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ABSTRACT: Sensitive and selective detection of proteins from complex samples has gained substantial interest within the scientific
community. Early and precise detection of key proteins plays an important role in potential clinical diagnosis, treatment of different
diseases, and proteomic research. In the study reported here, six different compounds belonging to a group of uniform materials
based on organic salts (GUMBOS) have been synthesized using three thiacarbocyanine (TC) dyes and employed as fluorescent
sensors. Fluorescence properties of micro- and nanoaggregates of these TC-based GUMBOS formed in phosphate buffer solutions
are studied in the absence and presence of seven proteins. Fluorescence response patterns of these TC-based GUMBOS were
analyzed by linear discriminant analysis (LDA). The constructed LDA model allowed discrimination of these seven proteins at
various concentrations with 100% accuracy. The sensing and discrimination abilities of these TC-based GUMBOS were further
evaluated in mixtures of two major proteins, i.e., human serum albumin and hemoglobin. Fluorescence response patterns of these
mixtures were analyzed by LDA. This model allowed discrimination of various mixtures with 100% accuracy. Moreover, spiked urine
samples were prepared and the responses of these sensors were collected and analyzed by LDA. Remarkably, discrimination of these
seven proteins was also achieved with 100% accuracy.

KEYWORDS: protein discrimination, cross-reactive sensor array, GUMBOS, linear discriminant analysis (LDA), protein mixture,
real samples

Sensitive and precise sensing of multiple proteins
simultaneously is of great interest for clinical diagnosis,

treatment of disease, and proteomic research.1 Currently, the
most commonly used technique for protein detection is
enzyme-linked immunosorbent assay (ELISA)2 due to its
excellent specificity and sensitivity as a result of specific
binding interactions between each antibody and its target
protein.3 However, high cost and poor stability of antibodies
limit application of this approach for protein sensing. Other
types of methodologies include polyacrylamide gel electro-
phoresis coupled to mass spectroscopy (see ref 4 for example
and ref 5 for electrochemical methods). The problem is that
these techniques are time-consuming, requiring complicated
synthetic procedures, expensive, and sometimes not capable of
resolving complex mixtures of proteins. As alternatives, cross-

reactive sensor arrays, known as electronic noses (e-noses),
have been employed for high-throughput detection and
discrimination of proteins.6 In this regard, diverse sensor
systems have been applied for array sensing of proteins,
including functionalized gold nanoparticles,6a,7 fluorescent
polymers,6b,8 carbon nanotubes,7c,9 and porphyrins.10 Among
these sensing materials, the use of fluorescence as a detection
technique is the method of choice due to its high sensitivity.
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However, broad application of this approach is hindered by
complicated design and syntheses.
In this study, a fluorescence-based sensor array using a group

of uniform materials based on organic salts (GUMBOS) for
sensitive and accurate protein discrimination is developed. The
concept of GUMBOS has been introduced by our research
group in 2008 as solid-phase organic salts with tunable
properties similar to ionic liquids (ILs) but with a wider range
of melting points (25−250 °C) than ILs (melting point, <100
°C).11 GUMBOS employed in the study reported here consist
of a series of three fluorescent thiacarbocyanine (TC) cations
bearing different methine chain lengths. TC dyes belong to a
dye family called polymethine dyes (PD), where their
alternating π-electrons along the methine chain produce high
polarizability, which provides strong attractive forces between
molecules.12 Thus, the structures of TC dyes allow extended
and stable aggregation.13

It has been found that aggregation of PD highly depends on
the surrounding environment composition.14 In particular,
noncovalent interactions between cyanine dyes and biomole-
cules are of considerable interest14a,i,15 within the scientific
community. These interactions modify the aggregation of dyes
and hence remarkably alter their photophysical and photo-
chemical properties. Due to the favorable properties of TC
dyes noted above, these compounds may have considerable
potential for use in fluorescence protein sensing. In this study,
bis(trifluoromethylsulfonyl)imide ([NTf2]−) and bis-
[(pentafluoroethyl)sulfonyl]imide ([BETI]−) anions were
used to increase the hydrophobicity of GUMBOS and facilitate
aggregation at low concentrations.
The six TC-based GUMBOS-based sensors employed in this

sensor array exhibit varying degrees of aggregation when mixed
with seven proteins, thus providing distinct fluorescence
responses. These resulting responses exhibit cross-reactive
patterns, which can be statistically analyzed to discriminate
proteins at diverse concentrations. The fluorescence sensor
array developed in this study shows great potential for highly
sensitive diagnostic applications.

■ RESULT AND DISCUSSION
Characterization of TC-GUMBOS Sensors. The chem-

ical structures of TC-GUMBOS used in this study are shown
in Figure 1. Formation of TC-GUMBOS was confirmed by ESI

spectroscopy (Figures S1−S6) as well as FT-IR spectra
(Figures S7−S9). Analysis in positive ion mode (Figures
S1A−S6A) shows the presence of intense peaks with m/z
values of 339.0990, 365.1100, and 391.1300 and thus
corroborated the presence of [TC0]+, [TC1]+, and [TC2]+
cations, respectively (Table S1). In the same manner, the
presence of peaks with 279.92 and 379.91 m/z in negative ion

mode (Figures S1B−S6B) corroborates the presence of
[NTf2]− and [BETI]− anions, respectively. Product for-
mation was also confirmed. Peaks in FT-IR spectra
corresponding to both parent compounds were observed in
the product spectra (Figures S7−S9).
Relative hydrophobicities of all TC-GUMBOS employed in

this study were estimated using an octanol/water partition
coefficient (KO/W) to evaluate their capacity to form
nanostructures or aggregates in aqueous solutions. Logarithms
of KO/W are listed in Table S1. As inferred by these log KO/
W values, hydrophobicities of these TC-GUMBOS increase in
the following order: [TC2][NTf2] < [TC1][NTf2] <
[TC1][BETI] < [TC2][BETI] < [TC0][NTf2] < [TC0]-
[BETI].
Aggregates of our TC-GUMBOS were prepared as described

in Synthesis and Characterization of TC-GUMBOS and
Aggregates. Analysis of TEM images presented in Figure 2

showed that [TC0][NTf2] aggregates were composed of
circular nanoparticles with sizes around (25 ± 6) nm and
[TC0][BETI] aggregates were composed of rodlike morphol-
ogies (1.4 ± 0.3) × (0.17 ± 0.09) μm. Evaluation of TEM
images corresponding to [TC1][NTf2] GUMBOS revealed
aggregates with spherical morphology. However, their sizes
were not accurately measured due to blurred edges. [TC1]-
[BETI] GUMBOS presented rodlike shapes with average sizes
of (1.2 ± 0.5) × (0.21 ± 0.08) μm. In the case of
[TC2][NTf2], predominantly triangular morphologies were
displayed with an average size of (200 ± 10) × (177 ± 80) nm.
Last, for [TC2][BETI], spherical morphologies were obtained
with average sizes of (63 ± 8) nm.

Figure 1. Chemical structures of synthetized TC-GUMBOS.

Figure 2. TEM micrograph of TC-GUMBOS aggregates: (A)
[TC0][NTf2], (B) [TC0][BETI], (C) [TC1][NTf2], (D) [TC1]-
[BETI], (E) [TC2][NTf2], and (F) [TC2][BETI].
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Spectral Properties of TC-Based GUMBOS. Anions
[NTf2]− and [BETI]− do not absorb light at wavelengths
longer than 210 nm. As a result, these anions are non-
fluorescent. For this reason, spectral properties of these TC-
GUMBOS are completely attributed to TC cations used in the
formation of these compounds. As a result of being highly
hydrophobic, absorption and emission spectra for all six TC-
GUMBOS were recorded at a concentration of 5 μM in
ethanol. From results depicted in Figure 3A, we observed
maximum absorbance wavelengths for [TC0]+, [TC1]+, and
[TC2]+ as 424, 555, and 655 nm, respectively. Upon anion
variation, no changes in absorption maxima were observed.
Instead, a change in molar absorptivity was observed. Figure
3B displays the fluorescence emission spectra of GUMBOS
when excited at their corresponding absorption maximum.
Emission maxima observed for [TC0]+, [TC1]+, and [TC2]+
were at 483, 572, and 672 nm, respectively (Figure 3B).
The absorbance and fluorescence spectra of TC-GUMBOS

aggregates were also evaluated in phosphate buffer (pH = 7.4).
The resulting spectra are displayed in Figure 3C,D,
respectively. In comparison with their ethanolic solutions,
[TC0]-GUMBOS dispersions exhibit the same absorption
maxima at 424 nm with relatively higher shoulders at 402 nm
attributed to H-aggregation (Figure 3C). The absorption
spectra for [TC1][NTf2] and [TC1][BETI] buffer dispersions
show additional peaks at 615 and 650 nm, respectively,
representative of J-aggregation (Figure 3C). Conversely, in the
cases of [TC2][NTf2] and [TC2][BETI], the absorption
spectra of these aggregates exhibit blue-shifted peaks centered
at higher energy and are also attributed to H-aggregation

(Figure 3C). Buffer dispersions of TC0-GUMBOS, TC1-
GUMBOS, and TC2-GUMBOS were excited at 423, 541, and
645 nm, respectively, showing emission maxima at 476, 488,
565, and 665 nm for [TC0][NTf2], [TC0][BETI], TC1-
GUMBOS, and TC2-GUMBOS, respectively.

Detection and Discrimination of Proteins through a
TC-GUMBOS Sensor Array. Seven proteins with diverse
molecular weights (MW), with and without a cofactor, and
different isoelectric points (pI) were selected as sensing targets
(Table S2). Among the seven selected proteins, HSA, IgG,
Trans, and Fib are top four in abundant proteins of human
serum.6a The remaining three proteins, i.e., Hb, Cyt-c, and Lys,
are nonserum proteins.
In order to investigate if TC-GUMBOS dispersions were

capable of discriminating between these proteins, fluorescence
responses of these sensors were investigated in the presence of
each protein. All fluorescence spectra were analyzed using
individual protein concentrations of 0.5 g/mL, and noticeable
changes in emission intensity of each TC-GUMBOS were
observed. For this reason, eq 1 was employed to calculate
sensor response. Figure 4A is the representation of the TC-
GUMBOS sensor responses in the presence of different
proteins. As shown in Figure 4A, the presence of each protein
produced a varied fluorescence response with the same sensor.
Additionally, in the presence of the same protein, different
fluorescence responses were obtained for each TC-GUMBOS
sensor. These distinct response patterns suggest feasibility of
protein discrimination using these responses to build a sensor
array.

Figure 3. (A) UV−Vis and (B) fluorescence spectra of TC-GUMBOS in ethanol. (C) UV−Vis and (D) fluorescence spectra of TC-GUMBOS
suspended in phosphate buffer via the reprecipitation method at a concentration of 5 μM.
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In order to further validate the ability of this sensor array to
discriminate proteins, the pattern responses were then
subjected to multivariate statistical analyses, specifically,
principal component analysis (PCA) and linear discriminant
analysis (LDA). Both PCA and LDA are statistical techniques
commonly used for dimensionality reduction. PCA is
“unsupervised”, as it ignores class labels, while LDA is a
“supervised” technique and computes the linear discrimination
factors that maximize the separation between multiple
classes.16

Initially, raw data collected for the six TC-GUMBOS sensors
was employed to build a predictive model with LDA. Figure 4B
is a display of a two-dimensional plot of the canonical scores
obtained using the entire data collected, where different
proteins are well clustered in individual groups with a
classification accuracy of 100%. For comparative purposes,
the raw data was first processed with PCA to reduce
dimensionality. Then, the first two principal components that
accounted for 69.4% of variability within the data were
employed to build a predictive model with LDA. This new
LDA model discriminated the proteins into separate groups
with an accuracy of 97.62%. In this case, one Cyt-C sample was
misclassified as Hb (Figure S10). For this reason, the following
statistical analysis was performed using the raw data.17 Sensor
responses and score values for the canonical factors for each
replicate of the seven studied proteins are depicted in Tables
S4 and S5, respectively.
Additionally, lower protein concentrations were tested to

evaluate the ability of this sensor array to discriminate proteins
at trace levels. Tables S6 and S7 provide the sensor response

values of each protein and scores of canonical factors 1 and 2,
respectively. Sensor responses obtained for these proteins at
0.1 μg/mL were analyzed by LDA. As shown in Figure S10A,
relative deviations of sensor responses become larger at this
concentration as expected. Figure S11B depicts successful
clustering of most of the studied proteins into groups, with a
clear overlap between the confidence ellipses of Hb and Cyt-C.
This may be due to the presence of the heme-group in both
proteins. Remarkably, the accuracy of this model at 0.1 μg/mL
concentration is 100%, proving that this sensor array allows
detection and discrimination of the studied proteins at low
concentrations.
Moreover, the sensor response with respect to protein

concentration was evaluated. Different protein concentrations
(0.1−20 μg/mL) were tested using these TC-GUMBOS
sensors (Figure S12). Evaluation of these results demonstrated
that [TC1][NTf2] and [TC2][BETI] exhibited an increase in
fluorescence intensity, resulting in positive sensor responses
(eq 1) toward all seven proteins. In contrast, [TC0][NTf2]
exhibited fluorescence quenching that is reflected in negative
sensor responses toward IgG; [TC0][BETI] showed quench-
ing of its fluorescence toward all seven proteins. Moreover,
[TC1][BETI] presented negative sensor responses toward
HSA and Lys; [TC2][NTf2] showed negative responses
toward HSA and Trans. These features remained consistent
over a protein concentration range of 0.1−20 μg/mL and, as
anticipated, were enhanced at higher concentrations. As
illustrated in Figure S13, nine concentrations were tested and
grouped into nine isolated clusters in LDA plots for each
protein. Discriminant accuracies were calculated to be 100%
for all proteins. Since the first discriminant canonical factor
(factor 1) produced greater than 99% variance, it was plotted
against each protein concentration. An excellent linear
relationship between canonical 1 and protein concentrations
was observed, as illustrated in Figure S13. These results
demonstrate that interactions between the TC-GUMBOS
sensors and each protein are homogeneous and stable.

Discrimination of Mixtures of Proteins. The capacity of
these TC-GUMBOS to discriminate proteins present in a
mixture was also studied. For this purpose, sensor responses
for mixtures of HSA and Hb with different weight ratios (100%
HSA, 80% HSA + 20% Hb, 60% HSA + 40% Hb, 40% HSA +
60% Hb, 20% HSA + 80% Hb, and 100% Hb) were collected.
The total protein concentration was maintained at 5 μg/mL.
The raw data was employed to build a new LDA model (Table
S8). As illustrated in the LDA plot (Figure 5), HSA and Hb
mixtures with various ratios were well discriminated with a
discriminant accuracy of 100%. Score values of canonical
factors 1 and 2 are displayed in Table S9. Based on evaluation
of the LDA discrimination plot displayed in Figure 5, a notable
trend from 100% HSA samples with higher scores to 100% Hb
samples with lower values of canonical scores was observed.
However, an exemption for the mixture of 80% HSA−20% Hb
samples that was presented with the lowest canonical score
values was observed. In order to understand why these samples
are outside this trend, a hierarchical cluster analysis (HCA)
was performed (Figure S14). Evaluation of the HCA plot
demonstrated that all samples are separated and are distributed
into three different clusters. One of those clusters included
80% HSA−20% Hb samples, indicating that these samples are
less related to the other samples.

Protein Discrimination in Real Samples. Additionally,
to explore application of this sensor array to more complex,

Figure 4. (A) Response of sensor array-based TC-GUMBOS for
seven proteins at 0.5 μg/mL in pH 7.4 phosphate buffer. Error bars
represent standard deviations of six replicate samples. Dot−dash red
lines represent separate responses of each protein. (B) Canonical
score plot for response patterns as obtained from LDA for seven
proteins at 0.5 μg/mL. Ellipses represent 95% confidence.
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real samples, artificial urine that contains various organic and
inorganic salts was used as media for discrimination of the
seven studied proteins at 5 μg/mL. Sensor response values and
scores of canonical factors 1 and 2 are presented in Tables S10
and S11, respectively. Figure 6 is a representation of a two-

dimensional canonical score plot. Evaluation of this plot
indicates that this sensor array is suitable for discrimination of
these seven proteins in a urine sample, providing seven
different clusters without overlap. Discriminant accuracy was
calculated to be 100%, demonstrating the high feasibility of
this fluorescence sensor array to discriminate proteins in real
samples at low concentrations.
Discussion of the Possible Sensing Mechanism.

Spectral properties of PD are highly dependent on the
surrounding media.18 In recent decades, studies of noncovalent
interactions between PD and biomolecules are of considerable
interest.15a,19 We hypothesize that noncovalent interactions
occur in the sensing process between TC-GUMBOS and
proteins studied, which results in variation of aggregation,
rotational/stretching motion, etc. Among these effects, we
believe that the formation of different types of aggregates is the
major driving force for emission changes. The absorption and
emission spectra of these six sensor elements with different
proteins are depicted in Figure S15. It is well established that
thiacarbocyanine dyes could form H-aggregates that cause
nonradiative decay, thus leading to decreased emission,20 and
as J-aggregates that cause increased emission.19a As an
example, the [TC2][BETI] sensor element exhibited positive
responses toward all seven proteins. As observed in Figure

S15F, in the presence of proteins, the intensity of H-
aggregation absorption at 476 nm decreased and the monomer
absorption peak at 655 nm was amplified. This behavior
indicates that [TC2][BETI] nanoGUMBOS are dissociating
into monomers in the presence of proteins. As a result, the
fluorescence spectra (Figure S15F) exhibited increased
fluorescence emission of [TC2][BETI] as proteins were
introduced into the system. Conversely, fluorescence emission
of [TC0][BETI] decreased as proteins were incorporated
(Figure S15B). These changes are attributed to the formation
of H-aggregates in the presence of proteins, which is verified
using absorption spectra as shown in Figure S15B, where blue-
shifted peaks were observed as proteins were introduced. In
addition, H-aggregates exhibit a red shift of the emission
spectrum and remarkably lower fluorescence intensity (Figure
S15B).
[TC1][NTf2] and [TC2][BETI] nanoGUMBOS showed

positive responses toward all seven proteins; however, this
phenomenon cannot be explained using formation of J-
aggregates in the presence of proteins. Analysis of absorption
spectra (Figure S15C) indicates that [TC1][NTf2] does not
form H-aggregates. Instead, a red-shifted peak was observed at
610 nm, which is attributed to absorption of J-aggregates. In
the presence of proteins, the absorption peaks of the monomer
at 555 nm and the shoulder peak of J-aggregates increased.
This effect is more difficult to distinguish in [TC2][BETI]
absorption spectra (Figure S15 F). However, emission spectra
confirmed formation of J-aggregates with a slightly red-shifted
emission peak at 638 nm. Interestingly, emission intensity of
the monomer also increased with addition of proteins.
Moreover, it has been reported in the literature that TC1
dyes form J-aggregates in the presence of HSA, corroborating
the results obtained in this work.15a This is probably due to
formation of a dye monomer−protein complex, which would
restrict intramolecular rotational motion. The intramolecular
rotational motions of the flexible polymethine chain in TC
dyes would lead to rapid nonradiative decay.15a,19a,21 As a
result, noncovalent interactions (e.g., hydrogen bonding,
hydrophobic interaction, and electrostatic attraction) with
proteins are very likely to stabilize TC dyes, thus restricting the
nonradiative decay caused by rotation and twist and hence
increasing the quantum yield of these TC dyes.22 Therefore,
we hypothesize that the slightly red-shifted monomer
absorption peak (Figure S14C) is also due to noncovalent
interactions between the dye monomer and protein.
In the case of [TC0][NTf2], [TC1][BETI], and [TC2]-

[NTf2], responses in the presence of proteins were mixed
(Figure S15A,D,E, respectively). This behavior could be
explained via specific H- or J-aggregation of the nano-
GUMBOS with specific proteins. In our group, it has been
proven that some cyanine-based nanoGUMBOS form H- and
J-aggregates within the nanoparticles.23 In this work, a similar
mechanism may be apparent. Moreover, it has been shown that
certain cyanine dyes form either J- or H-aggregates in the
presence of different types of biomolecules.24 We believe that
an increase in fluorescence emission intensity here is due to J-
aggregate components in nanoGUMBOS, which are more
prevalent than H-aggregates. Conversely, a decrease in
fluorescence emission intensity occurs when H-aggregates
were predominant in the nanoparticles.

Figure 5. Canonical score plot for discrimination of HSA, Hb, and
mixtures at 5 μg/mL. Ellipses represent 95% confidence.

Figure 6. Canonical score plot for discrimination of all seven proteins
in artificial urine

ACS Sensors pubs.acs.org/acssensors Article

https://dx.doi.org/10.1021/acssensors.0c00484
ACS Sens. 2020, 5, 2422−2429

2426

http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acssensors.0c00484/suppl_file/se0c00484_si_001.pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00484?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00484?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00484?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00484?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00484?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00484?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00484?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00484?fig=fig6&ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://dx.doi.org/10.1021/acssensors.0c00484?ref=pdf


■ CONCLUSIONS

In this study, we have developed a rapid and effective
fluorescence sensor array for protein discrimination. This
sensor array was constructed using a series of TC-GUMBOS,
which were easily synthesized through a simple ion metathesis
reaction. The variation of TC-GUMBOS aggregation due to
noncovalent interaction with proteins was believed to be the
major driving force for fluorescence protein sensing. Other
noncovalent interactions also play indispensable roles, e.g.,
molecular rotation restriction. It has been successfully
demonstrated that this sensor array is capable of discriminating
proteins at concentrations as low as 0.1 μg/mL with high
accuracy. In addition, a linear relationship was observed
between the first canonical score and protein concentration,
providing the potential for protein quantification using this
sensor array. Furthermore, seven proteins spiked in artificial
urine were successfully identified at 0.5 μg/mL with 100%
discriminant accuracy. In comparison with previously reported
protein sensor arrays, this TC-GUMBOS-based fluorescence
sensor array provides favorable discriminant accuracy at a
much lower protein concentration.6d,e,7b,25,26 Thus, we believe
that this TC-GUMBOS-based sensor array has great potential
for highly sensitive and accurate medical diagnosis as well as
for discrimination of other biomolecules.

■ MATERIALS AND METHODS
Reagents. Thiacarbocyanine (TC) dyes, 3,3′-diethylthiacyanine

iodide ([TC0][I]), 3,3′-diethylthiacarbocyanine iodide ([TC1][I]),
and 3,3′-diethylthiadicarbocyanine iodide ([TC2][I]) were purchased
from Sigma Aldrich (St. Louis, MO). Lysozyme (Lys) from chicken
egg white, human transferrin (Trans) (>98%), albumin from human
serum (HSA) (approx. 99%), cytochrome c (Cyt-c), immunoglobulin
G from human serum (IgG), fibrinogen from human plasma (Fib),
human hemoglobin (Hb), ammonium persulfate, sodium phosphate
dibasic, and sodium phosphate monobasic were all also purchased
from Sigma Aldrich. Lithium bis(trifluoromethane)sulfonamide
(Li[NTf2]) salt and lithium bis(pentafluoroethanesulfonyl)imide
(Li[BETI]) salt were obtained from TCI Portland, Oregon. Artificial
urine, HPLC-grade ethanol, and dichloromethane were acquired from
VWR (Batavia, IL). Triple deionized ultrapure water (18.2 M Ω cm)
was obtained using an Aries high-purity water system (West Berlin,
NJ). All reagents were used as received without further purification.
Instrumentation. Ultraviolet−visible (UV−vis) absorption spec-

tra were measured using a Shimadzu UV-3101PC UV−Vis scanning
spectrometer (Shimadzu, Columbia, MD). Fluorescence emission
spectra were recorded employing a Spex Fluorolog-3 spectrofluorim-
eter (model FL3-22TAU3; Jobin Yvon, Edison, NJ) with a slit width
of 5 nm. All spectroscopic studies were performed using quartz
cuvettes (Starna Cells).
Fourier transform infrared spectra (FT-IR) were collected through

128 scans in the 4000−650 cm−1 region with a resolution of 4 cm−1 in
a Bruker Tensor 27 instrument (Billerica, MA) equipped with a PIKE
MIRacle single-bounce attenuated total reflectance (ATR) cell.
Electrospray ionization mass spectrometry (ESI-MS) was accom-
plished using an Agilent 6210 system in positive and negative mode.
Transmission electron microscopy (TEM) images were obtained for
characterization of size and morphology using a JEOL JEM-1400
transmission electron microscope (München, Germany).
Synthesis and Characterization of TC-GUMBOS and

Aggregates. TC-GUMBOS were synthesized using a metathesis
reaction between iodide salt of each dye and Li[NTf2] or Li[BETI] at
a molar ratio of 1:1.1. Reactions were performed in a biphasic system
of DCM and water while stirring for 24 h in a dark place at room
temperature. The DCM layer was washed several times with DI water
to remove the byproduct (LiI). DCM was then removed by rotary
evaporation. Finally, GUMBOS were freeze-dried to remove residual

water. Resultant TC-GUMBOS were characterized by ESI-MS and
FT-IR spectroscopy.

TC-GUMBOS aggregates were prepared using a simple reprecipi-
tation method.27 Briefly, 50 μL of 0.5 mM ethanolic solution of each
TC-GUMBOS was dropped into 5 mL of 10 mM sodium phosphate
buffer (pH = 7.4) under a sonication bath for 3 min. The resulting
aqueous solution was left to rest for 15 min. Finally, 5 μL of each
solution was dropped into a TEM grid to characterize the aggregates.

Data Collection. Protein stock solutions of 200 μg/mL were
prepared in 10 mM sodium phosphate buffer (pH = 7.4). Diluted
solutions with concentrations ranging from 0.1 to 20 μg/mL were
prepared from these stock solutions.

For sensing studies, 50 μL of 0.5 mM ethanolic TC-GUMBOS
solution was dropped into 5 mL of protein solution and sonicated for
3 min. Then, the sensor−protein solution was allowed to stabilize for
15 min and absorption and fluorescence spectra were collected.

In this study, relative emission intensity change was employed as a
sensor response (eq 1)

= −I
Irelative emission intensity change ( 1)

0 (1)

Here, I and I0 represent emission intensity of TC-GUMBOS in buffer
with and without proteins, respectively. For each protein, six replicate
samples were analyzed.
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