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Abstract

Background

Urinary tract infection (UTI) is a common emergency department (ED) diagnosis with

reported high diagnostic error rates. Because a urine culture, part of the gold standard for

diagnosis of UTI, is usually not available for 24–48 hours after an ED visit, diagnosis and

treatment decisions are based on symptoms, physical findings, and other laboratory results,

potentially leading to overutilization, antibiotic resistance, and delayed treatment. Previous

research has demonstrated inadequate diagnostic performance for both individual labora-

tory tests and prediction tools.

Objective

Our aim, was to train, validate, and compare machine-learning based predictive models for

UTI in a large diverse set of ED patients.

Methods

Single-center, multi-site, retrospective cohort analysis of 80,387 adult ED visits with urine

culture results and UTI symptoms. We developed models for UTI prediction with six ma-

chine learning algorithms using demographic information, vitals, laboratory results, medica-

tions, past medical history, chief complaint, and structured historical and physical exam

findings. Models were developed with both the full set of 211 variables and a reduced set of

10 variables. UTI predictions were compared between models and to proxies of provider

judgment (documentation of UTI diagnosis and antibiotic administration).

Results

The machine learning models had an area under the curve ranging from 0.826–0.904, with

extreme gradient boosting (XGBoost) the top performing algorithm for both full and reduced

models. The XGBoost full and reduced models demonstrated greatly improved specificity

when compared to the provider judgment proxy of UTI diagnosis OR antibiotic administra-

tion with specificity differences of 33.3 (31.3–34.3) and 29.6 (28.5–30.6), while also de-

monstrating superior sensitivity when compared to documentation of UTI diagnosis with
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sensitivity differences of 38.7 (38.1–39.4) and 33.2 (32.5–33.9). In the admission and dis-

charge cohorts using the full XGboost model, approximately 1 in 4 patients (4109/15855)

would be re-categorized from a false positive to a true negative and approximately 1 in 11

patients (1372/15855) would be re-categorized from a false negative to a true positive.

Conclusion

The best performing machine learning algorithm, XGBoost, accurately diagnosed positive

urine culture results, and outperformed previously developed models in the literature and

several proxies for provider judgment. Future prospective validation is warranted.

Introduction

In the United States, there are more than 3 million emergency department (ED) visits each

year for urinary tract infections (UTI) with annual direct and indirect costs estimated to be

more than $2 billion.[1–3] Compared with the general population, ED patients with UTIs

have higher acuity (approximately 10% of visits are for pyelonephritis) and are more likely to

present with non-classic symptoms such as altered mental status, fatigue, and nausea.[4]

Because a urine culture, part of the gold standard for diagnosis of UTI, is usually not available

for 24–48 hours after an ED visit, diagnosis and treatment decisions are based on symptoms,

physical findings, and other laboratory results, potentially leading to overutilization, antibiotic

resistance, and delayed treatment. [5]

Diagnostic error for UTI in the ED has been reported to be as high as 30–50%.[6–8] While

women of child-bearing age exhibiting classic symptoms of dysuria, frequency, and hematuria

have a high likelihood of disease, in more generalized cohorts of ED patients historical, physi-

cal, and laboratory findings are less accurate.[9, 10] In a systematic review of ED studies per-

taining to urinalysis results, Meister et al. found that only the presence of nitrite was specific

enough to rule in the disease, while no single test or simple combination of tests was able to

rule out the disease.[10] Furthermore, many of these prior studies examining UTI focused on

high prevalence populations with uncomplicated UTI, creating concern for spectrum bias in

the results.[11] These findings have led to calls for development of more sophisticated clinical

decision support systems with predictive models that incorporate multiple aspects of both his-

tory, physical, and laboratory findings to improve diagnostic accuracy.[10]

While some predictive models for UTI have been developed, [12–17] they are limited in

several ways. Most use only a few variables (e.g. only urine dipstick or urinalysis results), were

derived from small datasets, and fail to model for complex interactions between variables

which results in poor to moderate diagnostic performance. Others, like the neural network

developed by Heckerling et al.[16], have improved diagnostic accuracy but were derived on

female-only data sets of generally healthy outpatient populations with high prevalences of UTI,

limiting their generalizability. Yet, now with the recent widespread adoption of Electronic

Health Records (EHRs) and advances in data science[18], there is the opportunity to move

beyond these limited predictive models and develop and deploy sophisticated machine learn-

ing algorithms, trained on thousands to millions of examples to assist with UTI diagnosis and

potentially reduce diagnostic error.

Our aim, therefore, was to train, validate, and compare predictive models for UTI in a

diverse set of ED patients using machine learning algorithms on a large single-center, multi-

site, electronic health record (EHR) dataset. Within the validation dataset, we further sought
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to compare the best performing model to proxies of clinical judgement by examining provider

patterns of UTI diagnosis and antibiotic prescription to gain insight about the potential impact

of the model.

Methods

Design

Single-center, multi-site, retrospective cohort analysis of adult emergency department visits

with urine culture results. This study was approved by the institutional review board (Yale

Human Research Protection Program) and waived the requirement for informed consent.

Data were de-identified after initial database access, but prior to analysis. Only de-identified

data was stored and used in analyses (see S1 File for minimal data set and S2 File for code used

in analyses). We adhered to the Transparent Reporting of a multivariable prediction model for

Individual Prognosis or Diagnosis (TRIPOD) statement on reporting predictive models.[19]

Study setting and population

Data were obtained from four EDs between March 2013 and May 2016. All EDs were part of a

single health care system and have been described previously.[20] All EDs use a single EHR

vendor, Epic (Verona, WI) with a centralized data warehouse. We included all visits for adult

patients (�18 years) who had a urine culture obtained during their ED visit and who had

symptoms potentially attributable to a UTI (Table 1). The requirement to have symptoms

Table 1. Signs and symptoms potentially attributable to UTI�.

Chief Complaints

Abdominal Pain

Genitourinary Problem

Urinary Tract Infection

Altered Mental Status

Fever

Hematuria

Flank Pain

Dysuria

Symptoms

Altered Mental Status

Pelvic Pain

Difficulty Urinating

Flank Pain

Abdominal Pain

Dysuria

Polyuria

Hematuria

Fever

Signs

Costovertebral Angle Tenderness

Abdominal Tenderness

Abdominal Guarding

Abdominal Rigidity

� Incorporated as part of inclusion criteria to exclude patients with asymptomatic bacteriuria

https://doi.org/10.1371/journal.pone.0194085.t001
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potentially attributable to UTI was made to eliminate visits where patients may have asymp-

tomatic bacteriuria.[21]

Data set creation and definitions

All data elements for each ED visit were obtained from the enterprise data warehouse. Only

data available during the ED visit until the time of admission or discharge were used as predic-

tion variables. Medications received during the ED visit and ED diagnosis were not included

as variables to eliminate the influence of provider knowledge on the prediction model. Predic-

tor variables included demographic information (age, sex, race, etc.), vitals, laboratory results,

urinalysis and urine dipstick results, current outpatient medications, past medical history,

chief complaint, and structured historical and physical exam findings (S1 Table).

Data preprocessing

Data were preprocessed according to methods previously described.[20] Errant text data in

categorical fields were improved through regular expression searches. Continuous data (labs,

vitals) within the EHR are often not missing at random and provide additional information if

encoded in some way. For example, in patients who are viewed as “not sick” labs are often not

ordered. Continuous data were therefore smoothed and discretized using k-means clustering

(k value = 5) allowing incorporation of a “not recorded” category.[22] Medications and

comorbidities were grouped using the Anatomical Therapeutic Chemical (ATC) Classification

System and Clinical Classification Software categories[23, 24]

Outcomes

The primary outcome for all analyses was the presence of a positive urine culture defined by

>104 colony forming units (CFU)/high powered field (HPF), a threshold pre-established by

the laboratory of our healthcare system for reporting positive results. Mixed flora results were

only considered positive if there was the presence of Escherichia coli.[25] For the secondary

aim, we compared the best performing model to clinical judgement. While EHR data readily

allows the accumulation of large amounts of data to develop prediction models, it is much

more limited in allowing unbiased assessment of provider diagnosis and management.[26]

Providers may fail to document a UTI diagnosis in the EHR and antibiotics are often given for

other diagnoses in patients with UTI symptoms. We therefore chose to compare the best-per-

forming full and reduced models to 1) provider documentation of UTI diagnosis and 2) if the

provider gave antibiotics OR documented a diagnosis of UTI, the provider was given credit for

a UTI diagnosis. Cases where antibiotics were given and there was a clear alternative diagnosis

(pneumonia, diverticulitis, colitis, cholecystitis, enteritis, obstruction, peritonitis, and celluli-

tis–captured by key word search) were not labeled as a UTI diagnosis. We believed examining

provider UTI diagnosis alone would provide a reasonable upper bound for provider diagnostic

specificity, and, likewise, a combination of UTI diagnosis or antibiotics for provider diagnostic

sensitivity. Comparisons were performed for overall, admitted, and discharge cohorts. For

these scenarios, we identified all medications prescribed or given within the ED meeting the

ATC “infective” or “antibiotic” categories and urinary tract infection diagnoses by ICD9 and

ICD10 codes (S2 Table).

Model development

We developed models for UTI prediction using seven machine learning algorithms: random

forest, extreme gradient boosting, adaptive boosting, support vector machine, elastic net,
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neural network, and logistic regression (R packages included: randomForest, xgboost, ada-

boost, e1071, glmnet, lme4, nnet, and caret). The first six algorithms were chosen for their abil-

ity to model nonlinear associations, resiliency to overfitting, relative ease in implementation,

and general acceptance in the machine learning community. Logistic regression, commonly

used in the medical field, was chosen as a baseline comparison. Data preprocessing steps, spec-

ified above, were common to all models. Models were developed using the full variable set

(211 variables) and a reduced set of 10 variables selected through expert knowledge and litera-

ture review (Table 2). Expert and literature review-based selection was chosen over automated

variable selection techniques to address user acceptance of model variables. Ten was chosen as

a number that was felt to represent a reasonable upper threshold for development of an online

calculator/app addressing usability concerns around manual data entry. Supported by prior lit-

erature, interaction terms were only assessed for selected urinalysis variables.[7, 9, 10] Where

applicable, models were tuned through 10-fold cross validation and grid searches on respective

hyperparameters within the training data set. All models were trained and validated on a ran-

domly partitioned 80%/20% split of the data.

Model comparison/Analysis. Descriptive statistics were used for baseline characteristics

and outcomes. Univariate chi-square tests were used to compare categorical variables, and t-

tests and ANOVA were used to compare continuous variables. We report the area under the

curve (AUC) of the receiver operating characteristic (ROC) as the primary measure of model

prediction. [27] AUC comparison was performed to evaluate significance via chi-square statis-

tics using the method developed by Delong et al.[28] In order to account for multiple compari-

sons, a Bonferroni adjusted p-value of 0.004 was considered statistically significant. Additional

statistics for comparison included sensitivity, specificity, positive and negative likelihood ratios

with 95% confidence intervals (CI) and are reported at the optimal threshold for AUC.

For comparison to the two scenarios of clinical judgement, confusion matrices (i.e. 2x2

contingency matrices) were constructed. Sensitivity, specificity, and accuracy with 95%CI

were calculated. The sensitivity is defined as the proportion of positive results out of the num-

ber of samples which were actually positive and specificity as the proportion of negative results

out of the number of samples which were actually negative. Diagnostic accuracy was defined

as the proportion of all tests that give a correct result. Exact binomial confidence limits were

calculated for test sensitivity and specificity.[29] Confidence intervals for positive and negative

likelihood ratios were based on formulae provided by Simel et al.[30] To increase interpretabil-

ity, when comparing the models to UTI diagnosis alone, we set the specificity of the best per-

forming models to that of UTI diagnosis allowing assessment of the differences in sensitivity.

Similarly, when comparing the best performing models to UTI diagnosis OR antibiotic

Table 2. Selected variables for reduced models.

Variable References

Age [3, 21]

Gender [3, 6, 21]

UA Leukocytes [3, 6, 10, 12, 21]

UA Nitrites [3, 6, 10, 12, 21]

UA WBC [3, 6, 10, 12, 21]

UA Bacteria [3, 6, 10, 12, 21]

UA Blood [3, 6, 10, 12, 21]

UA Epithelial Cells [3, 6, 10, 12, 21]

History of UTI [3, 6, 21]

Dysuria [3, 6, 21]

https://doi.org/10.1371/journal.pone.0194085.t002
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administration we set the sensitivity of each model to that of UTI diagnosis OR antibiotic

administration allowing assessment of the differences in specificity. Differences in sensitivity

and specificity between the models and proxies for provider judgement were analyzed using

the adjusted Wald method and displayed with 95%CI.[31]

Results

During the study time period, there were 560,515 ED visits (410,173 patients). A total of

80,387 ED visits (55,365 patients) had urine culture results, symptoms potentially attributable

to a UTI, and were ultimately included in the final analyses. There were 18,284 (23%) positive

urine cultures, 14,335 (35%) in females, and 3,755 (18%) in males. Further demonstration of

the training/validation cohorts and processing steps are demonstrated in Fig 1. The median

age for the visits was 53 [IQR 34–72] and 68% were female. Additional basic demographic

information and selected patient characteristics stratified by urine culture result are demon-

strated in Table 3.

Classification results for the machine learning models are presented in Fig 2 and Table 4.

The top classifier for the full models was XGBoost with an AUC of .904 (95%CI .898-.910) and

was statistically better than all other models except Random Forest. The top classifier for the

reduced models was XGBoost (AUC .877, 95%CI .871-.884). All full models were statistically

better than the reduced models except for the reduced XGBoost model.

In the validation cohort, 1616 (22.1%) admitted visits and 1712 (20.1%) discharge visits

were diagnosed with UTI. Within this cohort, the number of admit and discharge visits with

a documented diagnosis of UTI receiving antibiotics was 1610 (99.6%) and 1693 (98.9%),

Fig 1. Flow diagram for study.

https://doi.org/10.1371/journal.pone.0194085.g001
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Table 3.

Urine Culture

Negative (n = 62,103) Positive (n = 18284) P-value

Demographics

Age (median [IQR]) 52.00 [33.00, 70.00] 58.00 [36.00, 79.00] <0.001

Gender (%)—Female 40390 (65.0) 14335 (78.4) <0.001

Race (%) <0.001

White or Caucasian 33674 (54.2) 10202 (55.8)

Black or African American 13093 (21.1) 3672 (20.1)

Hispanic/Latino 1120 (1.8) 483 (2.6)

Insurance status (%) <0.001

Commercial 22057 (35.5) 5754 (31.5)

Medicaid 18505 (29.8) 4907 (26.8)

Medicare 16018 (25.8) 6381 (34.9)

Self pay 671 (1.1) 128 (0.7)

Other 3968 (6.4) 920 (5.0)

Not Reported 884 (1.4) 194 (1.1)

Arrival (%) <0.001

Car 31834 (51.3) 9147 (50.0)

EMS 19103 (30.8) 6744 (36.9)

Walk-in 9026 (14.5) 1841 (10.1)

Disposition (%) <0.001

Admit 27588 (44.4) 8927 (48.9)

Discharge 33579 (54.1) 9165 (50.2)

Past Medical History

Treated with Antibiotics 31411 (50.6) 14520 (79.4) <0.001

Documented UTI Diagnosis 4152 (6.7) 6717 (36.7) <0.001

Calculus of Urinary Tract 3887 (6.3) 1296 (7.1) <0.001

Cancer 5263 (8.5) 1979 (10.8) <0.001

Chronic Renal Failure 3082 (5.0) 1210 (6.6) <0.001

Delirium and Cognitive Disorders 1970 (3.2) 1059 (5.8) <0.001

Diabetes Mellitus 11261 (18.1) 4111 (22.5) <0.001

Genitourinary Conditions 2924 (4.7) 1643 (9.0) <0.001

HIV/AIDS 776 (1.2) 200 (1.1) 0.099

Hyperplasia of Prostate 1747 (2.8) 695 (3.8) <0.001

Genital Disorders 1585 (2.6) 522 (2.9) 0.029

Paralysis 358 (0.6) 346 (1.9) <0.001

Prolapse of Female Genital Organs 211 (0.3) 122 (0.7) <0.001

Sexually Transmitted Infections 1010 (1.6) 281 (1.5) 0.417

Substance Related Disorders 2062 (3.3) 435 (2.4) <0.001

History of Urinary Tract Infections 2764 (4.5) 2025 (11.1) <0.001

Antineoplastics 2388 (3.8) 844 (4.6) <0.001

Other immunosuppresants 1281 (2.1) 328 (1.8) 0.024

Signs and Symptoms

Costoverterbral angle tenderness 2641 (4.3) 902 (4.9) <0.001

Abdominal tenderness 25041 (40.3) 6060 (33.1) <0.001

Back Pain 7481 (12.0) 1969 (10.8) <0.001

Fatigue 10177 (16.4) 2865 (15.7) <0.001

Fever 9923 (16.0) 3322 (18.2) <0.001

(Continued)
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respectively. Comparison of the top-performing (XGBoost) model with provider diagnosis

and antibiotic prescribing are presented in the form of confusion matrices with associated sen-

sitivities, specificities, accuracies, and differences (Tables 5 and 6). While setting the sensitivity

of the best-performing models to the same value as the combination of antibiotics OR docu-

mentation of UTI diagnosis, the best performing full and reduced model demonstrated far

superior specificity with a 33.3 (31.3–34.3) and 29.6 (28.5–30.6) difference, respectively.

Framed within a more clinical perspective, in applying the model to the overall validation

admitted/discharge cohort approximately 1 in 4 patients (4109/15855) would be re-categorized

from a false positive to a true negative when compared to provider judgement as determined

by UTI diagnosis and antibiotic prescribing. Comparing only UTI diagnosis to the best

Table 3. (Continued)

Urine Culture

Negative (n = 62,103) Positive (n = 18284) P-value

Vaginal Bleeding 2368 (3.8) 598 (3.3) <0.001

Vaginal Discharge 1353 (2.2) 360 (2.0) <0.001

Abdoinal Pain 30896 (49.7) 6903 (37.8) <0.001

Pelvic Pain 2292 (3.7) 551 (3.0) <0.001

Flank Pain 6722 (10.8) 1913 (10.5) 0.226

Difficulty Urinating 1981 (3.2) 659 (3.6) <0.001

Dysuria 6754 (10.9) 3553 (19.4) <0.001

Hematuria 2873 (4.6) 1156 (6.3) <0.001

https://doi.org/10.1371/journal.pone.0194085.t003

Fig 2. Receiver operating characteristic (ROC) curves for different machine learning models.

https://doi.org/10.1371/journal.pone.0194085.g002
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performing models set at the same specificity, the best performing full and reduced model also

demonstrated far superior sensitivity with a 38.7 (38.1–39.4) and 33.2 (32.5–33.9) difference,

respectively. In the overall validation admitted/discharge cohort approximately 1 in 11 patients

(1372/15855) would be re-categorized from a false negative to a true positive when compared

to provider judgement as determined by UTI diagnosis alone. Among admit visits receiving

antibiotics, there were 156 visits (13.2%) with clear alternative infectious diagnoses in those

Table 4. Test characteristics of UTI prediction models on validation data�.

Models AUC (95%CI) Sensitivity (95% CI) Specificity

(95% CI)

+LR (95% CI) -LR (95% CI) Accuracy (95% CI) P–value

XGBoost .904(.898-.910) 61.7(60.0–63.3) 94.9 (94.5–95.3) 12.0(11.1–13.0) .404(.387-.421) 87.5 (87.0–88.0) NA

Random Forest .902(.896-.908) 57.3(55.6–58.9) 96.0 (95.6–96.3) 14.3(13.0–15.6) .445(.428-.462) 87.4 (86.9–87.9) 0.58

Adaboost .880(.874-.887) 62.2(60.6–63.8) 92.3(91.8–92.7) 8.06(7.54–8.61) .409(.392-.427) 85.6(85.1–86.2) < .001

Support Vector Machine .878(.871-.884) 49.6(47.9–51.2) 96.8(96.4–97.1) 15.3(13.8–16.9) .521(.504-.538) 86.3(85.7–86.8) < .001

ElasticNet .892(.885-.898) 56.8(55.2–58.4) 94.9(94.5–95.2) 11.1(10.2–12.0) .455(.438-.473) 86.4(85.9–87.0) < .001

Logistic Regression .891 (.884-.897) 57.5(55.8–59.1) 94.7(94.3–95.1) 10.9(10.0–11.8) .449(.432-.466) 86.4(85.9–87.0) < .001

Neural Network .884 (.878-.890) 54.6(52.9–56.2) 95.3(95.0–95.7) 11.7(10.8–12.8) .476(.460-.494) 86.3(85.8–86.8) <001

Reduced XGBoost .877(.871-.884) 54.7(53.0–56.3) 94.7(94.3–95.1) 10.4(9.6–11.3) .479(.462-.496) 85.9(85.3–86.4) < .001

Reduced Random Forest .861(.853-.868) 54.8(53.1–56.4) 94.3(93.9–94.7) 9.66(8.94–10.4) .479(.462-.497) 85.5(85.0–86.1) < .001

Reduced Adaboost .826(.817-.834) 61.9(60.3–63.5) 88.8(88.2–89.3) 5.50(5.21–5.81) .429(.412-.448) 82.8(82.2–83.3) < .001

Reduced Support Vector Machine .822(.813-.832) 49.4(47.8–51.1) 95.8(95.4–96.1) 11.7(10.7–12.9) .528(.511-.546) 85.5(84.9–86.0) < .001

Reduced Elastic Net .870(.863-.877) 52.4(50.7–54.1) 95.2(94.8–95.5) 10.9(9.99–11.8) .500(.482-.571) 85.7(85.1–86.2) < .001

ReducedLogistic Regression .870(.863-.877) 53.3(51.6–54.9) 94.8(94.4–95.2) 10.3(9.52–11.2) .492(.476-.510) 85.6(85.0–86.2) < .001

Reduced Neural Network .873(.867-.881) 54.0(52.3–55.6) 95.0(94.6–95.4) 10.9(10.0–11.8) .485(.468-.502) 85.9(85.4–86.5) < .001

� Test Characteristics determined at optimal AUC threshold

Full models were developed on 212 variables, while the reduced models were developed on 10 variables.

P-values obtained by AUC comparison to best performing model

https://doi.org/10.1371/journal.pone.0194085.t004

Table 5. Comparison of provider judgment (UTI diagnosis or antibiotic administration) to best performing models for prediction of urine culture results.

Model TP FN TN FP Sens (95%CI) Spec (95%CI Acc (95%CI) Diff Spec (95%)

Overall (Admit and

Discharge)

Antibiotics or UTI diagnosis 2601 923 6879 5434 73.8 (72.3–75.2) 55.9 (55.1–56.8) 59.9 (59.1–60.6) NA

XGBoost 2601 923 10988 1325 73.8 (72.3–75.2) 89.2(88.6–89.8) 85.8(85.3–86.3) 33.3 (31.3–34.3)

Reduced XGBoost 2601 923 10529 1784 73.8 (72.3–75.2) 85.5(84.9–86.1) 82.9(82.3–83.5) 29.6 (28.5–30.6)

Admitted

Antibiotics or UTI diagnosis 1344 396 2567 3004 77.7 (75.1–79.2) 46.1 (44.8–47.4) 53.5 (52.3–54.6) NA

XGBoost 1344 396 5055 516 77.7 (75.1–79.2) 90.7(89.9–91.5) 87.5 (86.7–88.3) 44.6 (43.4–45.8)

Reduced XGBoost 1344 396 4820 751 77.7 (75.1–79.2) 86.5 (85.6–87.4) 84.3(83.5–85.1) 40.4 (39.3–41.6)

Discharged

Antibiotics or UTI diagnosis 1257 527 4312 2430 70.4 (68.3–72.6) 64.0 (62.8–65.1) 65.3 (64.2–66.3) NA

XGBoost 1257 527 5933 809 70.4 (68.3–72.6) 88.0 (87.2–88.8) 84.3 (83.5–85.1) 24.0(22.8–25.1)

Reduced XGBoost 1257 527 5709 1033 70.4 (68.3–72.6) 84.7(83.8–85.5) 81.7(80.8–82.5) 20.7(19.5–21.9)

In order to demonstrate the additive value of the models, each predictive model threshold was set to same sensitivity as provider judgment (UTI diagnosis or Antibiotic

Administration) and examined for its ability to predict urine culture results.

TP = True Positive, FN = False Negative, TN = True Negative, FP = false positive, Sens = Sensitivity, Spec = Specificity, Acc = Accuracy

Diff spec = difference in specificity between the model and provider judgment 95%CI

https://doi.org/10.1371/journal.pone.0194085.t005
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with positive urine cultures and 529 (21.3%) in those with negative urine cultures. Among dis-

charge visits who received antibiotics, there were 52 (4.3%) visits with clear alternative infec-

tious diagnoses and 200 (9.0%) in those with negative urine cultures.

Discussion

In this retrospective observational study of urinary tract infections, a common ED diagnosis

with high rates of diagnostic error, we used machine learning algorithms and a large dataset to

accurately diagnose positive urine culture results. The top-performing algorithm, XGBoost,

achieved an AUC of .904(.898-.910), and overall accuracy of 87.5% (95%CI 87.0–88.0), almost

ten percentage points higher accuracy than the best performing model in the literature.[16]

Even for models trained on a more limited set of variables, the best models achieved excellent

results with an AUC of .877(.871-.884) and an accuracy of 85.9%(95%CI 85.3–86.4). In com-

parison to proxies of provider judgment, the best performing models were far more specific

than a combination of antibiotics OR documentation of UTI diagnosis and far more sensitive

than documentation of UTI diagnosis alone.

Previous studies developing predictive models for UTI are limited by small data sets, poor

generalizability to the ED, and diagnostic performance. [12–17] The idea that a predictive

model would be useful for UTI diagnosis in the ED has been around for some time. Wigton

et al. in 1985 developed a scoring model (derived from discriminant analysis) based on history,

physical, and laboratory in 248 female patients in the ED with validation on 298 patients.[32]

In this study the prevalence of UTI was 61% and the reported AUC was 0.78, accuracy 74%,

sensitivity 93%, and specificity 44%. This is the only model developed on ED patients of which

we are aware. Subsequent models, almost all some form of clinical decision rule on a few vari-

ables, were developed predominantly in outpatient settings on several hundred patients with

prevalence values of 53–62% and generally did not have separate validation data sets.[7] Accu-

racy for these studies was 67–76% with sensitivity values of 64.9–82.0% and specificity values

of 53.7–94.8%. The best performing model we found in the literature was by Heckeling et al.

and used neural networks with a genetic algorithm for variable selection.[16] The model by

Table 6. Comparison of provider judgment (UTI diagnosis) to best performing models for prediction of urine culture results.

Model TP FN TN FP Sens (95%CI) Spec (95%CI Acc (95%CI) Diff Sens (95%)

Overall

UTI diagnosis 1447 2077 10432 1881 41.3 (39.7–42.9) 84.7 (84.1–85.4) 75.1 (74.4–75.8) NA

XGBoost 2819 705 10432 1881 80.0 (78.6–81.3) 84.7 (84.1–85.4) 83.7 (83.1–84.2) 38.7 (38.1–39.4)

Reduced XGBoost 2626 898 10432 1881 74.5 (73.0–75.9) 84.7 (84.1–85.4) 82.5 (81.9–83.0) 33.2 (32.5–33.9)

Admitted

UTI diagnosis 652 1088 4607 964 37.4 (35.2–39.8) 82.7 (81.7–83.7) 71.9 (70.9–73.) NA

XGBoost 1502 238 4607 964 86.3 (84.6–87.9) 82.7 (81.7–83.7) 83.6 (82.7–84.4) 48.9 (47.7–49.1)

Reduced XGBoost 1414 326 4607 964 81.3 (79.4–83.1) 82.7 (81.7–83.7) 82.4 (81.7–83.7) 43.9 (42.6–45.1)

Discharged

UTI diagnosis 795 989 5825 917 44.6 (42.2–46.9) 86.4 (85.5–87.2) 77.6 (76.7–78.5) NA

XGBoost 1317 467 5825 917 73.8 (71.7–75.9) 86.4 (85.5–87.2) 83.8 (83.0–84.5) 29.2 (28.0–30.4)

Reduced XGBoost 1212 572 5825 917 67.9 (65.7–70.1) 86.4 (85.5–87.2) 82.5 (81.7–83.3) 23.3 (22.1–24.5)

In order to demonstrate the additive value of the models, each predictive model threshold was set to the same specificity as provider judgment (UTI diagnosis) and

examined for its ability to predict urine culture results.

TP = True Positive, FN = False Negative, TN = True Negative, FP = false positive, Sens = Sensitivity, Spec = Specificity, Acc = Accuracy, Diff Sens = difference in

specificity between the model and provider judgment 95%CI

https://doi.org/10.1371/journal.pone.0194085.t006
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Heckerling et al. was developed in an outpatient setting on 212 female patients and had an AUC

of 0.78, and accuracy of 78%, but lacked testing on a separate validation data set. Our models, in

contrast, were developed on a data set approximately 100 times in size, utilizing hundreds of

variables and machine learning algorithms on a diverse set of ED patients. We achieved a top-

performing AUC 0.12 points higher than Wigton et al. and Heckerling et al. with 9–12% greater

accuracy. The reduced models, while generally not performing as well as the full models, still

achieved much higher results than previously reported models and decision aids.

A model that fails to indicate an ability to improve current care has little value, regardless of

its predictive ability, and recent evidence suggests that most clinical decisions rules fail to out-

perform clinical judgement.[33] In examining the literature, only one of the prior models for

UTI prediction demonstrated its potential clinical impact.[14] McIsaac et al. showed that with

implementation of their simple decision aid unnecessary antibiotics would be reduced by

40.2%. Recognizing the limitations of EHR data and retrospective analysis, we chose to com-

pare the models to two proxies for provider judgment, 1) the provider was considered to have

diagnosed the patient with a UTI if, and only if, the diagnosis was documented—optimizing

specificity, and 2) if the provider gave antibiotics or diagnosed the patient with UTI the pro-

vider was given credit for a UTI diagnosis, thus optimizing sensitivity. These scenarios are

“optimal” from the provider standpoint in that it is likely that a portion of visits which eventu-

ally have a positive urine culture patients were given antibiotics for some other suspected

cause and that in visits with an eventual negative urine culture there is a portion of patients

who did not have a documented UTI, but the provider nevertheless likely had that diagnosis in

mind (e.g. patient diagnosed with dysuria and given antibiotics but eventual urine culture is

negative). In comparison to these proxies of provider judgment, the best performing models

were far more specific than a combination of antibiotics OR documentation of UTI diagnosis

and far more sensitive than documentation of UTI diagnosis alone. This was true in both dis-

charge and admit visits with the larger difference in admit visits possibly a consequence of a

lower threshold for antibiotic administration, complexity of presentation, and higher acuity

visits. Moreover, even in a theoretical scenario where provider judgement is assigned both

optimal bounds (sensitivity assigned from UTI or antibiotics scenario– 73.8% and specificity

assigned from the UTI diagnosis only scenario– 84.7%), both the full and reduced models still

demonstrate overall superior performance. Viewed from another perspective, our findings

suggest that implementation of the algorithm has the potential to greatly reduce the number of

false positives and false negatives for UTI diagnosis. For example, in the overall cohort (both

discharged and admitted patients) approximately 1 in 4 patients (4111/15855) were re-catego-

rized from a false positive to a true negative when comparing XGBoost to antibiotics OR docu-

mentation of UTI diagnosis.

Advances in machine learning, coupled with training on large EHR datasets, have the abil-

ity to disrupt the areas of diagnosis and prognosis in emergency medicine.[34] Already in

other fields, expert level, or above expert level, performance has been achieved in areas as

diverse as the diagnosis of diabetic retinopathy[35] and heart failure prediction.[36] UTI diag-

nosis is an area particular ripe for improvement through machine learning based clinical deci-

sion support. UTI diagnosis has a high error rate, the primary information that is used for

diagnosis are abstract lab values with multiple categories, and there is a lack of reinforcement

learning (ED providers rarely see the final culture results). Incorporation of machine learning

algorithms into existing workflows, however, is not without difficulty. Models that use hun-

dreds of variables make manual entry unfeasible and are currently difficult to “hard” code

within EHR platforms/databases or to export to 3rd party applications. Progress is being made

in this area with tools incorporating the predictive modeling markup language (PMML) facili-

tating interoperable exchange of models.[37] Importantly, for UTI diagnosis, our results
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suggest using a reduced model in, for example, an online app would result in only a small per-

formance loss compared to the full model and still significantly improve diagnostic accuracy.

The app could incorporate pretest probabilities of disease facilitating personalized decisions

for each patient based on patient/doctor determined testing and treatment thresholds. Future

implementation studies could then examine the effect of clinical decision support system app

on diagnostic error and outcomes.

Limitations

The current study has several limitations. First, we recognize that without prospectively collect-

ing data on clinical diagnosis, uncertainty exists regarding the performance of clinical judge-

ment in our study. We, however, believe that the scenarios examined serve to minimize this

risk. Second, there is currently no clear accepted level for a positive urine culture with a range in

the literature from 10^2 cfu/mL to 10^5 cfu/mL. [12–17] Conceivably different thresholds

would result in different test performances. Our choice of 10^4 cfu/mL is a middle ground and

was unable to be adjusted due to standardized laboratory reporting within the EHR. Third, our

model was built on data from a single healthcare institution within a confined geographic region

and would require further validation at other institutions prior to implementation at those sites.

Alternately, institutions could take the methods and variables used here and build their own

models. Fourth, our data only included visits with urine culture results limiting its extension to

patients who may have only had urinalysis or urine dipstick test. Last, our approach was limited

to data elements available during each ED visit and does not include unstructured data elements,

such as features in clinical notes, that may further improve the predictive accuracy.

Conclusion

In this study developing and validating models for prediction of urinary tract infections in

emergency department visits on a large EHR dataset, the best performing machine learning

algorithm, XGBoost, accurately diagnosed positive urine culture results, and outperformed

previously developed models in the literature and several proxies for provider judgment.

Futures implementation studies should prospectively examine the impact of the model on out-

comes and diagnostic error.
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