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Abstract: The quantification of atmospheric gases with small unmanned aerial systems (sUAS) is
expanding the ability to safely perform environmental monitoring tasks and quickly evaluate the
impact of technologies. In this work, a calibrated sUAS is used to quantify the emissions of ammonia
(NH3) gas from the exit stack a 0.1 MWth pilot-scale carbon capture system (CCS) employing a 5 M
monoethanolamine (MEA) solvent to scrub CO2 from coal combustion flue gas. A comparison of the
results using the sUAS against the ion chromatography technique with the EPA CTM-027 method for
the standard emission sampling of NH3 shows good agreement. Therefore, the work demonstrates
the usefulness of sUAS as an alternative method of emission measurement, supporting its application
in lieu of traditional sampling techniques to collect real time emission data.

Keywords: ammonia emission; monoethanolamine; amine scrubbing; coal; flue gas; unmanned;
UAV; UAS; post-combustion CO2 capture

1. Introduction

The use of small unmanned aerial systems (sUAS) has expanded significantly in the scientific
community over the last few years. Recent studies have demonstrated the usefulness of sUAS
for providing novel measurements in the boundary layer that were previously infeasible with
existing methods (i.e., ground stations, towers, weather balloons, manned aircraft, satellites) [1–3].
These studies illustrate several advantages that motivate the incorporation of sUAS for atmospheric
research. The ability to provide nearly instant real-time emission estimates without the traditional lead
times that accompany wet-lab analysis, such as ion chromatography (IC), is desirable in environmental
and industrial applications. Furthermore, from the operational cost perspective, the total investment
needed for the sUAS is far cheaper than that for costly instrumentation with its associated consumables
and periodic services [1]. Additionally, from the safety viewpoint, there is considerable risk associated
with sampling gases from hard-to-access stacks for off-line analysis, which also require continuous
human checks. Thus, through a systematic flight plan sUAS can easily mitigate the previous sampling
hazards. The occasional replacement of batteries is the primary upkeep cost of the sUAS, therefore
it is a cost-effective technology to purchase and maintain. Because of the widespread pollution of
anthropogenic carbon dioxide (CO2), coal-burning powerplants are a relevant case study for the
industrial applications of sUAS for the quantification of point source pollution.
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Coal burning power plants emit 4.90 × 103 Tg of carbon dioxide (CO2) a year, accounting for
~21% of all CO2 emitted throughout the United States of America (U.S.A.) in the year 2017 [4]. It is
well-known that CO2 gas absorbs infrared radiation and traps heat in the Earth’s atmosphere, working
as a greenhouse gas [5]. As a result, continued anthropogenic CO2 pollution increases radiative forcing,
leading to an increase in the average global surface temperature [5]. Thus, practical technologies that
counteract the projected increase in CO2 emitted are needed, which should not significantly change
the existing methods of energy production [6]. There are numerous strategies to mitigate the effect of
fossil fuel-burning power plants and counteract pollution due to the constantly amplifying demand
for energy in the last few decades [6,7]. An effective way to reduce emissions in existing coal burning
power plants is to retroactively fit (retrofit) them with carbon capture systems (CCS) [8,9] which trap
and remove CO2 from the flue gas [10]. One successful solution employs a post-combustion treatment
of the flue gas via the absorption of the CO2 with a circulating amine solvent, with a potential emission
reduction of up to 90% [11–17]. Many of the 359 coal burning power plants that operate across the
U.S.A. [18] can potentially be fitted with CCS technology. Currently, 65 large-scale projects have started
retrofitting carbon capture technologies in the U.S.A. [19].

Ammonia (NH3) gas can be produced from a variety of sources, and has been identified in
low quantities as a byproduct from amine-based CCS as a result of the oxidative degradation of the
absorbing solvent [20–24]. NH3 is a pollutant with undesirable chemical effects in the atmosphere [25],
where large levels can promote aerosol chemistry [26], which affects air quality and climate by forming
particulates that are detrimental to public health and scatter solar radiation, respectively [27,28].
For example, the presence of NH3 above background levels can change nitrate aerosol chemistry [29].
Therefore, accurately measuring the emissions of NH3(g) from reported sources is of significant
importance. Herein, we quantify NH3(g) emissions from a small pilot-scale CCS with a coal-fired flue
gas generator using a 5 M (30.0 wt.%) monoethanolamine (MEA) solvent. For this study, we used the
UKySonde, a sUAS [1] equipped with a calibrated NH3(g) sensor [2], along with standard gas emission
sampling methodology for comparison.

2. Materials and Methods

2.1. CO2 Capture System

The University of Kentucky Center for Applied Energy (UKy-CAER) built and operates a bench
scale 0.1-megawatt thermal (MWth) CO2 capture system using a coal burning flue gas generator
(FGG) to provide representative coal-derived flue gas to the CCS (10–14% CO2, 8–10% O2, other trace
gases, and balanced with N2). The UKy-CAER CSS is typically operated during normal working
hours in a manner to replicate extreme operation conditions (e.g., high temperatures and contaminate
levels) to accelerate solvent degradation and obtain meaningful data form a short operational number
of hours. The produced flue gas is transported to the building housing the CCS in the left-hand
side of Figure 1a, where 5 M of MEA solvent (in water) is used in a typical aqueous amine-based
CCS absorber/regeneration configuration (Figure 1b) to separate the CO2 from the flue gas. Finally,
the treated flue gas is released out of a stack (0.194 m diameter), which is in the center of the yellow
circle in Figure 1a. All the NH3 concentrations reported from the sUAS readings are measured
in close proximity to the stack (as explained below) to model the source point. The scrubbed flue
gas typically contains > 2% CO2, along with NH3(g) from the degradation of the amine solvent.
The NH3(g) concentration is solvent- and regeneration temperature-dependent. The total emissions
from this CCS are relatively small and well below thresholds considered significant from an air
permitting perspective [30]. The NH3(g) emissions in the scrubbed flue gas were quantified using an
sUAS (Figure 1c), with comparison to the daily emission average values collected using a standard
stack sampling methodology based on ion chromatography with the method EPA CTM-027 [20,30].
The experiments with the sUAS took place between September 10 and 14, 2018, above the stack
exhaust. The measurements of the background NH3(g) mixing ratio, defined in this work as the mole
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fraction in air [27], were completed at the ground level (away from the coal burning FGG and CCS) on
September 10. The NH3(g) mixing ratios above the stack were registered from September 11 to 14,
2018. The bench facility was fully operational on September 10, 11, and 13, 2018. The standard EPA
CTM-027 method was used to compare the sUAS measurements and demonstrate the ability of the
sUAS to replace conventional measurement techniques.
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Figure 1. (A) Aerial view of the facilities employed in the University of Kentucky Center for Applied
Energy (UKy-CAER). The coal flue gas generator is located to the right side and the gas flows through
a polyvinyl chloride (PVC) pipe (from right to left) to the building on the left-hand side for amine
treatment in the carbon capture system (CCS) before the scrubbed flue gas emissions are released
out the stack at the top (yellow dashed circle). (B) Image of the amine-based CCS at UKy-CAER.
(C) Perspective view of the small unmanned aerial system (sUAS) flying above the stack.

2.2. Quantification of NH3(g) with the UKySonde

In the sUAS, called the UKySonde, an analytical sensor (MICS-6814 sensor) is integrated to
measure the mixing ratio of NH3 with a 3DR Solo quadcopter from 1 to 2 m above from the stack
located at 20 m above ground level (AGL). A 10-bit Arduino UNO microcontroller (Somerville, MA,
USA) with a V2 Base Shield (SEEED Studio, Nanshan, China) and an Arduino Wireless SD Shield
operating at 5.0 V were used to control the sensing package [2]. Thunder Power batteries with 1350 mA
h capacity (RC 2S, Las Vegas, NV, USA) provided the power for data collection, which was set at a rate
of 1 Hz, recorded in a SanDisk Ultra Class 10 microSD card with 8 GB capacity (Milpitas, CA, USA).
The sensor was calibrated in a custom environmental chamber using standards from 5.00 ppbv to
90.00 ppmv, as described previously [2]. The corresponding linear regression through the origin for
this calibration curve is described by Equation (1):

Mixing Ratio of NH3 (ppmv) = 1.0085 × Sensor Response (ppmv). (1)

The performed calibration expanded the operating range of the sensor (from factory specification)
to sub-ppmv levels, with an accuracy within ±0.20% of the measured value and a precision of 30 ppbv.
Programed flights with Mission Planner Autopilot software were used to monitor the NH3(g) levels
at a rate of 1 Hz during operation every 1 h starting at 9 AM (UTC-5). The flights were designed to
measure NH3(g) directly from 1 to 2 m above the exhaust stack, corresponding to the maximum mixing
ratio in the flue gas after the CCS. The mixing ratios of NH3 reported below for measurements from 1 to
2 m above the stack were corrected after subtracting the average background measured when the fired
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furnace (located ~60 m downwind) was not operating. Previous work with a tethered balloon equipped
with the same sensor package discarded any prop-wash effect by the quadcopter simultaneously
measuring NH3 for altitudes between 10 and 120 m above the ground level [2]. The sensor was
allowed to warm-up and equilibrate for at least 1 h before take-off operation of programed flights with
Mission Planner Autopilot. The flight plan was programed to reach an altitude of 140 m AGL, travel
horizontally to the top of the stack position, descend to an altitude of 21 m AGL, and registering data
for reporting during the ascent from 21 to 22 m AGL (from 1 to 2 m above the top of the exhaust stack).
For data recovery, the device was powered down before removing the SD card.

2.3. Conventional Ammonia Emission Sampling

Ammonia emissions were collected by adapting the methodology from U.S.A. EPA CTM-027 to
the facilities 7.62 cm diameter flue gas exit pipe, designed for this purpose, within the CCS. In this
method, gaseous ammonia is withdrawn from the CCS exit stack and collected in an aqueous dilute
sulfuric acid solution inside a four impinger train connected to a pump (flow rate of 4 L min−1) and
metering console. Sulfuric acid was purchased (VWR, Wayne, PA, USA) pre-diluted to the target
concentration of 0.05 M. The impinger solutions were combined and stored at 4 ◦C prior analysis.
The method typically samples > 500 L of gas for each sample, with an average of around 600 L of
gas and a collection time of 2 h. Field blanks were collected in parallel during the sample collection
period as a measure of quality control and ambient ammonia levels and were always below the
analytical detection limit. Ammonia absorbed into the sulfuric acid impinger solutions was analyzed
by ion chromatography (IC). The samples were diluted with 18.2 MΩ cm−1 water and analyzed by
cation ion chromatography using a Dionex ICS-3000 system with an AS autosampler (Dionex-Thermo
Scientific, Sunnyvale, CA, USA). The cation IC system consisted of a CSRS 300 suppressor, EGC III
MSA (methanesulfonic acid, MSA) eluent generator, IonPac CS17 analytical column and a CG17 guard
column operated at 30 ◦C. The conductivity detector was maintained at 35 ◦C with a sample injection
volume of 20 µL. An isocratic mobile phase of MSA (2.5 mM) at a flow rate of 0.8 mL min−1 was
used. Ammonia quantitation used a calibration curve made from a stock ammonium (NH4

+) solution
(Environmental Express, Charleston, SC, USA). Peak identification and integration was performed
manually using the Dionex Chromeleon chromatography management system software version 6.80.
Each sample was analyzed in triplicate and the average value was used to calculate the gas phase
analyte concentration in ppmv [30]. The method typically requires ~2 h for sample collection and ~1 h
for actual analysis per sample.

2.4. Emission Estimates of NH3(g)

The mixing ratio of NH3 (in ppmv), measured immediately above the exhaust stack, were integrated
over time and combined with the flow rate of the treated flue gas at the exhaust of ~14.7 actual cubic
feet per minute (acfm) to obtain the mass flow of emissions with the industry standard of pounds of
NH3 per day (lbs day−1). The average mass flow measured for each flight 1 m above the exhaust stack
was fed into a Gaussian plume model to retrieve the mixing ratio inside the stack prior to diffusion.
For this model, the atmospheric conditions were neutral, and the exit velocity and temperature of
the flue gas were 0.232 m s−1 and 40 ◦C, respectively. The specific wind inputs for each flight were
provided by the nearest weather station (KKYGEORG28) at Horse Country, ~3.2 km away [31].

3. Results and Discussion

The UKySonde flew every ~1 h during 8 h from 11 to 14 September 2018, measuring the NH3(g)
levels from the flue gas after treatment with MEA in the CCS on September 11 and 13, and the
background levels (with the furnace off) on September 12 and 14. The NH3(g) mixing ratio attributed to
the UKy-CAER CCS can be retrieved from the average mixing ratio of NH3 measured in close proximity
to the stack throughout the day. The measurement of NH3(g) in the flue gas using the standard stack
sampling method took place under generally the same CCS operating conditions, but not in parallel
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with sUAS sampling. Daily averages of NH3(g) emissions were quantified and used to compare with
the sUAS measurements.

3.1. Ammonia Measurements

The background mixing ratio determined between 12 and 4 pm on September 10th, was 7.26
(±0.35) ppbv. Figure 2 shows the measurements of NH3(g) on 11 and 13 September, which took place
every 1 h. The average mixing ratios of NH3 1 m above the stack (at the virtual point source) was
28.90 (±7.60) ppmv on September 11 (black columns in Figure 2). Similarly, during September 13
(red columns in Figure 2), the average 26.70 (±8.80) ppmv NH3(g). On 12 and 14 September, the CCS
was not operational, and the flights completed with the UKySonde measured a background mixing
ratio 1 m above the exhaust stack, near the low calibration limit of 6.93 (±2.28) and 6.95 (±1.57) ppbv
NH3(g), respectively.
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Figure 2. Mixing ratio of NH3(g) measured 1 m above the exhaust stack every 1 h (from 9:00 AM,
UTC-5) by the UKySonde on September 11 (black) and 13 (red) of 2018.

3.2. Gaussian Modeling of the Point Source

The average mixing ratio measured in each flight (Figure 2) was fed into a Gaussian plume model
to retrieve the mixing ratio inside the stack prior to diffusion. The Gaussian plume model was chosen to
estimate the concentration inside the stack based on measurements taken by the sUAS ~1 m above the
stack exit [32–35]. The model was chosen due to its proven performance over small distances. In other
words, this model has been used on small scales on many occasions and successfully modeled the
dispersion of gas molecules [36–38]. The model was effectively applied to NH3(g), as the measurements
of this pollutant were completed under stable meteorological conditions for a short distance in less
than 1 h, which is much shorter than its atmospheric lifetime, τNH3(g) = 1 day [28,39].

The diffusion of flue gas from the exhaust stack to the NH3(g) sensor depends on many factors,
including the emission rate, distance from source, and atmospheric conditions that influence plume
characteristics. The most significant atmospheric conditions considered are wind speed, wind direction,
and boundary layer stability, all parametrized in the Gaussian plume model to analytically retrieve the
original point source concentration. The estimated NH3(g) emission uncertainly is propagated through
the sUAS measurements and carried into the model. The overall uncertainty of the measurements is
propagated to the final output of the model.

The Gaussian plume model makes the following five assumptions: (1) continuous emission with
negligible background pollution; (2) chemical stability, mass conservation after surface contact and
negligible deposition; (3) steady-state meteorological conditions, negligible change in wind speed
and direction with time and altitude; (4) dispersion parameters are a function of horizontal distance,
negligible diffusion in the direction of travel; and (5) the topography does not alter the plume.
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The Gaussian dispersion Equation (2) provides the concentration, qe, which depends mainly
on the initial flux determined by the UKySonde, Fe, the wind speed oriented along the x-axis, u,
and CCS flow rates, and the dispersion coefficients, σy and σz in the respective directions y (horizontal
and perpendicular to x) and z (vertical to x), which define the spread of the plume. As for any
normal distribution, a 67% of the emitted plume of NH3(g) falls within ±σy and ±σz in each direction.
The stable atmospheric conditions during all measurements are properly fit with small dispersion
coefficient values. Thus, as the x-axis is defined in the direction of the wind associated with the diffusion
coefficient σx, the horizontal σy is largely dependent on crosswinds of variable speed and direction
in the y-axis. The vertical distance from the source, relative to the point source height, represented
in the z direction in Figure 3, is associated with a vertical diffusion coefficient, σz, which varies with
temperature gradients. Stable atmospheric conditions reduce diffusion, resulting in small σz values.

qe =
Fe

2πσyσzu
exp

−(y)2

2σ2
y

{exp
(
−(z − H)2

2σ2
z

)
+ exp

(
−(z + H)2

2σ2
z

)}
. (2)
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Figure 3. Schematic representation of the Gaussian plume model utilized to retrieve the mixing ratio of
NH3(g) in the exhaust stack from the values measured 1 m above.

Table 1 shows the input parameters used in the model for each flight, where the indicated input
NH3 (ppmv) was used to retrieve the flux of the emitted NH3 (µg/s) needed at the point source to
create the measured amounts at the virtual point (1 m above). The flux emitted was finally converted
into a model mixing ratio in ppmv units. For the previous purpose, the exit gas velocity transported
through the fixed stack surface area at the exhaust was needed. As an example of the data treatment
for the flights, the model ran with atmospheric conditions that were neutral, and the exit velocity and
temperature of the flue gas were 0.232 m s−1 and 40 ◦C, respectively. The stack diameter was 0.194 m.
The specific wind inputs and ambient air temperatures for each flight were provided by the nearest
weather station (KKYGEORG28) at Horse Country, ~3.2 km away. The wind speed for each flight was
constant (e.g., for the first flight on September 11 it was consistently at 7 mph NE, with a temperature of
20.0 ◦C (Table 1)). The Gaussian plume model run as a function of distance from the stack (~ 1 m) was
used to estimate the typical σy and σz values. The wind speed on September 11 was consistent for all
flights, except for flight 4, which slowed down by less than 5%. Instead, the windspeeds on September
13, although lower than for September 11, varied by 52% among the eight flights. This variance in wind
speed affecting plume dispersion contributed the most significant source of uncertainty introduced by
the model. Table 1 also sows the results of converting the output mixing ratio in ppmv units into an
emission flux with units of lbs/day.
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Table 1. Input parameters for the Gaussian plume modeling and results.

Date Flight # Mixing Ratio of
NH3(g) (ppmv)

Stack
Radius (m)

Exit Gas
Velocity (m/s)

Exit Gas
Temp (◦C)

Air Temp
(◦C)

Wind Speed
(m/s)

Emitted
NH3 (µg/s)

Model Output
NH3(g) (ppmv)

NH3(g) Emission
(lbs day−1)

9/11/2018

1 26.28 (±2.40) 0.097 0.232 40 20.0 3.1 667 68 6.27 (±0.59) × 10−3

2 34.54 (±1.43) 0.097 0.232 40 20.0 3.1 877 90 8.29 (±0.35) × 10−3

3 29.38 (±2.81) 0.097 0.232 40 20.6 3.1 746 77 7.10 (±0.69) × 10−3

4 21.73 (±2.58) 0.097 0.232 40 21.1 2.7 552 65 5.99 (±0.63) × 10−3

5 34.82 (±4.07) 0.097 0.232 40 21.7 3.1 884 91 8.39 (±1.00) × 10−3

6 33.96 (±1.81) 0.097 0.232 40 21.7 3.1 863 89 8.20 (±0.44) × 10−3

7 31.34 (±3.97) 0.097 0.232 40 20.6 3.1 796 82 7.56 (±0.97) × 10−3

9/13/2018

1 34.09 (±5.50) 0.097 0.232 40 28.9 1.0 247 105 9.66 (±0.31) × 10−3

2 77.50 (±6.94) 0.097 0.232 40 30.0 1.0 878 238 2.19 (±0.39) × 10−3

3 31.67 (±5.00) 0.097 0.232 40 31.1 1.3 230 75 6.90 (±0.28) × 10−3

4 8.53 (±4.91) 0.097 0.232 40 31.1 3.6 552 10 0.92 (±0.27) × 10−3

5 45.00 (±9.57) 0.097 0.232 40 31.1 1.0 326 138 12.69 (±0.55) × 10−3

6 18.18 (±7.89) 0.097 0.232 40 31.1 2.7 132 21 1.93 (±0.44) × 10−3

7 40.00 (±12.08) 0.097 0.232 40 29.4 2.7 290 46 4.23 (±0.67) × 10−3

8 16.28 (±7.71) 0.097 0.232 40 26.7 2.2 118 23 2.12 (±0.43) × 10−3
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The quantification of the NH3(g) in air above the exhaust stack is not affected by any chemical
transformations during the short distance from the exit orifice and the time scale of measurements.
However, in addition to physical variability—i.e., provided by wind speed and temperature—the
sensor registers any fluctuations in the NH3(g) emitted due to changes in the chemical composition of
the treated flue gas due to dynamic MEA decomposition reactions. Thus, although the exit gas velocity
from the exhaust stack in Table 1 remains constant, the composition of gas varies as recorded by the
UKySonde measurements combined with the Gaussian plume model.

3.3. Comparison of NH3(g) Emissions Measurement Techniques

Table 1 also displays the model output data for each flight in Figure 1, which indicate that the
average mixing ratios of NH3 measured at the virtual point during September 11 and 13, 28.90 (±7.60)
ppmv and 26.70 (±8.80) ppmv, correspond to the mixing ratios at the point source (inside the stack)
of 80.30 (±10.10) ppmv and 82.00 (±13.30) ppmv, respectively. The retrieved mixing ratios from the
modeled UKySonde measurements are in close agreement with the ion chromatography results of
seven samples collected in the exhaust from the CCS, which were in the range from 11.90 to 120.0 ppmv,
with an average of 84.40 (±18.00) ppmv. In addition, the retrieved point source mixing ratios can be
easily converted to emission rates of 7.20 (±0.93) × 10−3 and 7.55 (±1.23) × 10−3 lbs day−1 of NH3(g) on
September 11 and 13, respectively.

The mixing ratio of NH3 was measured with two independent analytical methods, providing
quality assurance of the similar NH3(g) emission reported by the UKySonde and the standard stack
sampling method during the operation of the CCS. The combined sUAS method with the Gaussian
plume model determined an average NH3 mixing ratio of 81.20 (±16.70) ppmv in the flue gas,
while conventional gas sampling measured an average of 84.40 (±18.00) ppmv. Both values agreed
reasonably well within the experimental errors expected from two different analytical techniques.
These measured values are also comparable to published ammonia emission values from the MEA
testing campaigns at other CCS units of variable size and flue gas composition [30]. The overlapping
results of the emission estimates from the traditional sampling methods and the sUAS further supports
their use in quantifying industrial point source pollution. This work demonstrates that the integration
of sUAS into routine emission sampling can provide accurate, real-time results and can be a valid
alternative to wet-lab techniques.

4. Conclusions

Several advantages and disadvantages can be considered for applying the sUAS method
in this work for determining NH3(g) emissions as compared to the traditional offline EPA ion
chromatography sampling method. The new method is cheap and easy to implement while providing
a faster measurement and sampling frequency than ion chromatography. In addition, the use of a
sUAS eliminates the risk to human life associated with sample collection requiring the climbing of
hard-to-access exhaust stacks emitting toxic pollutants. However, the use of a sUAS requires access
to meteorological information or the ability to register it. In this context and as a disadvantage,
other atmospheric regimes than the one studied here would require the implementation of alternative
dispersion models and in situ wind measurements. The implementation of the technique also requires
a licensed sUAS pilot and appropriate flying authorizations. A final potential advantage of the sUAS
is to allow for the simultaneous sampling of other pollutants with appropriate sensor probes and
emission parameters by including sonic anemometers for determining wind speed and direction and
physical parameters (temperature, pressure, and relative humidity).

Currently, the total annual NH3(g) emissions in the U.S.A. is 3.0 (± 0.2) Tg year−1, with 70–80%
attributed to agriculture (e.g., fertilizer and manure) and the remaining 20–30% originating from
industry and other anthropogenic sources [40]. Having the ability to quickly measure NH3(g) emissions
from a point source, such as this amine-based CCS, has broad implications and is a potential application
of this technique. The ability to record essentially real-time emission data is of significant interest to
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utility and industrial locations, in addition to regulatory agencies. Overall, this work demonstrates
that NH3(g) emissions can be estimated with confidence using sUAS and are a viable option to
replace existing sampling methods. The use of sUAS as an analytical tool to quantify point source
anthropogenic pollution NH3(g) can find application also in natural settings. In this regard, future
work could be expanded by performing horizontal flight patterns with in situ wind measurements
to characterize the plume completely as it traverses the boundary layer and undergoes atmospheric
ageing. Possible interesting efforts in this field could also include numerical simulations to compare
with present or new measured results. Particularly, the recent development of computational fluid
dynamics (CFD) numerical simulations can contribute to improve the analysis of pollutant emissions
and their spread [41,42]. Finally, this work also serves as an example for future applications of sUAS to
monitor pollution emissions—i.e., in the case of agriculture and ammonia contributed by livestock or
from rice paddies.
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