNN are two popular deep learning architectures extensively
employed in the quality evaluation of medicinal plants. ANN ex-
hibits a relatively simple structure, comprising three distinct layers:
input layer, hidden layer, and output layer. Through the intercon-
nection of numerous simple components, ANN forms a highly
nonlinear complex network capable of performing intricate logical
operations and establishing nonlinear relationships [96]. It excels in
handling qualitative and quantitative information, and its gener-
alization ability and fault tolerance can be enhanced by adjusting
weights [97]. In contrast, CNN possesses a more intricate structure,
consisting of five main components: input layer, convolutional
layer, pooling layer, fully connected layer, and output layer. While
ANN learns feature information through input and input mapping,
CNN extracts feature information by performing convolution op-
erations on the output of each layer [98]. The convolution layer, a
crucial element in the CNN structure, exhibits the advantage of
sharing and creating sparse connections in filters to mitigate model
overfitting [99]. However, CNN has a notable drawback that as the
network deepens, it is prone to issues such as gradient vanishing or
explosion [100]. Residual convolutional neural network (ResNet)
addresses this problem by introducing residual modules within the
traditional CNN structure, utilizing skip connections to overcome
gradient vanishing [101,102]. This approach simplifies learning
objectives while preserving information integrity, significantly
enhancing data analysis efficiency.

The application of deep learning in the quality evaluation of
medicinal plants in scenarios involving large samples provides
unique advantages, bridging the gap left by traditional machine
learning in analyzing massive data. Nevertheless, the interpret-
ability of the features extracted by deep learning remains a chal-
lenging issue that warrants further research.
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5. The application of machine learning combine with multi-
source data of medicinal plants

5.1. Geographical traceability

Geographical traceability plays a crucial role in controlling the
quality of medicinal plants, as the chemical composition of me-
dicinal plants can vary due to diverse growth conditions such as
terrain, soil, and climate. For instance, Lu et al. [103] discovered
significant variations in the contents of ganoderic acid A and B,
polysaccharide, and triterpenoids in Ganoderma lucidum sourced
from different geographical regions. Therefore, to ensure the
quality and safety of clinical medication, it is imperative to
employ a reliable and suitable method for tracing the origin of
medicinal plants. However, due to the systematism, multi-target
and synergistic effects of medicinal plants, identifying their
origin based on a single or multiple chemical components,
proves challenging. Relying solely on a single analytical tech-
nique has its limitations and fails to provide comprehensive in-
formation regarding the chemical composition of medicinal
plants [104]. Establishing a robust geographical traceability sys-
tem for medicinal plants poses a considerable challenge. Never-
theless, leveraging multi-source data can bridge the gap between
various analytical instruments and reveal the holistic chemical
profile, thus, serving as an effective measure to trace the
geographical origin of medicinal plants [105]. Table 2
[54,106—122] summarized some examples of using machine
learning algorithms in combination with multi-source data to
identify the geographical origin of medicinal plants.

The combination of different spectral techniques as data sour-
ces, coupled with machine learning, has shown promising results in
the geographical traceability of medicinal plants. In a study by Li
et al. [115], FT-MIR and NIR data were collected from cultivated
Panax notoginseng samples originating from Wenshan and four
other regions in Yunnan. Three data fusion strategies, in conjunc-
tion with machine learning algorithms (SVM and RF), were
employed to analyze the preprocessed data sets using SNV and S-G
filter to identify the geographical origin of Panax notoginseng. The
models based on a single data source exhibited incomplete accu-
racy in classifying Panax notoginseng samples from the five
geographical origins, with classification accuracy ranging from 91%
to 94%. However, the use of three data fusion strategies enhanced
the classification accuracy, with SVM models based on high-level
data fusion demonstrating the best performance, achieving classi-
fication accuracy ranging from 98% to 100% for both the training
and test sets. Another study also demonstrated the efficacy of a
collaborative strategy involving FT-MIR and NIR as multi-source
data, along with data fusion strategies, for authenticating the
origin of Panax notoginseng [113]. The results revealed that the
random forest Boruta (RF-Bo) and random forest variable selection
(RF-Vs) models, based on the data fusion strategy, exhibited
favorable classification performance, with RF-Bo being faster in
data analysis and achieving an accuracy rate of 95.6%. The growth
environment significantly influences the quality of Paris, making its
origin a crucial factor. In the study of Wu et al. [110], the feasibility
of employing FT-MIR and UV-Vis alone or in combination for the
geographical traceability of wild Paris polyphylla var. yunnanensis
(Franch.) Hand.-Mazz (PPY) was evaluated. The spectral data were
processed using PLS-DA and support vector machines grid search
(SVM-GS) supplemented by a low- and mid-level data fusion
strategy. The study found that the classification models based on
the data fusion strategy outperformed those based on a single data
source. For PPY samples from the southeast and northwest regions
of Yunnan, China , PLS-DA and SVM-GS models utilizing interme-
diate data fusion could accurately classify them, as feature
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extraction and variable selection eliminated redundant information
and enhanced model performance. In addition to spectral methods,
chromatography can also serve as a multi-source data approach for
the geographical traceability of medicinal plants. In the case of
Gentiana rigescens, five variable selection methods (CARS, RF, ge-
netic algorithm (GA), MC-UVE, and SPA) were utilized to extract
characteristic fingerprint information from HPLC and FT-IR. Sub-
sequently, PLS-DA models were developed to identify the
geographical origin of Gentiana rigescens [123]. The results indi-
cated that the GA-PLS-DA model was robust in identifying Gentiana
rigescens, and the HPLC and FT-IR results were consistent. More-
over, FT-IR demonstrated faster detection speed compared to HPLC.

In summary, the integration of data fusion strategies with ma-
chine learning algorithms is increasingly prevalent in the
geographical traceability of medicinal plants. It has been demon-
strated that this approach yields significantly higher classification
accuracy compared to using a single analytical method. Conse-
quently, it offers a novel solution for the geographical traceability of
medicinal plants. Additionally, due to various factors, such as the
nature of chromatographic methods, there have been fewer ap-
plications in the field of geographical traceability of medicinal
plants. As a result, spectroscopy methods have emerged as the
dominant choice in this domain.

5.2. Adulterate identification

Adulteration represents a significant factor that compromises
the quality of medicinal plants. Adulterants typically do not alter
the taste or chemical composition of the medicinal plants, making
their identification challenging through visual inspection alone.
Due to the limited annual production of certain medicinal plants,
such as Panax notoginseng and Paris, the market demand often
surpasses the supply. Unscrupulous merchants exploit this gap by
resorting to adulteration to meet the market's quantity re-
quirements, resulting in severe consequences for consumer in-
terests. Therefore, employing reliable methods to detect
adulteration in medicinal plants and ensure their quality is
imperative. The process of identifying adulteration in medicinal
plants is highly intricate, and conventional target analytical
methods can only analyze a limited number of labeled components
[124]. However, the data fusion strategy has proven to be effective
in enhancing the accuracy of adulteration detection and has found
widespread application in the domains of food and medicinal
plants. Table 3 [125—137] summarized some examples of applying
machine learning algorithms in combination with multi-source
data to identify medicinal plant adulteration.

Uncaria tomentosa (UT), known for its higher content of active
ingredients, is susceptible to adulteration with the low-value Uncaria
guianensis (UG). Kaiser et al. [126] applied classification (KNN,
SIMCA) and regression (PCR, PLS) machine learning algorithms to
analyze liquid chromatography-photo diode array (LC-PDA), UV, and
FT-IR data. This allowed them to identify and quantify adulteration in
UT. Comparison of discrimination and regression models built using
different data sources revealed that UV and LC-PDA analysis of
polyphenols demonstrated excellent identification and prediction
results. Specifically, SIMCA performed well in recognition, while PLS
excelled in quantification. Panax notoginseng, valued for its economic
worth and pharmacological effects, frequently falls victim to chal-
lenging and recurrent adulteration. Infrared spectroscopy offers non-
destructive, rapid, and cost-effective advantages for qualitative
analysis. Yang et al. [137] trained SVM models using manually
extracted NIR and FT-MIR characteristic wavelengths as input data to
identify adulteration in Panax notoginseng powder. They employed
data fusion and particle swarm optimization (PSO) as auxiliary
methods to improve model performance. The PSO-SVM model
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Table 2
Summary of references for geographic traceability using machine learning combined with multi-source data.
Year Object Multi-source Strategy Data processing Machine learning Result Refs.
2019 Gentiana rigescens HPLC fingerprint data sets  LLF, MLF VIP RF, OPLS-DA, PCA Acc (LLF-OPLS-DA): [54]
Franch. of 97.87%—100.00%, SEN:
different medicinal parts 0.96—1.00, SPE:

0.98—1.00, MCC:
0.95—1.00, EFF: 0.97—1.00
2019 Paris polyphylla UV, FT-IR NM SNV, OSC, FD, SD, S-G, CARS PLSR R?> 0.9, RPD = 3.3515 [106]
var. yunnanensis
(Franch.) Hand.-Mazz

2022 Gentiana rigescens FT-IR, HPLC NM NM ResNet Acc (synchronous 2DCOS [107]
Franch. model) = 100%

2016 Cuminum cyminum L. E-nose, E-tongue, SPME- NM Feature extraction HCA, PCA, SVM Acc (E-nose) = 94.44%, Acc [108]

GC-MS (E-tongue) = 100%

2022 Abrus precatorius L. UPLC-MS, HPLC, NMR NM NM HCA, PCA, OPLS-DA R?X = 0.61, R?Y = 0.848,  [109]
leaves Q*=0.717

2018 Paris polyphylla UV-Vis, FT-IR LLF, MLF SNV, derivatives, S-G filter PLS-DA, SVM-GS MLF-PLS-DA: [110]
var. yunnanensis and different combinations, Q*(central) = 0.74, Acc
(Franch.) Hand.-Mazz PCA (MLF-SVM-GS) = 98%

2019 Paris polyphylla ATR-FTIR spectra data sets MLF MSC, S-G filter, PCA t-SNE, PLS-DA, RF Acc (PLS-DA) = 100%, RF:  [111]
var. yunnanensis of parameters values are large
(Franch.) Hand.-Mazz  Paridis rhizome and leaf than 0.85

tissues

2021 Amomum tsaoko FT-NIR, UV-Vis MLF PCA, SO-PLS, VIP, SO-CovSel PLS-DA Acc (SO-PLS-PLS- [112]
Crevost & Lemaire DA) = 100%

2020 Panax notoginseng NIR, FT-IR LLF, MLF, HLF SNV, S-G, derivative and RF-Bo, RF-Vs Acc (HLF-RF-Bo) = 95.6% [113]
(Burkill) F. H. Chen different combinations

2019 Wolfiporia cocos (F.A. ATR-FTIR, UFLC LLF, MLF correlation optimized PLS-DA Acc (LLF-ATR-FTIR) = 100% [114]
Wolf) Ryvarden & Gilb. warping algorithm, SD, VIP,

PCA

2017 Panax notoginseng FT-IR, NIR LLF, MLF, HLF SNV, S-G filter RF, PCA Acc (HLF): 98%—100% [115]
(Burkill) F. H. Chen

2022 Wolfiporia cocos (F.A. FT-IR, FT-NIR LLF, MLF CARS, SPA, FD, SD, SNV, t-SNE, PLS-DA, SVM, Acc = 100% [116]
Wolf) Ryvarden & Gilb. MSC, S-G filter ELM, HCA

2022 Astragalus IR, LIBS LLF, MLF SNV, MSC, FD, WT, RF, PCA MLF-RF: SEN = 0.9667, [117]
membranaceus (Fisch.) normalization, VIP SPE = 0.9833, Acc = 0.9778
Bunge, Astragalus
membranaceus

var. mongholicus
(Bunge) P. K. Hsiao

2022 Lycium barbarum L. Vis-NIR-HSI, textural data  LLF, MLF CARS, iVISSA, UVE, IRIV, 2D-CNN, PCA iVISSA-MLF: Acc = 97.34%, [118]
leaves GLCM mean F1: 100%

2022 Corylus avellana L. FT-NIR, NMR LLF MSC, bucketing, mean Discriminant classifier, PCA Acc = 96.6% + 2.8% [119]

averaging

2022 Paris polyphylla NIR, MIR LLF, MLF, HLF SO-PLS, SO-CovSel, SPA, PLS-DA, SVM PLS-DA: Acc = 96.03%, [120]
var. yunnanensis CARS, FD, SD, MSC, SNV, F1 =96.01%
(Franch.) Hand.-Mazz VSN, VIP

2019 Dendrobium Sw. NIR, MIR LLF, MLF MSC, SD PLS-DA, SVM-GS, RF LLF: Acc (PLS-DA, SVM- [121]

GS) = 100%

2020 Eucommia ulmoides FT-NIR, ATR-FTIR LLF, MLF, HLF MSC, SD RF, PLS-DA, HCA, t-SNE, PCA HLF-RF: Acc [122]

Oliv. leaves (calibration) = 92.86%, Acc

(validation) = 93.44%

NM: no mention; UV: ultraviolet; FT-IR: Fourier transform infrared; PLSR: partial least squares regression; SNV: standard normal variate; OSC: orthogonal signal correction;
FD: first derivative; SD: second derivative; S-G: Savitzky-Golay; CARS: competitive adaptive reweighted sampling; RPD: residual predictive deviation; HPLC: high-
performance liquid chromatography; ResNet: residual convolutional neural network; E-nose: electronic nose; E-tongue: electronic tongue; SPME-GC-MS: solid phase
micro-extraction gas chromatography-mass spectrometry; HCA: hierarchical cluster analysis; PCA: principal component analysis; SVM: support vector machine; UPLC-MS:
ultra performance liquid chromatography-mass spectrometry; NMR: nuclear magnetic resonance; OPLS-DA: orthogonal projections to latent structures discriminant analysis;
UV-Vis: ultraviolet-visible; LLF: low-level fusion; MLF: mid-level fusion; PLS-DA: partial least squares discrimination analysis; SVM-GS: support vector machines grid search;
ATR-FTIR: attenuated total reflectance-Fourier transform infrared spectrometry; t-SNE: t-distributed stochastic neighbor embedding; MSC: multiplicative scatter correction;
RF: random forest; FT-NIR: Fourier transform near infrared; SO-PLS: sequential and orthogonalized partial-least squares; VIP: variable importance in projection; SO-CovSel:
sequential and orthogonalized covariance selection; NIR: near infrared; RF-Bo: random forest Boruta; RF-Vs: random forest variable selection; UFLC: ultra-fast liquid chro-
matography; HLF: high-level fusion; ELM: extreme learning machine; SPA: successive projection algorithm; LIBS: laser induced breakdown spectroscopy; WT: wavelet
transform; Vis-NIR-HSI: visible and near infrared hyperspectral; 2D-CNN: two-dimensional convolutional neural network; iVISSA: interval variable iterative space shrinking
analysis; UVE: uninformative variable elimination; IRIV: iterative retained information variable; GLCM: grey-level co-occurrence matrix; VSN: variables sorting for
normalization; SEN: sensitivity; SPE: specificity; EFF: efficiency; Acc: accuracy.

achieved impressive accuracy rates of 96.65% and 96.97% for iden- fusion reaching 100%. Modeling a single spectrum as a data source
tifying two levels of adulteration in Panax notoginseng powder, sur- lacked the ability to correctly distinguish adulterated samples.
passing the performance of the unoptimized model. Optimization Infrared spectroscopy-based data fusion has demonstrated remark-
algorithms prove effective in addressing poor model performance. able achievements in detecting adulteration in medicinal plants.
Similarly, PLS-DA models were developed by fusing NIR and MIR Beyond spectroscopic techniques, emerging non-destructive tech-
data to differentiate genuine and adulterated Pinellia ternata [127]. niques such as electronic sensor systems can serve as powerful tools

Data fusion improved the model's classification ability, with the for adulteration detection in medicinal plants. Saffron, a highly
recognition accuracy of the PLS-DA model based on mid-level data valued and pharmacologically diverse spice, is prone to adulteration
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Table 3
Summary of references for adulterate identification using machine learning combined with multi-source data.
Year Object Multi-source Strategy Data processing Machine learning Result Refs.
2021 Crocus sativus L. NIR, MIR NM Mean-centering, SD PCA, PLS-DA, PLSR R? = 0.95-0.99 [125]
2020 Uncaria tomentosa HPLC-PDA, UV, FT-IR NM correlation optimized  SIMCA, k-NN, PCR, PLSR SIMCA: SEN = 100%, [126]
(Willd.) DC., Uncaria warping algorithm SPE = 100%; PLSR: R > 0.99
guianensis (Aubl.) Gmel.
2019 Pinellia ternata (Thunb.) NIR, MIR LLF, MLF SNV, MSC, S-G PLS-DA MLF: Acc = 100%, SEN =1, [127]
Breit. smoothing, derivative SPE =1
and different
combinations
2014 Harpagophytum 'H-NMR, UHPLC-MS NM NM PCA, OPLS-DA UHPLC-MS: R?X = 0.258, [128]
procumbens DC. ex R?Y = 0.957, Q* = 0.934;
Meisn. TH-NMR: R?X = 0.830,
R%Y = 0.865, Q* = 0.829
2017 Crocus sativus L. CVS, E-nose NM NM PCA, HCA, SVM, ANN-MLP SVM: Acc(training) = 100%, [129]
Acc(validation) = 89%;
ANN-MLP: RZCclor analysis >
0.95, RzAroma analysis > 0.97
2021 Lonicera japonica NIR, FT-IR NM VIP, CARS, SPA, UVE, SD, PLS-DA, PLSR PLS-DA: Acc = 100%; SiPLS- [130]
Thunb. S-G smoothing VIP: RMSEP = 1.02%
2020 Carthamus tinctorius L. NIR, CVS, HPLC NM VIP, SNV, MSC, S-G, PLS-DA, PLSR PLS-DA: Acc = 100%; PLS:  [131]
baseline, S-G + FD, S- RPD(HSYA) = 2.5046,
G+SD RPD(water
extract) = 5.6195
2016 Crocus sativus L. ATR-FTIR, Raman, LIBS NM S-G derivatization, PCA, PLSR R? = 0.999, LOD = 1.86%, [132]
mean-centering, LOQ = 9.32%
normalization
2021 Vanilla planifolia Jacks.  NIR, MIR, Raman NM PCA PLS-DA, PCA, SIMCA, SVM PLS-DA: Acc (Raman) = 0.9, [133]
ex Andrews SEN (Raman, MIR) = 1,
SPE (Raman, MIR) = 1,
EFF (Raman, MIR) = 1,
PRE (Raman, MIR) = 1
2023 Cuminum cyminum L. FT-IR, portable NIR NM S-G smoothing, S- PCA, PLSR, DD-SIMCA DD-SIMCA: SEN (FT- [134]
G + FD, SNV IR) = 94.1%, SPE (FT-
IR) = 91.7%; PLSR: RPD (FT-
IR) = 8.9
2019 Corydalis yanhusuo W.  FT-NIR, MIR Data fusion NM PCA, MWPLS-DA, LDA, PLS-DA MWPLS-DA-fusion: Acc [135]
T. Wang (training) = 100%, Acc
(prediction) = 100%
2021 Origanum vulgare Four blocks of DART-HRMS MLF NM SVM, HCA, PLS-DA MLF-SVM: SEN > 90%, SPE > [136]
subsp. hirtum (Link) data 90%
letsw.
2019 Panax notoginseng NIR, MIR MLF SNV, baseline PSO-SVM L14: Acc = 96.65%; L15: [137]

(Burkill) F. H. Chen

correction, FD, PCA

Acc = 96.97%

NM: no mention; NIR: near-infrared; MIR: mid-infrared; PLSR: partial least squares regression; PCA: principal component analysis; PLS-DA: partial least squares discrimi-
nation analysis; SD: second derivative; HPLC-PDA: high performance liquid chromatography-photo diode array; UV: ultraviolet; FT-IR: Fourier transform infrared; SIMCA: soft
independent modeling class analogy; k-NN: k-nearest neighbors; PCR: principal component regression; LLF: low-level fusion; MLF: mid-level fusion; HLF: high-level fusion;
SNV: standard normal variate; MSC: multiplicative scatter correction; S-G: Savitzky-Golay; TH-NMR: proton nuclear magnetic resonance; UHPLC-MS: ultra-high performance
liquid chromatography coupled to mass spectrometry; OPLS-DA: orthogonal projections to latent structures discriminant analysis; CVS: computer vision system; E-nose:
electronic nose; HCA: hierarchical cluster analysis; SVM: support vectors machine; ANN-MLP: two multilayer artificial neural network; VIP: variable importance for pro-
jection; CARS: competitive adaptive reweighted sampling; SPA: successive projection algorithm; UVE: uninformative variable elimination; SiPLS: synergy interval PLS; HSYA:
hydroxy safflower yellow pigment A; FD: first derivative; ATR-FTIR: attenuated total reflectance-Fourier transform infrared spectrometry; LIBS: laser induced breakdown
spectroscopy; SEN: sensitivity; SPE: specificity; EFF: efficiency; PRE: precision; Acc: accuracy; RPD: residual predictive deviation; LDA: linear discriminant analysis; MWPLS-
DA: moving window partial least-squares discriminant analysis; DART-HRMS: direct analysis in real time-high resolution mass spectrometry; PSO: particle swarm optimi-

zation; FT-NIR: Fourier transform near infrared.

due to economic motivations. Kiani et al. [129] developed an inte-
grated system based on computer vision and electronic nose to
extract color and aroma characteristic variables from saffron samples
for adulteration detection. SVM, PCA, and HCA based on color and
aroma data exhibited strong consistency and effectively identified
adulterated saffron samples. The SVM model achieved accuracies of
89% and 100% in identifying different types of adulterated saffron.
The results were further corroborated by two multilayer artificial
neural network (ANN-MLP) models, indicating that color and aroma
could serve as indicators for detecting saffron adulteration. Specif-
ically, the aroma characteristic variables exhibited outstanding
ability in identifying saffron adulteration.

In conclusion, the application of machine learning algorithms in
conjunction with multi-source data for statistical analysis holds
significant promise in addressing fraud detection. This method
offers an effective solution for accurately combating fraudulent
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practices in the medicinal plants industry. However, it is important
to acknowledge that this approach still has certain limitations and
cannot be readily applied for rapid and widespread market fraud
detection in the domain of medicinal plants. Therefore, it is crucial
to further enhance and refine the method to expedite its wide-
spread adoption. Such advancements are of utmost importance in
effectively controlling the quality of medicinal plants.

5.3. Variety identification

Medicinal plants belonging to the same genus often exhibit
similar morphology and pharmacological effects. However, varia-
tions in active ingredients among species contribute to significant
fluctuations in the quality of medicinal plants. While some differ-
ences can be visually identified, this approach relies on experienced
professionals and is time-consuming and labor-intensive.
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Therefore, the development of a rapid and scientific method for
identifying different varieties of medicinal plants becomes imper-
ative. Table 4 [64,138—151] summarized some examples of using
machine learning algorithms in combination with multi-source
data to identify the variety of medicinal plants.

The identification of different species within the genus Mentha
L. is challenging due to variations in compounds. In an attempt to
authenticate various mint species, UV-Vis and attenuated total
reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy,
combined with machine learning, were employed [139]. The
authentication process involved two steps. Initially, SIMCA was
used to filter data for species other than spearmint and pepper.
However, the classification effectiveness of SIMCA did not meet the
requirements, necessitating the second step. In the second step,
PLS-DA and SVM models were utilized to enhance classification
accuracy. The results indicated that both PLS-DA and SVM showed
potential as authentication tools, with UV-Vis making a more
prominent contribution to the process. Rhubarb authenticity poses
challenges due to variations in efficacy between official and unof-
ficial sources, raising concerns about mixing and misuse in clinical
medication. Sun et al. [138] distinguished rhubarb using three data
fusion strategies of NIR and MIR. The fused datasets were subjected
to PLS-DA, SIMCA, SVM, and ANN analyses. The modeling results
revealed high classification accuracy for the four models using mid-
level data fusion, with iPLS and wavelet compression (WC) as
beneficial feature extraction methods. However, single spectral
data-based classification models were inadequate for distinguish-
ing official and unofficial rhubarb. NIR-HSI, combining machine
vision and NIR advantages, facilitated the acquisition of spectral
and spatial information. In the case of Cinnamomum verum and
Cinnamomum cassia, which are commonly sold as powder and
sticks, certification complexity arises. Cruz-Tirado et al. [141] con-
ducted a quantitative analysis of active components using HPLC,
and highlighting phenolic compounds as potential chemical
markers. NIR-HSI information from cinnamon samples was
collected and employed in combination with PLS-DA and SVM
models for classifying Cinnamomum verum and Cinnamomum
cassia. The category input was proposed based on the distribution
of phenolic compounds. Both PLS-DA and SVM demonstrated
excellent classification results, surpassing 90% accuracy. However,
the models were species-specific, with PLS-DA performing better
for Cinnamomum verum authentication and SVM being more suit-
able for Cinnamomum cassia. Integration of data from different
chromatographic techniques, coupled with machine learning, also
exhibits robust capabilities in identifying medicinal plant varieties.
By collecting information on the active ingredients of genuine and
non-genuine Magnolia officinalis leaves using ultra-high perfor-
mance liquid chromatography-quadrupole time-of-flight tandem
mass spectrometry (UHPLC-Q-TOF-MS/MS) and GC-MS, data inte-
gration via PLS-DA and heat map analysis demonstrated the po-
tential of combining the two chromatographic techniques for
identifying Magnolia officinalis leaves [150].

The process of identifying different varieties of medicinal plants
is highly intricate and cannot be effectively accomplished using a
single technique alone. Numerous studies have made significant
progress in variety identification by leveraging multi-source data in
conjunction with machine learning, particularly through the inte-
gration of qualitative and quantitative analysis. In recent years,
rapid advancements in electronic sensors and chemical imaging
techniques have opened up promising avenues in this field. These
technologies hold considerable potential and can serve as alterna-
tives to traditional macroscopic identification methods.
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5.4. Content prediction

The potency of medicinal plants is predominantly determined by
the levels of their active ingredients. Consequently, content predic-
tion plays a crucial role in assessing the quality of medicinal plants.
Content prediction is carried out using a calibration model. Crocin I
and II contents serve as a key indicator for evaluating saffron quality,
with strict regulations outlined in trade standards and the Chinese
Pharmacopoeia. Notably, the crocin content of can be influenced by
multiple factors, making content prediction an important measure
for saffron quality control. Table 5 [152—171] summarized some ex-
amples of using machine learning algorithms in combination with
multi-source data to predict the content of medicinal plants. Li et al.
[152] developed PLSR models to establish correlations between NIR
spectra and HPLC data, enabling the prediction of crocin I and II
content. Different spectral ranges, pre-processing methods, and their
combinations were considered to determine the calibration model's
performance. The optimal crocin I content prediction model utilized
the spectral range of 9403.3—7498.0 cm ™! and 6101.8—4246.5 cm™,
along with vector normalization for spectral pre-processing. Simi-
larly, the crocin II prediction model employed the spectral range,
9403.3—7498.0 cm ™, 6101.8—5449.9 cm ™, and 4601.4—4246.5 cm ™},
with vector normalization as the pre-processing method. The best
prediction model achieved root mean square error of cross-validation
(RMSECV) values of 1.4 and 0.3 for the two content types, demon-
strating that selecting appropriate spectral ranges and pre-
processing methods can significantly improve the calibration
model's prediction performance. For predicting the vital active
ingredient, puerarin, in Radix puerariae, PLS models were proposed
using both low- and mid-level data fusion strategies [153]. The
combination of NIR and UV yielded complementary effects, and iPLS
was employed to extract feature variables and filter redundant in-
formation. The PLS model based on low-level data fusion exhibited
superior prediction performance compared to single spectral data
and mid-level data fusion. It achieved a root mean square error of
prediction (RMSEP) and a residual predictive deviation (RPD) of 0.418
and 4.295, respectively. In a study by Song et al. [154], UV-Vis and
ultra-high performance liquid chromatography-quadrupole-time of
flight-mass spectrometry (UHPLC/Q-TOF-MS) were used for mid-
level data fusion. A partial least squares regression model was
established to predict the antioxidant capacity and total phenol
content of bear fruit leaves. Although the PLS model based on inde-
pendent UV spectra yielded reliable results, data fusion further
improved the model's predictive ability. The mid-level data fusion
PLS model demonstrated the best prediction performance for total
phenol content and DPPH, with RPD values of 6.258 and 6.699,
respectively. These studies highlight the power of combining data
fusion and machine learning as a potent tool for accurately predicting
single components.

In summary, content prediction plays a critical role in ensuring
the quality control of medicinal plants. Enhancing the performance
of calibration models through effective methods can yield significant
improvements. It is worth noting that the current research focus is
primarily on the geographical traceability of medicinal plants, with
limited attention given to content prediction. However, content
prediction holds a significant position in the quality evaluation of
medicinal plants and merits greater attention in research endeavors.

5.5. Other applications

The use of machine learning algorithms in analyzing multi-
source data of medicinal plants should extend beyond
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Table 4
Summary of references for variety identification using machine learning combined with multi-source data.
Year  Object Multi-source Strategy Data processing Machine learning Result Refs.
2023  Soothing herbs UV—Vis, HPLC MLF COW, PCA PCA, PLS-DA MLF: Acc (PLS-DA) = 87.5%  [64]
2017  Rheum palmatum L., NIR, MIR LLF, MLF, HLF WG, iPLS, MSC, FD, SD, PLS-DA, SVM SIMCA, MLF: Acc (PLS-DA) = 97.14%,  [138]
Rheum tanguticum S-G smoothing ANN Acc (SIMCA) = 94.73%,
Maxim. ex Balf., Rheum Acc (SVM) = 100%,
offificeinale Baill. Acc (ANN) = 100%
2021  Genus Mentha L. ATR-FTIR, UV-Vis NM S-G smoothing, PQN PLS-DA, SVM, SIMCA Acc: 60%—80% [139]
2023  Amaranthus cruentus L. UV-Vis, HPLC, GC NM NM PCA, CDA Probability (CDA) = 100% [140]
and Chenopodium
quinoa Will. seeds
2023  Cinnamomum verum J. NIR-HSI, HPLC NM SNV, ROI, S-G derivative ~ PCA, PLS-DA, SVM Pixel-wise: Acc = 93.8%; [141]
Presl, Cinnamomum sample-wise: Acc = 100%
cassia (L.) J. Presl
2021  Amomum tsaoko GC-MS, FT-NIR NM Normalization, VIP, PCA, OPLS-DA R? = 0.995, Q? = 0.961, [142]
Crevost & Lemaire, MSC, FD, S-G Acc = 100%
Amomum paratsao-ko S.
Q. Tong & Y. M. Xia
2019  Citrus reticulata Blanco, ~ HPLC, HPTLC NM NM OPLS-DA Can effectively distinguish [143]
Citrus reticulata ‘Chachi’
2021  Curcuma phaeocaulis HPLC, HS-GC-MS NM VIP PCA, LDA, k-NN, BPNN,  HS-GC-MS: Acc (OPLS- [144]
Val., Curcuma OPLS-DA DA) = 100%
kwangsiensis S. G. Lee et
C. F. Liang, Curcuma
wenyujin Y. H. Chen et
C. Ling
2022  Curcuma phaeocaulis Spectrophotometry, NM VIP PCA, PLS-DA, LDA Acc (LDA) = 100% [145]
Val.,, Curcuma flash GC E-nose
kwangsiensis S. G. Lee et
C. F. Liang, Curcuma
wenyujin Y. H. Chen et
C. Ling
2017  Humulus lupulus L. NIR, MIR NM SNV, S-G filter PCA, HCA, PLS-DA Acc (NIR) = 94.2%, Acc [146]
(MIR) = 96.6%
2021  Dendrobium Sw. FT-NIR, ATR-FTIR NM SDD ResNet Acc = 100% [147]
2011  Pelargonium sidoides FT-NIR, FT-IR NM FD, SD, MSC, SNV PCA, OPLS-DA NIR: variation = 5.79%, [148]
DC., Pelargonium R?X = 0.962, Q% = 0.918;
reniforme Curt. MIR: variation = 9.22%,
R?X = 0.497, Q*> = 0.658
2014  Wood species color, texture and MLF GLCM BPNN Accuracy to approximately — [149]
spectral feature 90%
2022  Leaves of Magnolia GC-MS, NM VIP PLS-DA, heat map UHPLC-Q-TOF-MS/MS: [150]
officinalis Rehder & E.H.  UHPLC-Q-TOF-MS/MS analysis R?X = 0.638, R?Y = 0.929,
Wilson and Magnolia Q? = 0.649; GC-MS:
officinalis var. biloba R?X = 0.655, R?Y = 0.979,
Rehder & E. H. Wilson Q% = 0.934
2014  Harpagophytum MIR, SWIR NM NM OPLS-DA, PCA MIR: R?X = 0.86, Q> = 0.63;  [151]

procumbens DC. ex
Meisn., Harpagophytum
zeyheri Decne.

SWIR: R?X = 0.99, Q> = 0.78

NM: no mention; LLF: low-level fusion; MLF: mid-level fusion; HLF: high-level fusion; PLS-DA: partial least squares discrimination analysis; SVM: support vectors machine;
SIMCA: soft independent modeling class analogy; ANN: artificial neural network; WC: wavelet compression; iPLS: interval partial least squares; MSC: multiplicative scatter
correction; S-G: Savitzky-Golay; FD: first derivative; SD: second derivative; NIR: near-infrared; MIR: mid-infrared; ATR-FTIR: attenuated total reflectance-Fourier transform
infrared spectrometry; UV-Vis: ultraviolet-visible; PQN: probabilistic quotient normalization; HPLC: high-performance liquid chromatography; GC: gas chromatography;
CDA: canonical discriminant function analysis; NIR-HSI: near infrared-hyperspectral imaging; ROI: region of interest; SNV: standard normal variate; GC-MS: gas
chromatography-mass spectrometry; OPLS-DA: orthogonal projections to latent structures discriminant analysis; FT-NIR: Fourier transform near infrared; VIP: variable
importance in projection; HPTLC: high-performance thin-layer chromatography; HS-GC-MS: headspace gas chromatography-mass spectrometry; LDA: linear discriminant
analysis; BPNN: back propagation neural network; k-NN: k-nearest neighbors; E-nose: electronic nose; HCA: hierarchical cluster analysis; ResNet: residual convolutional
neural network; SDD: spectrum standard deviation; COW: correlation optimized warping; GLCM: grey-level co-occurrence matrix; UHPLC-Q-TOF-MS/MS: ultra-high per-
formance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry; SWIR: short wave infrared hyperspectral imaging.

geographical traceability and adulteration identification. Other
factors, such as medicinal parts and growth years, are also crucial in
assessing the quality and commercial value of medicinal plants.
Therefore, the combination of multi-source data and machine
learning in these areas holds significant practical importance. The
applications of multi-source data combined with machine learning
in other fields are summarized in Table 6 [59,172—181].

For instance, the content of polysaccharides in Polygonatum
kingianum, a key active ingredient, is subject to fluctuations influ-
enced by growth years, resulting in variations in quality. Zhang et al.
[175] investigated the efficacy of a mid-level data fusion-based PLS-
DA model in identifying Polygonatum kingianum samples with
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different growth years. ATR-FTIR and UV-Vis data were fused after
pre-processing and feature variable extraction. The data fusion
approach yielded superior modeling results (100% accuracy)
compared to using a single data source. This study provides a valu-
able reference method for evaluating the quality of medicinal plants.
Furthermore, a data fusion strategy combined with machine learning
was employed to discriminate Vietnamese ginseng samples based on
their parts and growth years [181]. By integrating ATR-FTIR and
UPLC-QTOF/MS data through low- and mid-level data fusion,
orthogonal projections to latent structures discriminant analysis
(OPLS-DA) and SVM models were established to analyze the multi-
source data. The two classification models demonstrated different
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Table 5

Summary of references for content prediction using machine learning combined with multi-source data.

Year Object Multi-source Strategy Data processing Machine learning Result Refs.
2017 Crocus sativus L. NIR, HPLC NM Vector normalization, MSC, FD, SD, SLS, PLSR crocin I: RMSECV = 1.40; crocin II: [152]
min-max normalization RMSECV = 0.30
2020 Pueraria lobata (Willd.) Ohwi NIR, UV, HPLC LLF, MLF Min-max normalization, iPLS PLSR LLF: RMSEP = 0.418, RPD = 4.295 [153]
2020 Arctostaphylos uva-ursi (L.) UV-Vis, UHPLC/Q-TOF-MS LLF, MLF SNV, MSC, S-G, smoothing + FD, PCA PLSR MLF: RPD (TPC) = 6.258, RPD [154]
Spreng. leaves (DPPH) = 6.699
2020 Morinda officinalis F. C. How NIR, UHPLC NM SNV, MSC, FD, SD, S-G smoothing PCA, PLSR RPD (SNV) = 9.30 [155]
2020 Magnolia biondii Pamp. NIR, HPLC, GC-MS NM MSC, SNV, FD, SD, S-G smoothing PLSR RPD > 5.80, R? > 0.90 [156]
2021 Bran-fried Atractylodes lancea NIR, intelligent color NM Vector normalization, MSC, FD, SD PLSR R? = 0.9717, RMSE = 0.026 [157]
(Thunb) DC. recognition, HPLC
2019 Rheum palmatum L. NIR, HPLC NM NM PLSR, PSO-LSSVM PSO-LSSVM: RSEP (free [158]
anthraquinone) = 10.66%, RSEP (total
anthraquinone) = 4.95%
2021 Lonicera japonica Thunb. NIR, HPLC NM FD, SD, MSC, SLS, vector normalization, PLSR, ANN RMSEP > 1.20, R > 0.98 [159]
min-max normalization, S-G
smoothing, constant offset elimination
and different combinations
2018 Potentilla erecta ATR and DRIFTS, Raman, HPLC NM S-G filter PLSR RSEP (Raman): 2.0—4.9%; RSEP (NIR): [160]
subsp. strictissima (Zimmeter) 2.7—6.5%
A. ]. Richards
2016 Essential oils of Lavandula GC-MS, GC-FID, Raman, MIR NM NM PLSR, PCA R?> > 0.87, REP > 2.14 [161]
angustifolia Mill., Lavandula
latifolia Medik.
2022 Ginkgo biloba L. leaves NIR, HPLC NM FD, SD, SNV, MSC, OSC, S-G smoothing, PLSR, SVR PLSR: R? > 0.95, RESECV <0.30; SVR: [162]
autoscaling, mean-centering, Par and R? > 0.96, RESECV <0.50
different combinations, iPLS, SiPLS,
CARS, SPA
2019 Ziziphus jujuba Mill. NIR, HPLC NM MSC, derivative, smoothing, PLSR, SVR SVR: R%c = 0.9192, RMSEC = 23.6116, [163]
normalization and their combinations R?p = 0.7859, RMSEP = 33.4818
2017 Gardenia jasminoides ]. Ellis MIR, NIR, HPLC NM NM PLSR R? > 0.95, RSEP <7% [164]
2023 Abelmoschus esculentus L. NIR, HPLC NM SNV, MSC PLSR, PCR, SMLR R?: 0.818—0.931, RPD: 2.036—2.702 [165]
2022 Stir-fried Paeonia suffruticosa NIR, HPLC NM S-G smoothing, MSC, FD, SD, SNV, CARS, PLSR, SVR PLSR: R?c > 0.82, RMSEC < 1.60, [166]
Andr. VCPA, IRIV, GA R?p > 0.82, RMSEP < 1.70, RPD > 2.40
2018 Epimedium brevicornuMaxim. NIR, HPLC NM CARS PLSR R%c = 0.9314, RMSEC = 0.0408, [167]
R?p = 0.9269,
RMSEP = 0.0480
2021 Plantago asiatica L. NIR, HPLC, UV-Vis NM SNV, MSC, S-G smoothing, derivative PLSR R? > 0.80, RPD > 2 [168]
and their combinations; GA, PSO, CARS
2016 Chrysanthemum morifolium NIR, HPLC/Q-TOF-MS NM MSC, SNV, DT, S-G smoothing, FD, SD BPNN, RF, SVR BPNN: R = 0.89 [169]
Ramat. and their combinations; SiPLS
2018 Coptis chinensis Franch., Coptis HPLC, FT-IR, FT-NIR LLF, MLF PCA, VIP, FD, SD, MSC, SNV, smoothing PLSR MLE-VIP: R%c = 0.916, RMSEC = 6.144, [170]
deltoidea C. Y. Cheng & P. K. (11 points) R?p = 0.942, RMSEP = 4.877,
Hsiao, Coptis omeiensis (Chen) C. RPD = 3.768
Y. Cheng, Coptis teeta Wall.
2020 Wolfiporia cocos (F.A. Wolf) FT-IR, UV, HPLC MLF SNV, SD, FD, iPLS, VIP PLSR UV1-VIP: RPD = 3.4, RMSECV = 0.04, [171]

Ryvarden & Gilb.

RMSEP = 0.03

NM: no mention; LLF: low-level fusion; MLF: mid-level fusion; NIR: near-infrared; HPLC: high-performance liquid chromatography; PLSR: partial least squares regression; FD: first derivative; SD: second derivative; MSC:
multiplicative scatter correction; RMSECV: root mean square error of cross-validation; UHPLC: ultra high-performance liquid chromatography; PCA: principal component analysis; SNV: standard normal variate; RPD: residual
predictive deviation; HPLC: high-performance liquid chromatography; GC-MS: gas chromatography-mass spectrometry; S-G: Savitzky-Golay; PSO-LSSVM: particle swarm optimization based least square support vector
machines; RSEP: relative standard error of prediction; ANN: artificial neural networks; SLS: subtract straight line; DRIFTS: diffuse reflectance mid- and near-infrared spectra; GC-FID: gas chromatography-flame ionisation
detector; SVR: support vector regression; OSC: orthogonal signal correction; Par: Pareto scaling; iPLS: interval partial least square; SiPLS: synergy interval partial least square; CARS: competitive adaptive reweight sampling; SPA:
successive projections algorithm; PCR: principal component regression; SMLR: stepwise multiple linear regression; RPD: residual predictive deviation; VCPA: variable combination population analysis; IRIV: iteratively retaining
informative variables; GA: genetic algorithm; HPLC/Q-TOF-MS: performance liquid chromatography-quadrupole-time of flight-mass spectrometry; BPNN: back propagation neural network; DT: de-trend; FT-NIR: Fourier

transform near infrared; FT-IR: Fourier transform infrared; UV: ultraviolet; RMSEP: root mean square error of prediction.
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Table 6
Summary of references for other applications using machine learning combined with multi-source data.
Year Object Multi-source Strategy Data processing Machine learning Result Refs.
2020 Curcuma phaeocaulis Val., Curcuma FT-NIR, E-nose, colorimeter, MLF FD, MSC, SNV, min-max PCA, PLSR, PLS-DA MLF: Acc = 100% [59]
kwangsiensis S. G. Lee et C. F. Liang and HPLC normalization, GA, IRIV, CARS
Curcuma wenyujin Y. H. Chen et C. Ling
2011 Different parts of Panax ginseng C.A. ATR-FTIR, DR-NIR NM NM PCA NM [172]
Meyer
2020 Wild and cultivated Wolfiporia cocos UHPLC, ATR-FTIR NM S-G filter, VIP PLSR, PLS-DA Acc >95.14%, RPD = 2.494 [173]
(F.A. Wolf) Ryvarden & Gilb.
2022 Different parts and harvest time of ATR-FTIR, FT-NIR LLF SD, MSC, SNV PLS-DA, SVM, PCA, t-SNE Different parts (PLS-DA): Acc [174]
Dendrobium officinale Kimura & Migo (ATR-FTIR) = 1.00, harvest time
(PLS-DA): Acc (ATR-FTIR) = 1.00
2021 different growth ages of Polygonatum ATR-FTIR, UV-Vis MLF PCA, FD, SD, S-G PLS-DA, PCA, HCA MLF: Acc (PLS-DA) = 100% [175]
kingianum Collett & Hemsl.
2023 Heavy metals in Lilium brownii NIR, LIBS, ICP-MS LLF, SNV, MSC, FD, VIP, CARS, LASSO PLSR, LSSVR MLE-PLSR: R? (Zn) = 0.9858, [176]
var. viridulum Baker MLF R? (Cu) = 0.9811, R? (Pb) = 0.9460,
RMSEP (Zn) = 4.3047 mg/kg,
RMSEP (Cu) = 4.9592 mg/kg,
RMSEP (Pb) = 8.3881 mg/kg
2023 Polygonum multiflorum Thunb. E-eye, HPLC LLF VIP OPLS-DA, PLSR LLF: R? (OPLS-DA) = 0.753, Q? (OPLS- [177]
DA) = 0.490; Q? (PLSR) = 0.872, R?
(PLSR) = 0.67
2021 Abelmoschus esculentus L. Vis-NIR hyperspectral imaging MLF SPA, GLCM LIBSVM, MLR MLF: Acc (LIBSVM) = 91.7%, RMSECV [178]
(texture features, effective (MLR) = 1.348%, R? (MLR) = 0.816, RPD
wavelengths) (MLR) = 2.33
2022 Cultivation methods and growth years Nano-effect near and mid MLF VIP PLS-DA, OPLS-DA, PLSR MLF: Acc (OPLS-DA) = 100%, RMSEC [179]
of Dendrobium huoshanense C. Z. Tang & infrared spectra (PLSR) = 0.1478, R?c (PLSR) = 0.913,
S.]. Cheng RMSEP (PLSR) = 0.1951, R?p
(PLSR) = 0.984
2021 Wild and cultivated Wolfiporia cocos HPLC, ATR-FTIR LLF, MLF, Boruta, PCA, COW, S-G PLS-DA, RF MLF: Acc (Boruta-PLS-DA) = 97.50% [180]
(F.A. Wolf) Ryvarden & Gilb. HLF
2021 Age and parts of Panax vietnamensis Ha ATR-FTIR, UPLC-QTOF/MS LLF, MLF RFE, CARS, FD, SD, MSC, S-G OPLS-DA, SVM Different growth years (OPLS-DA): Acc [181]

& Grushv.

smoothing and their
combinations

(LLF) = 100%; different parts (RFE-
SVM): Acc (MLF) = 83.33%
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NM: no mention; LLF: low-level fusion; MLF: mid-level fusion; DR-NIR: diffuse reflectance near-infrared spectroscopy; ATR-FTIR: attenuated total reflectance-Fourier transform infrared spectrometry; PCA: principal component
analysis; UHPLC: ultra high-performance liquid chromatography; PLSR: partial least squares regression; PLS-DA: partial least squares discrimination analysis; S-G: Savitzky-Golay; VIP: variable importance in projection; t-SNE:
t-distribute stochastic neighbor embedding; SVM: support vectors machine; SD: second derivative; MSC: multiplicative scatter correction; SNV: standard normal variate; UV-Vis: ultraviolet-visible; HCA: hierarchical cluster
analysis; FD: first derivative; LIBS: laser-induced breakdown spectroscopy; ICP-MS: inductively coupled plasma-mass spectrometry; LSSVR: least squares support vector regression; CARS: competitive adaptive reweighted
sampling; LASSO: least absolute shrinkage and selection operator; RMSEP: root mean square error of prediction; E-eye: electronic eye; HPLC: high-performance liquid chromatography; OPLS-DA: orthogonal projections to latent
structures discriminant analysis; E-nose: electronic nose; IRIV: iteratively retaining informative variables; GA: genetic algorithm; SPA: successive projections algorithm; GLCM: grey-level co-occurrence matrix; LIBSVM: library
for support vector machines; MLR: multiple linear regression; RF: random forest; COW: correlation-optimized warping algorithm; UPLC-QTOF/MS: ultra-performance liquid chromatography quadrupole time-of-flight mass
spectrometry; SVM: support vectors machine; RFE: recursive feature elimination; Acc: accuracy.
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suitability: combining OPLS-DA with low-level data achieved 100%
accuracy in identifying different parts, while the SVM model based
on mid-level data fusion was more suitable for classifying different
growth years, achieving an accuracy rate of 83.33%. The study also
compared different feature extraction methods, finding that vari-
ables extracted using REF were more effective in improving model
performance compared to those extracted using CARS. In previous
studies, differences in the content of secondary metabolites between
wild and cultivated medicinal plants, have been observed due to
varying growth environments. Wang et al. [173] conducted the
qualitative and quantitative analysis using ATR-FTIR and UHPLC to
explore the disparities between wild and cultivated Macrohyporia
cocos. The combination of spectroscopy and PLS-DA proved to be a
rapid identification technique for distinguishing between wild and
cultivated samples, with an accuracy rate exceeding 95.14%. Addi-
tionally, PLSR was employed to correlate ATR-FTIR and UHPLC data,
confirming that spectroscopy and chromatography provide com-
plementary sources for effective content prediction.

In conclusion, although the application of machine learning
combined with multi-source data in these specific areas is
limited, it still offers valuable insights for research in related
fields. The quality evaluation of medicinal plants is a complex
process, and focusing solely on aspects, such as geographical
origin or adulteration is insufficient for comprehensive quality
certification. Developing a comprehensive quality evaluation
platform, including the integration of blockchain technique,
holds great practical significance for assessing the quality of
medicinal plants.

6. Conclusion and prospect

Medicinal plants possess their therapeutic effects through the
combined action of various compounds. However, ensuring their
high-quality is crucial to maximize their clinical efficacy. Tradi-
tional analytical methods may not fully elucidate the mechanism of
action or identify all medicinal components. In contrast, utilizing
multi-source data provides a more comprehensive understanding.
This review examines the application of machine learning algo-
rithms, which have demonstrated effectiveness in analyzing and
processing the multi-source data of medicinal plants. When com-
bined with data fusion strategies, these algorithms can integrate
diverse data sources and enhance the accuracy of classification and
prediction models. Numerous studies have demonstrated that
machine learning algorithms, in conjunction with multi-source
data, enable comprehensive quality evaluation of medicinal
plants. Their performance surpasses that of single analytical
methods; thus, positively impacting the clinical application of
traditional Chinese medicine and providing a theoretical basis for
market supervision of medicinal plants.

Although significant progress has been made in combining
machine learning with multi-source data for evaluating the quality
of medicinal plants, there are still areas that require improvement.
Firstly, there should be a focus on acquiring complementary in-
formation through pathways that generate synergistic data, rather
than arbitrary combinations. This aspect has received limited
attention in current research and warrants further consideration.
Secondly, the selection of data pre-processing methods often relies
on traditional trial and error approaches, which are time-
consuming and may overlook valuable complementary informa-
tion. There is a need for clear guidelines and regulations regarding
the selection of pre-processing methods. Ensemble pre-processing
methods show promise but still have room for improvement.
Selecting and developing appropriate pre-processing methods will
be a major challenge. Thirdly, data fusion offers significant advan-
tages in processing high-dimensional data of medicinal plants and
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can enhance inference accuracy by integrating multi-source infor-
mation. Among the three data fusion strategies, mid-level data
fusion is the most commonly used, closely followed by low-level
data fusion. While many studies have shown that mid-level data
fusion performs well, blind adherence to this strategy should be
avoided. Choosing the most suitable approach based on specific
objectives and data properties is more conducive to obtaining
scientifically sound results. Feature extraction plays a critical role in
data fusion to prevent overfitting and dimensionality issues effec-
tively. The reasonable selection of feature extraction or variable
selection methods should be the focal point of data analysis. Lastly,
there is no universal machine learning algorithm that can be
applied to all datasets. The selection of machine learning algo-
rithms should be based on the specific problems to be solved and
the characteristics of the dataset. Machine learning is a powerful
tool for analyzing multi-source data of medicinal plants, but the
constant evolution of analysis technology necessitates continuous
the innovation in machine learning algorithms. The four areas
mentioned above (multi-source data, pre-processing and feature
extraction, data fusion, and machine learning) require further
research to overcome existing challenges. This review provides
constructive suggestions for improving the quality evaluation
methods of medicinal plants and enhancing the applicability of
market monitoring.
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