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Abstract

The claustrum is a thin sheet of neurons enclosed by white matter and situated between the insula and the putamen. It is
highly interconnected with sensory, frontal, and subcortical regions. The deep location of the claustrum, with its fine
structure, has limited the degree to which it could be studied in vivo. Particularly in humans, identifying the claustrum using
magnetic resonance imaging (MRI) is extremely challenging, even manually. Therefore, automatic segmentation of the
claustrum is an invaluable step toward enabling extensive and reproducible research of the anatomy and function of the
human claustrum. In this study, we developed an automatic algorithm for segmenting the human dorsal claustrum in vivo
using high-resolution MRI. Using this algorithm, we segmented the dorsal claustrum bilaterally in 1068 subjects of the
Human Connectome Project Young Adult dataset, a publicly available high-resolution MRI dataset. We found good agreement
between the automatic and manual segmentations performed by 2 observers in 10 subjects. We demonstrate the use of the
segmentation in analyzing the covariation of the dorsal claustrum with other brain regions, in terms of macro- and
microstructure. We identified several covariance networks associated with the dorsal claustrum. We provide an online
repository of 1068 bilateral dorsal claustrum segmentations.
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Introduction
The claustrum is a thin sheet of neurons enclosed between the
insular cortex and the putamen. It exists in almost all mam-
mals, and its anatomy has been widely studied across species
(Kowiański et al. 1999). Ex vivo studies have found conserved
anatomical characteristics across species, such as the existence
of claustral puddles, in which the thin claustrum extends to form
a thicker region (Johnson et al. 2014).

The deep location of the claustrum, together with its fine
structure, has limited the degree to which the region could be
studied, particularly in vivo in humans. Nevertheless, several
theories attempt to explain the claustrum’s role. Crick and Koch
postulated that the claustrum is key for multimodal integra-
tion, famously suggesting that the claustrum forms “the seat
of consciousness” (Crick and Koch 2005). This hypothesis agrees
with recent studies that showed that the claustrum is highly
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interconnected with other brain regions (Mathur 2014; Goll et al.
2015). Due to these findings, it was suggested that the claustrum
acts as a regulator of cortical excitability, and therefore likely
plays a crucial role in sensory perception and selective attention
(Mathur 2014; Goll et al. 2015). In agreement with these hypothe-
ses, studies in mice found that the claustrum can induce cortical
suppression and that silencing the claustrum renders mice more
susceptible to distraction (Atlan et al. 2018; Jackson et al. 2018).
This small handful of studies still leaves ample room for uncov-
ering the mysterious nature of the claustrum. Its potential role in
high cognitive functions, as well as in pathological states (Morys
et al. 1996; Dickstein et al. 2006; Kalaitzakis 2014), makes the
claustrum a prominent candidate for in vivo studies in humans.

Despite its intriguing nature, the human claustrum has been
investigated in vivo in only a handful of neuroimaging studies
(Fernández-Miranda et al. 2008; Koubeissi et al. 2014; Milardi
et al. 2015; Torgerson et al. 2015; Smith et al. 2017; Krimmel
et al. 2019). In part, this can be attributed to the challenge in
segmentation of the claustrum, and the lack of an established
automatic segmentation tool. Instead, existing studies have used
manual segmentation, which is very time-consuming. Ongoing
advances in magnetic resonance imaging (MRI) now allow for
the acquisition of human brain images with submillimeter res-
olution, in which the segmentation of the claustrum may be
feasible. Establishing a method for automatic segmentation of
the claustrum in vivo is therefore a substantial step toward
facilitating reproducible analysis of the anatomy, function, and
connectivity of the claustrum in humans.

Figure 1 demonstrates key aspects of the claustrum anatomy
in post mortem sections (Heimer et al. 1999). These anatomical
features are relevant for the segmentation approach we propose
in this work. The claustrum comprises of 2 distinct structures:
a dorsal claustrum and a ventral claustrum (Morys et al. 1996;
Kowiański et al. 1999; Fernández-Miranda et al. 2008). The dorsal
claustrum is more compact and has higher cell density compared
with the ventral claustrum (Rae 1954; Kowiański et al. 1999). In
terms of morphology, in its anterior part, the dorsal aspect of the
dorsal claustrum appears as a thin layer of gray matter (<1 mm)
that bends laterally over the central insular sulcus (Morel et al.
2013). The dorsal claustrum widens ventrally, where it is situated
between the putamen and the insular cortex, following the cur-
vature of the putamen. Occasionally, the claustrum widens and
extends toward the insular cortex to form “puddles.” Finally, at
its most inferior-anterior part, it bends beneath the putamen.
The transition from dorsal to ventral claustrum occurs where
the dorsal claustrum bends medially (Fig. 1B; Davis 2008). At this
level, the ventral and dorsal claustra often appear disconnected
(Rae 1954; Davis 2008). The ventral claustrum, also termed the
fragmented claustrum, consists of scattered islands of gray mat-
ter in between fibers of the white matter (Druga 2014). At typical
resolutions of in vivo MRI, this fragmented nature manifests as
partial volume effects with the surrounding white matter. Hence,
the ventral claustrum is not always apparent in MRI images
(Davis 2008). Given the limitations of reliably identifying the
ventral claustrum, this work focuses on segmenting the dorsal
claustrum.

Knowledge regarding the connectivity of the claustrum arises
primarily from animal studies. In these studies, the claustrum
has been shown to be a highly connected region (e.g., Olson and
Graybiel 1980; Sadowski et al. 1997; Edelstein and Denaro 2004).
Tracing studies in mice showed that the claustrum is connected
with frontal and sensory brain regions (Smith and Alloway 2014;
Atlan et al. 2017; Wang et al. 2017). In rats, a combined tracing

and resting state functional MRI (rs-fMRI) study found that the
claustrum is functionally connected to its contralateral counter-
part and is anatomically connected with the contralateral hemi-
sphere, as well as regions that include the cingulate cortex, the
agranular motor cortex, and the medial prefrontal cortex (Smith
et al. 2017). One tracing study that focused on the prefrontal
cortex found claustral connections with the prefrontal cortex in
nonhuman primates as well (Reser et al. 2014).

Since axonal tracing is impossible in humans, the tool of
choice for studying the connectivity of the claustrum in humans
is MRI. One approach for studying functional connectivity is
to measure correlations of blood-oxygenation level-dependent
signal in fMRI. Using this approach, Krimmel et al. (2019) found
that at rest, the claustrum was associated with cortical regions
such as the anterior cingulate, prefrontal cortex, and parietal
cortex. During tasks, the same study found that claustrum activ-
ity was associated with widespread cortical activation. Another
approach used to study the connectivity of the claustrum in vivo
is diffusion MRI (dMRI) tractography. This approach also yielded
connections between the human dorsal claustrum and multiple
cortical regions, including the frontal lobe and cingulate cortex
(Torgerson et al. 2015). Importantly, given the spatial resolution
of fMRI and dMRI (commonly ∼ 2 mm3), it is inherently hard
to separate the claustrum—which is less than ∼ 1 mm thick
in some regions—from the neighboring putamen and insula.
Indeed, existing studies often refer to “claustrum/insula” activa-
tions due to this limitation (Fassbender et al. 2011; Ersche et al.
2012; Wang et al. 2019; Snider et al. 2020).

A third approach closely related to brain connectivity is struc-
tural covariance analysis (Andrews et al. 1997; Mechelli et al.
2005; Wei et al. 2018). Structural covariance describes the phe-
nomenon in which the morphology or microstructure of 2 or
more brain regions covaries across subjects (Alexander-Bloch,
Giedd, et al. 2013). Structural covariance is often based on the
correlation of macrostructural properties such as the volume or
thickness of brain regions. The resulting set of covarying regions
is termed a covariance network. Studies have shown that these
networks converge, to a certain extent, with networks derived
from other modalities: networks of dMRI tractography (Gong et al.
2012), maturation-related networks (Alexander-Bloch, Raznahan,
et al. 2013; DuPre and Spreng 2017), resting state fMRI networks
(Kelly et al. 2012), and transcriptomics brain networks (Romero–
Garcia et al. 2018). Recently, additional structural quantitative
MRI measurements were used in a structural covariance analysis,
revealing networks that may be related to amyloid deposition
(Ye et al. 2019). The biological source of these converging results
remains an ongoing discussion, and covariance is not a direct
measure of connectivity. Nevertheless, several mechanisms have
been suggested to explain structural covariance, including physi-
cal connectivity of white matter tracts between regions, as well as
synchronous co-activation, co-regulation, or co-development of
regions (Mechelli et al. 2005; Alexander-Bloch, Giedd, et al. 2013).
As a proxy for brain connectivity, structural covariance provides
insight into the set of brain regions that possibly subserve a
similar function. Structural covariance networks are especially
useful in studying fine structures like the claustrum, in which the
larger voxels required by dMRI and fMRI connectivity analyses
lead to greater partial volume effects. Hence, in this study, we
used the structural covariance analysis. This approach has never
been applied to study the association of the claustrum with other
brain regions, probably because it requires the identification of
the claustrum in a large cohort of subjects, which is impractical
using manual segmentation.
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Figure 1. Coronal sections of a human brain stained for myelin and cell bodies with the Klüver–Barrera method. Left: The dorsal claustrum is situated between the

putamen and the insular cortex. Its anterior dorsal aspect is a thin layer of gray matter (<1 mm) that bends laterally over the central insular sulcus (white arrowhead).

Right: The more fragmented ventral claustrum appears inferior to the putamen and is harder to distinguish from its surroundings. Insets: the approximate location of

each section. Black: claustrum, horizontal stripes: putamen and caudate, vertical stripes: amygdala. Main slices modified with permission from Sakamoto et al. (1999).

Insets reproduced with permission from Crick and Koch (2005). DCl: dorsal claustrum, ex: extreme capsule, Id: dorsal insular cortex, Pu: putamen, VCl: ventral claustrum.

In this study, we developed a fully automatic algorithm for
segmenting the human dorsal claustrum in vivo using high-
resolution T1-weighted (T1w) images. Specifically, we used the
Human Connectome Project (HCP) Young Adult dataset, a pub-
licly available, high-quality, high-resolution dataset (Van Essen
et al. 2013). We used this algorithm to segment the bilateral claus-
trum in 1068 subjects. To assess the validity of our algorithm, we
manually segmented the claustrum in 10 subjects and compared
the manual results to the automatic results. We compared the
automatic segmentation to manual segmentations in a subset
of subjects. The automated segmentation supported the applica-
tion of structural covariance analysis, an approach that serves as
a proxy for investigating the structural brain connectivity based
on micro- and macrostructural properties.

We make the segmentation code, as well as all segmentation
results publicly available at https://github.com/MezerLab/Clau
strumSegmentation and https://doi.org/10.5281/zenodo.3960552,
respectively. Our work will enable future investigation of the
claustrum, including cognitive behaviors such as multimodal
tasks of selective attention.

Materials and Methods
Subjects and Data

To develop a method for the automatic segmentation of the
claustrum, we used the publicly released dataset of the HCP (Van
Essen et al. 2013). The HCP Young Adults dataset consists of 1206
healthy subjects acquired on a 3T connectome scanner. The data
includes high-resolution (0.7 mm3 isotropic) T1-weighted (T1w),
and T2-weighted (T2w) structural images and multishell high
angular resolution diffusion imaging scans (1.25 mm3 isotropic,

90 diffusion directions, b = 2000 mm/s2). The downloaded dif-
fusion data had been processed using the HCP preprocessing
pipeline (Glasser et al. 2013). In short, the preprocessing steps
include intensity normalization across runs, FSL’s TOPUP algo-
rithm for echo planar imaging (EPI) distortion correction (Ander-
sson et al. 2003; Andersson and Sotiropoulos 2016), FSL’s EDDY
algorithm for eddy current and motion correction, gradient non-
linearity correction and the registration of mean b0 to native
volume T1w.

The subjects of this dataset are healthy young adults.
HCP exclusion criteria were neurodevelopmental disorders,
documented neuropsychiatric disorders, neurologic disorders,
diabetes, or high blood pressure. Of the 1206 subjects, we chose
the 1113 subjects who have structural MRI data. We further
removed 35 subjects whose data were problematic for FreeSurfer
segmentation and surface reconstruction (“Issue code B”; see
https://wiki.humanconnectome.org/pages/viewpage.action?pa
geId=88901591), and nine subjects for whom the putamen was
not segmented properly using FSL’s FIRST (Jenkinson and Smith
2001; Jenkinson et al. 2002). The remaining 1069 subjects were
included in the present study.

Of the remaining subjects that had diffusion data, we
removed 6 subjects with bad diffusion data (missing slices,
negative mean diffusivity (MD) values, or extremely high MD
values), leaving 1014 subjects with diffusion data. Analyses were
performed with the maximum number of available data for each
analysis. We report the respective available number of subjects
for each analysis. For further information and details of data
acquisition and processing in this sample, please see: https://
www.humanconnectome.org/study/hcp-young-adult/document/
1200-subjects-data-release.

https://github.com/MezerLab/ClaustrumSegmentation
https://github.com/MezerLab/ClaustrumSegmentation
https://doi.org/10.5281/zenodo.3960552
https://wiki.humanconnectome.org/pages/viewpage.action?pageId=88901591
https://wiki.humanconnectome.org/pages/viewpage.action?pageId=88901591
https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release
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Claustrum Segmentation

Automatic Segmentation

We developed an automatic procedure for claustrum segmen-
tation (Fig. 2), based on anatomical landmarks. This algorithm
capitalizes on the established segmentations of the putamen
using FSL’s FIRST (Jenkinson and Smith 2001; Jenkinson et al.
2002), and of the cerebrospinal fluid (CSF) using MRtrix’s function
5ttgen (Smith et al. 2012; Tournier et al. 2019). We begin by
automatically defining a general region of interest (ROI) based
on the anatomical landmarks surrounding the claustrum. The
first step is to detect the lateral edge of the putamen, which
is located medially to the claustrum (Fig. 2A). Next, we expand
this edge laterally toward the insular cortex by 5 mm, to include
the entire claustrum (Fig. 2B). The resulting ROI may include
voxels of the insular cortex, which have similar intensity values
as the claustrum, and hence might be erroneously included
in the claustrum segmentation. Since available tools for insula
segmentation, such as FreeSurfer, are also prone to mistakes in
this region, we did not rely on insular segmentation to exclude
these voxels. Instead, we remove all voxels within a 5-voxel
range from the segmented CSF, which nicely follows the cortical
folding of the insula (Fig. 2C). After this step, the resulting ROI
includes mostly claustrum and white matter voxels. To separate
the claustrum voxels from the surrounding white matter, we use
the k-means clustering algorithm (k = 2) on the T1w values. The
cluster with the lower values serves as an initial segmentation
of the claustrum (Fig. 2D). To obtain a continuous representation
of the claustrum, we use two-dimensional smoothing along the
anterior–posterior and ventral-dorsal axes (Fig. 2E). Finally, due to
the curved shape of the claustrum, this smoothing may introduce
unwanted voxels into the segmentation. We therefore restrict the
claustrum segmentation to the initial ROI (Fig. 2E). The MATLAB
code for claustrum segmentation is available at https://github.co
m/MezerLab/ClaustrumSegmentation.

BrainSuite’s Automatic Segmentation

BrainSuite is a tool for cortical parcellation and subcortical seg-
mentation, which is based on surface-constrained volumetric
registration of individual MRI images to a manually labeled atlas
(Joshi et al. 2007). The BrainSuiteAtlas1 atlas, which is based on
a high-resolution T1w image (0.5 × 0.5 × 0.8 mm), includes the
claustrum. To compare the claustrum segmentation of Brain-
Suite with our proposed segmentation, we used the BrainSuite
software (version 18a3; http://brainsuite.org) in the same 10 sub-
jects we used for manual segmentation.

Manual Segmentation

To validate our automatic segmentation, we manually seg-
mented the claustrum bilaterally in 10 randomly selected
subjects using the T1w image. Our approach for manual
segmentation was similar to that described in detail by Davis
(2008). Each subject was segmented twice, by 2 different
observers (S.B. and R.S.). These manual segmentations were used
as ground truth to evaluate the performance of the automatic
segmentation.

Figure 2. Automatic segmentation of the claustrum. The steps of the segmenta-

tion algorithm are presented for the right hemisphere on images obtained from

1 example subject. The relevant ROIs are overlaid on a T1w image, in the area

shown in a red box. (A) First, we detect the lateral edge of the putamen. (B) We

expand the putamen edge laterally. (C) We exclude any voxel close to the CSF

(orange). (D) We cluster the voxels using k-means (k = 2) and choose the cluster of

lower T1w values. (E) We smooth the result, and (F) take the intersection with the

ROI created in step (C). For details, see Methods. Key: A: anterior; P: posterior; L:

left; R: right.

https://github.com/MezerLab/ClaustrumSegmentation
https://github.com/MezerLab/ClaustrumSegmentation
http://brainsuite.org
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Segmentation Evaluation

To evaluate the performance of the automatic claustrum seg-
mentation, we used the Dice similarity coefficient (Dice 1945):

Dice coefficient = 2 (A ∩ B)

A + B
,

where A is the set of voxels of 1 segmentation, B is the set
of voxels of the other segmentation, and A ∩ B are the voxels
shared by both segmentations. Specifically, we compared the
correspondence between the 2 manual segmentations, as well as
between the manual segmentation and each of the 2 automatic
methods.

Structural Measurements of the Claustrum

To characterize the claustrum’s macro- and microstructure, we
calculated 3 properties of the segmented claustrum: its volume,
its mean T1w/T2w values, and its mean MD.

• Volume: The volume of each claustrum was calculated as the
number of voxels in the segmentation, multiplied by the voxel
volume of 0.73 mm3.

• Mean T1w/T2w: Calculating the ratio between the T1w and
T2w images produces a semiquantitative contrast, as it
removes most of the shared biases of the images (such as
the receive-coil inhomogeneities). The T1w/T2w contrast
is sensitive to myelin (Glasser and Van Essen 2011; but see
Arshad et al. 2017; Uddin et al. 2018). To control for remaining
subject-specific bias, we followed the approach of (Glasser
and Van Essen 2011) and calculated for each subject the
z-score of the T1w/T2w values over all brain regions (see
“Structural covariance analysis” below). Thus, the claustrum’s
z-score of the T1w/T2w values reflects its microstructure
relative to the rest of the brain regions.

• MD: Fitting a tensor model to the dMRI data allows the
extraction of simple scalar metrics, such as the MD. MD has
been related to the tissue architecture, specifically to the
amount of membrane in the tissue (Le Bihan et al. 2001).
We used CAMINO to fit a tensor to the preprocessed data
and extract an MD map for each subject (Hall and Alexander
2009).

Structural Covariance Analysis

To identify which cortical and subcortical regions are associated
with the claustrum in terms of its structural properties, we
performed a structural covariation analysis across our subjects.
To this end, we parcellated the brain into different regions.
Subcortical regions were segmented using FSL’s FIRST, and the
mean values (volume, T1w/T2w, and MD) were taken for each
ROI. Cortical regions were parcellated by FreeSurfer using the
Desikan–Killiany atlas, as provided by the HCP (Desikan et al.
2006). The volume of cortical regions was extracted from the
FreeSurfer stats file. The mean T1w/T2w and MD values for each
cortical region were calculated using FreeSurfer, which samples
the images values within each region along the mid-thickness
surface between the pial surface and the white matter surface
(Glasser et al. 2013).

Combining the bilateral measurements of 35 cortical regions
and 5 subcortical regions (putamen, caudate nucleus, thalamus,
hippocampus, and the automatically segmented claustrum)
resulted in a vector of values for 80 brain regions (40 from
each hemisphere). We used each of the 3 aforementioned

parameters separately (volume, T1w/T2w ratio, and MD).
Structural correlation analysis is sensitive to subject-specific
biases, as these might affect widespread brain regions, and
lead to spurious correlations across subject. This is particularly
important when dealing with semiquantitative measures like
T1w/T2w images or measures that depend on a global parameter
like the intracranial volume. Therefore, to account for any biases
that may exist between subjects, we calculated the z-score of
each measurement across the brain regions. Finally, to estimate
which region covaries with the claustrum, we calculated the
Pearson correlation coefficient across subjects between the
standardized values of the claustrum and the standardized
values in each of the other brain regions.

Results
We used our automatic algorithm (Fig. 2) to segment the dorsal
claustrum bilaterally in 1069 subjects. As expected, the segmen-
tation defines a fine structure of the claustrum, situated between
the putamen and the insular cortex. We found that it is narrowest
in its dorsal end and grows wider toward its inferior end, at the
inferior puddle (Fig. 3A, coronal slices). In its most inferior part,
the dorsal claustrum curves medially, just below the putamen,
in agreement with previous accounts (Rae 1954; Hinova-Palova
et al. 2014). Axial slices of the segmented claustrum reveal the
characteristic protrusions, or puddles, of the claustrum in the
insular gyri (Fig. 3B). The resulting segmentation is missing the
claustrum’s most anterior–superior aspect that bends over the
insula. This small segment is thinner than our voxel size and
is outside the ventral-dorsal range of the putamen. Therefore,
we could not detect it using the proposed approach. In a single
subject, the automatic segmentation did not succeed due to
a large blood vessel passing through the claustrum, and that
subject was removed from further analyses.

The shape of the dorsal claustrum varies between subjects,
though the overall characteristics are maintained. Figures 4
and 5 show the coronal and axial slices, respectively, of the
bilateral claustra in 3 subjects, overlaid on their respective
T1w image. Notably, parts of the ventral claustrum (not
segmented) can be seen in one of these subjects (Fig. 4C-1). In
Supplementary Video 1, we show a 3-dimensional view of the
segmented claustrum in an example subject.

To assess the quality of the proposed algorithm, we used data
from 10 randomly selected subjects. We estimated the agreement
between the 2 manual segmentations, and further compared
them against the 2 automatic segmentations: our algorithm
and BrainSuite’s segmentation (Fig. 6 and Table 1): the proposed
automatic segmentation, the automatic segmentation of Brain-
Suite, and the manual segmentations of 2 observers. As might
be expected due to the small size of the claustrum (see Dis-
cussion), we observed moderate Dice coefficient values for the
comparison of the 2 manual segmentations, with median values
of 0.70 and 0.67 for the left and right hemispheres, respectively.
The comparison of our automated method with observer 1 gave
median values of 0.57 and 0.58, with lower values of 0.55 and 0.51
for observer 2. We found the lowest Dice coefficients between
the BrainSuite method and the 2 manual segmentations, with
median values of 0.04 and 0.10 for observer 1, and 0.01 and
0.05 for observer 2. Due to the unsuccessful segmentation by
BrainSuite, we did not include the BrainSuite segmentations in
further analyses. To investigate the source of errors between
our automatic segmentation and the manual segmentations, we
visually inspected the resulting segmentations. We found that
the errors are mostly false negatives, namely that our automatic
segmentation includes most of the claustrum, but occasionally

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa062#supplementary-data
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Figure 3. The claustrum in coronal and axial views. Sequential slices of the automatically segmented right claustrum in 1 subject. (A) Coronal slices from posterior to

anterior. (B) Axial slices from ventral to dorsal. Scale bar: 10 mm. See also Supplementary Video 1 for a 3D representation. Key: M: medial, L: lateral; V: ventral; D: dorsal;

P: posterior; A: anterior.

Table 1. Comparison between segmentation methods. Summary statistics of median (mdn) minimum, (min) and maximum (max) values of
the Dice coefficient calculated for pairs of claustrum segmentation methods, across 10 subjects. Key: L: left; R: right; O1: observer 1 (manual
segmentation); O2: observer 2 (manual segmentation)

Interobserver agreement Automatic segmentation BrainSuite segmentation

O1 with O2 with O1 with O2 with O1 with O2

L R L R L R L R L R

mdn 0.70 0.67 0.57 0.58 0.55 0.51 0.04 0.10 0.01 0.05
Min-max 0.44–0.77 0.56–0.73 0.51–0.60 0.39–0.65 0.32–0.62 0.40–0.63 0.01–0.10 0.03–0.24 0.005–0.05 0.03–0.24

some of the surrounding white-matter tissue as well. Together,
these results suggest that despite some errors due to partial
volume effects, our automatic algorithm captures the structure
of the dorsal claustrum with high sensitivity.

To characterize the anatomical properties of the claustrum,
we used our automatic segmentation to calculate in vivo esti-
mates of tissue macro- and microstructure for each subject.
We estimated the claustrum volume, the mean of the z-scored
T1w/T2w values (which have been associated with myelin con-
tent), and the mean MD value (which is related to the tissue
membrane content). The values of the left and right claustra for
all subjects are plotted in Figure 7 for each measurement, and
summarized in Table 2. We found that these properties of the
claustrum span a relatively narrow range of values. The values
of the left and right claustra are highly correlated in both volume
and T1w/T2w measurements (but less so in MD), with higher
values on the left. One possible explanation for this is the more
diffuse structure of the left claustrum (see Discussion) would

lead to more partial volume effects in the final segmentation,
and hence to a greater volume (mean 995 and 863 mm3 for the
left and right claustra, respectively). We did not find such volume
lateralization in the manual segmentations of 10 subjects, as
evident by the average volume across the 2 observers (mean 641
and 649 mm3 for the left and right claustra, respectively).

To test whether partial volume effects can account for the
observed left–right difference, we repeated the measurements
in the neighboring and much larger putamen, where partial
volume effects are expected to have a much smaller effect
on the measured values. Indeed, we found similar results in
the putamen (Supplementary Fig. 1 and Supplementary Table 1),
suggesting the partial volume effects do not fully account for the
left–right difference we observed in the claustrum. The greater
T1w/T2w values in the left hemisphere could also reflect a global
residual bias in the contrast image. We note that for the putamen,
we found slightly greater volume in the right hemisphere, in
accordance with previous accounts (Abedelahi et al. 2013).

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa062#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa062#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa062#supplementary-data
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Figure 4. Example segmentations in coronal view. The segmented claustrum in 3 example subjects (rows, A–C). For each subject, the region of the claustrum is shown

in a T1w image without (top), and with the results of the proposed segmentation (bottom, blue). Each column (1–3) denotes a different coronal slice. Slices 1, 2, and 3

mark 30, 50, and 70% of the putamen length, respectively, from posterior to anterior. Key: L: left; R: right.

Table 2. Structural measurements of the automatically segmented claustrum. The mean and standard deviation of structural values measured
for the left and right claustra across subjects. Key: a.u.: arbitrary units; L: left; R: right; std: standard deviation

Volume [mm3] T1w/T2w [a.u.] MD [×10−3 mm2/s]

L R L R L R

Mean 995 863 1.05 0.77 0.81 0.79
std 170 133 0.23 0.23 0.04 0.04
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Figure 5. Example segmentations in axial view. The segmented claustrum in the 3 subjects as in Figure 3 (rows, A–C). For each subject, the region of the claustrum is

shown in a T1w image without (top), and with the results of the proposed segmentation (bottom, blue). Each column (1–3) denotes a different axial slice. Slices were

selected at 30, 50, and 70% of the putamen height, from ventral to dorsal. Key: L: left; R: right.

Finally, we used the 3 tissue measures to estimate the struc-
tural covariance of the claustrum with other brain regions across
subjects. Figure 8 shows all brain regions colored according
to their correlation with each claustrum in terms of volume.
Figures 9 and 10 present results using the z-scored T1w/T2w
values and the MD values, respectively. The different measures
present distinct covariance networks, and each network is
composed of widespread regions that include both subcortical
and cortical regions. The correlation values and corresponding P
values are presented in Supplementary Tables 2–4.

This volume covariance analysis presents the most symmet-
ric pattern of correlations: The regions that covary with the
left claustrum are mostly the same regions that covary with
the right claustrum. Furthermore, the claustrum volume mostly
covaries with the same regions in the left and right hemispheres.
The prominent regions in the volume-based covariance network
include the contralateral claustrum, the frontal regions of pars
orbitalis and superior frontal cortex, the transverse temporal
region, and the subcortical pallidum. For MD, the results for the
left and right claustra are almost mirror images of each other,

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa062#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/texcom/tgaa062#supplementary-data
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Figure 6. The agreement between manual and automatic segmentation. The

bilateral claustra of 10 subjects were manually segmented by 2 observers

(O1 = observer 1; O2 = observer 2; auto = automatic segmentation algorithm

described herein). (A) The agreement between the different segmentations was

quantified using the Dice coefficient. On average, the greatest agreement was

found between the 2 manual segmentations. The agreement between our auto-

matic segmentation and the 2 observers is moderate, as expected by the small

size of the claustrum. Dots represent individual subjects. Lines represent medi-

ans. (B–C) Axial slices of the right claustrum for the best subject (B) and worst

subject (C) when comparing with observer 1, as marked in panel A. Notice that

in (C), the segmentation error results mainly from the inaccurate putamen seg-

mentation, so that some of the voxels labeled as associated with the claustrum

(in blue) are actually overlapping with the putamen. O1: observer 1 (manual

segmentation); O2: observer 2 (manual segmentation).

with regions positively correlated with the left claustrum show-
ing negative correlation with the right claustrum (see Discussion
for possible explanations of this result). For the T1w/T2w anal-
ysis, again we find similar results for the left and right claustra.
The most strongly correlated regions were subcortical regions,
predominantly the ipsilateral putamen and thalamus.

Discussion
In this study, we developed an automatic segmentation of the left
and right claustra on in vivo MRI data from the HCP. We validated
the automatic segmentation using manual segmentation in 10
subjects and found good agreement. To demonstrate the utility of
the automatic segmentation in studying the human claustrum,
we calculated the structural covariance between the claustra and
other gray-matter brain regions, using 3 measurements of tissue
properties. The code is available at https://github.com/MezerLa
b/ClaustrumSegmentation and the resulting segmentations are
available at https://doi.org/10.5281/zenodo.3960552.

Automatic segmentation of the claustrum is a prerequisite
for large-scale studies of this intriguing structure. However, such
automatic segmentation has proven to be a nontrivial task, as
evidenced by the absence of the claustrum from commonly
used tools for brain segmentation, such as FreeSurfer and FSL.

Indeed, we could find only 1 published tool that automatically
segments the claustrum, namely BrainSuite. Although Brain-
Suite’s segmentation is based on advanced surface-based volume
registrations (Joshi et al. 2007), its segmentation of the claustrum
remains unsatisfactory (Table 2). It should be noted that Brain-
Suite is an open-source tool with multiple functionalities and
that segmentation of the claustrum is not its main focus.

To segment the dorsal claustrum successfully, we took a
heuristic approach, based on gross anatomical landmarks and
rooted in post mortem studies of the human claustrum. Impor-
tantly, we capitalize on the well-established segmentation of the
putamen by FSL’s FIRST (Jenkinson and Smith 2001; Jenkinson
et al. 2002). We used the putamen segmentation to mark the ini-
tial voxels from which the dorsal claustrum is later segmented.
An alternative would have been to start at the lateral border,
using a segmentation of the insula. However, the insular seg-
mentation is relatively prone to overestimation errors and occa-
sionally includes the neighboring white matter, or even parts of
the claustrum (McCarthy et al. 2015). The ventral-dorsal division
of the human claustrum has been identified in post mortem
studies. These studies have shown that although the dorsal
claustrum is a continuous structure, the ventral claustrum is a
smaller structure composed of scattered islands of gray matter,
in between fibers of the white matter (Druga 2014).

The automatic segmentations resulted in a dorsal claustrum
whose mean volume is 863 mm3 for the right hemisphere and
995 mm3 for left. These values are greater than the ones we found
in the manual segmentations of 10 subjects (649 and 641 mm3

for the right and left claustra, respectively), indicating that our
automatic segmentation is permissive compared with the more
conservative manual segmentations. The volumes we found for
the automatic segmentation generally agree with those reported
in another MRI study who used manual segmentation of the
claustrum in 10 subjects, finding values of 813.6 mm3 (range 744–
864) for the right claustrum and 804.0 mm3 (range 752–912) for
the left claustrum (Milardi et al. 2015). Thus, although Milardi and
colleagues found a smaller left claustrum, we found the opposite.
One possible interpretation for this discrepancy is that the left
claustrum is indeed smaller, leading to greater partial volume
effects with the neighboring white matter, which in turn leads to
an overestimation of the left claustrum’s volume in the proposed
segmentation.

We compared the proposed segmentation to manual seg-
mentations by 2 observers and found mean Dice coefficients of
approximately 0.6. These values are much higher than those we
found for the published method by BrainSuite. Dice coefficients
of 0.51–0.58 are considered moderate for neuroimaging segmen-
tations of subcortical regions, but this can be attributed to the
claustrum’s small dimensions and its unusual shape. Dice coeffi-
cient usually decreases with structure size (Patenaude et al. 2011;
Worth and Tourville 2015). In addition, many subcortical nuclei
(such as the putamen and thalamus) have a roughly globular
shape, such that different segmentation methods often agree on
the innermost voxels at least. This is in contrast to the claustrum,
whose thin curtain-like shape leads to a high surface-to-volume
ratio, with a large fraction of voxels at the border, precisely where
different segmentations may disagree.

Using correlations between structural measures in cortical
and various subcortical regions, we identified several regions
that covary with the claustrum across subjects. It has been pos-
tulated that structural covariance between regions could indicate
that they are a part of the same functional network (Mechelli
et al. 2005; Alexander-Bloch, Giedd, et al. 2013). Covariance analy-
sis based on different measures need not yield similar networks

https://github.com/MezerLab/ClaustrumSegmentation
https://github.com/MezerLab/ClaustrumSegmentation
https://doi.org/10.5281/zenodo.3960552
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Figure 7. Claustrum characteristics. The left claustrum’s properties are plotted as a function of the right claustrum for all subjects. The volume (A) and the z-scored

values of the T1w/T2w ratio (B) show high agreement between the left and right claustra, with the left claustrum showing higher values in both. The MD values (C) do

not show a consistent difference between the left and right claustra across subjects. The mean values can be seen in Table 2.

Figure 8. Structural correlation results for region volume. Each region is color-coded according to its correlation with the left or right claustrum in terms of volume.

Regions with significant correlation (p <0.01, corrected for multiple comparisons of 2 hemispheres × 74 regions × 3 measures) are outlined in black. Note the overall

symmetry between hemispheres, as well as between the results for the 2 claustra. Cortical regions are presented on FreeSurfer’s inflated average cortical surface (top),

whereas the subcortical regions are presented in an axial view (bottom). Key: L: left; R: right; r: Pearson’s correlation coefficient.

(Alexander-Bloch, Giedd, et al. 2013). Indeed, our results did not
reveal 1 consistent network that shows structural covariance
with the claustrum across measures: Instead, each of the 3
measurements (volume, T1w/T2w, and MD) revealed a different
set of regions that include contributions from different lobes,
which are often implicated in various functional domains (as
we discuss in detail below). Such analyses of structural covari-
ance are complementary to other connectivity estimates based
on dMRI tractography or rs-fMRI. Indeed, previous studies that
described claustrum networks using fMRI or dMRI found exten-
sive and dispersed connectivity patterns between the claustrum
and other brain regions (Milardi et al. 2015; Torgerson et al.

2015; Krimmel et al. 2019). It should be noted that rs-fMRI and
dMRI studies typically acquire data with lower spatial resolution
(usually 23–33 mm3). This makes it difficult to disentangle the
connectivity of the claustrum from that of its surroundings and
requires specialized analysis techniques as recently proposed by
Krimmel et al. (2019).

We found that the frontal and temporal cortices form a
volume-based structural covariance network with the claustrum.
As we describe in detail below, these results agree with previous
findings in humans and in other species. In humans, these
regions have been described as a part of the same resting
state functional connectivity network (Krimmel et al. 2019). The
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Figure 9. Structural correlation results for region T1w/T2w values. Each region is color-coded according to its correlation with the left or right claustrum in terms

of standardized T1w/T2w values, similar to Figure 8. Compared with the results for volume (Fig. 8), the covariance network is less symmetrical, and consists of more

negative correlations.

Figure 10. Structural correlation results for region MD values. Each region is color-coded according to its correlation with the left or right claustrum in terms of MD

values, similar to Figure 8. Compared with the volume analysis (Fig. 8), the MD network is less symmetrical, and the MD values of bilateral claustra are not correlated

with each other across subjects.
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connectivity between the human claustrum and frontal and
orbital cortices has also been demonstrated in dMRI studies
(Fernández-Miranda et al. 2008; Torgerson et al. 2015).

Homologous areas have been functionally and anatomically
associated with the claustrum in other species, though cross-
species homologies are not always obvious. Although the
claustrum itself has been identified in many species, there is
cross-species variability in its topographical arrangement and its
defined anatomical boundary, including qualitative differences
in regards to the ventral-dorsal separation (Kowiański et al.
1999; Baizer 2014). Therefore, below we refer to interesting
correspondence between our results and animal studies without
distinction between ventral and dorsal claustrum. In capuchins,
tracing studies showed afferent connections to the orbitofrontal
cortex from the claustrum (Reser et al. 2014). Bilateral connectiv-
ity between claustrum and orbitofrontal cortex is prominent in
tracing studies in rodents as well (Atlan et al. 2017; Wang et al.
2017). Another approach for studying brain connectivity is using
optogenetics, where optogenetic activation of the claustrum
in mice was found to suppress activity in the frontal cortex
(Jackson et al. 2018; White and Mathur 2018). In addition to
frontal regions, we found connections between the claustrum
and the transverse temporal cortex, which is part of the primary
auditory cortex. Temporo-claustral connections have also been
demonstrated in rodents tracing studies (Sadowski et al. 1997;
Zingg et al. 2014; Atlan et al. 2017), as well as in cats (Olson
and Graybiel 1980) and nonhuman primates (Remedios et al.
2010), where claustrum activity was recorded in response to
auditory stimuli. Furthermore, optogenetic stimulation of the
claustrum in mice can suppress evoked activity in the auditory
cortex (Atlan et al. 2018). The parahippocampal region includes
the entorhinal cortex, which is robustly interconnected with
the rodent claustrum (Kerr et al. 2007; Zingg et al. 2014; Atlan
et al. 2017; Wang et al. 2017). Finally, we found that the pallidum
volume covaries with that of the claustrum. Although we could
not find evidence for such connections in the literature, there is
evidence suggesting connections between the claustrum and
subcortical regions such as the putamen (Borra et al. 2020).
In total, these results of volume-wise structural covariation
in the current study recapitulate anatomical and functional
observations of claustral connectivity across different species
and different methodologies.

In this study, we further studied the claustrum’s structural
covariance using 2 microstructural tissue measurements,
namely T1w/T2w and MD. In contrast to the volume-based
network, the microstructural-based networks were less sym-
metric and contained more regions with negative correlations
across subjects. Although studying structural covariance with
microstructural measurements has the potential to reveal
network that are not found by volume covariance, these
results should be interpreted with caution. T1w/T2w is a semi-
quantitative measure, potentially with subject-specific biases.
Here, we addressed this issue by standardizing the regional
measurements using z-score (akin to Ma and Zhang (2017)).
Other approaches were proposed to account for such biases,
like using partial correlation (Melie-Garcia et al. 2018) or adding
confounding variables in a linear regression framework (Mechelli
et al. 2005). Alternatively, 1 could employ quantitative MRI
acquisitions, which include quantitative relaxometry such as
T1 and T2, to shed more light on the claustrum’s microstructure-
based networks. As highlighted recently, future studies could
also investigate the reproducibility of the claustrum’s covariance
networks under different methodological choices (Carmon et al.
2020).

Although MD is a quantitative measurement, the scan res-
olution of the diffusion weighted MRI data was lower than the
anatomical scans (1.25 mm3 compared with 0.7 mm3). Further-
more, recent work suggests that gradient nonlinearities in the
dMRI data of the HCP dataset could lead to biases of up to 10% in
the estimated values (Mesri et al. 2020). This work showed that
the bias is largest in the cerebellum and in frontal regions, and
therefore should not affect the values in the claustrum itself too
much. However, this nonlinearity could potentially contribute to
our finding of a decreased left–right agreement in MD values
compared with the other measures. As such, it might affect the
results of our MD-based covariance analysis and explain the
mirror-like results between the left and right claustra. Future
work using the HCP dataset could employ a gradient nonlinearity
correction to overcome this limitation (Bammer et al. 2003).

This work focuses on segmenting the dorsal claustrum, as
did other works investigating the human claustrum in vivo (Fer-
nández-Miranda et al. 2008; Torgerson et al. 2015; Krimmel et al.
2019). The fragmented nature of the ventral claustrum makes
it challenging to segment reliably, even using the cutting-edge,
high-resolution of the HCP dataset. Even with a higher spatial
resolution of 0.53 mm3, the ventral claustrum could be detected
and segmented manually only in some subjects but not in others
(Davis 2008).

Manual segmentation can be extremely time-consuming,
especially for large datasets. In this study, we developed an
algorithm to automatically segment the dorsal claustrum and
successfully ran it on 1068 subjects. Our algorithm is designed for
high-resolution data, which is becoming more prevalent in the
scientific community. For example, the proposed algorithm could
be used when the HCP’s development and aging datasets are fully
released. We hope that the proposed claustrum segmentation
algorithm, as well as the segmentations we made publicly
available, will advance the study of this intriguing structure and
help shed light on its function in humans.

Supplementary Material
Supplementary material can be found at Cerebral Cortex Commu-
nications online.
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