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1 Laboratório de Bioquı́mica Redox, Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquı́mica Médica, Universidade Federal do Rio de janeiro, Rio de
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Abstract

Background: The parasitic trematode Schistosoma mansoni is one of the major causative agents of human schistosomiasis,
which afflicts 200 million people worldwide. Praziquantel remains the main drug used for schistosomiasis treatment, and
reliance on the single therapy has been prompting the search for new therapeutic compounds against this disease. Our group
has demonstrated that heme crystallization into hemozoin (Hz) within the S. mansoni gut is a major heme detoxification route
with lipid droplets involved in this process and acting as a potential chemotherapeutical target. In the present work, we
investigated the effects of three antimalarial compounds, quinine (QN), quinidine (QND) and quinacrine (QCR) in a murine
schistosomiasis model by using a combination of biochemical, cell biology and molecular biology approaches.

Methodology/Principal Findings: Treatment of S. mansoni-infected female Swiss mice with daily intraperitoneal injections
of QN, and QND (75 mg/kg/day) from the 11th to 17th day after infection caused significant decreases in worm burden
(39%–61%) and egg production (42%–98%). Hz formation was significantly inhibited (40%–65%) in female worms recovered
from QN- and QND-treated mice and correlated with reduction in the female worm burden. We also observed that QN
treatment promoted remarkable ultrastructural changes in male and female worms, particularly in the gut epithelium and
reduced the granulomatous reaction to parasite eggs trapped in the liver. Microarray gene expression analysis indicated
that QN treatment increased the expression of transcripts related to musculature, protein synthesis and repair mechanisms.

Conclusions: The overall significant reduction in several disease burden parameters by the antimalarial quinoline methanols
indicates that interference with Hz formation in S. mansoni represents an important mechanism of schistosomicidal action
of these compounds and points out the heme crystallization process as a valid chemotherapeutic target to treat
schistosomiasis.
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Introduction

Schistosomiasis is a major parasitic disease that affects 170

million people in sub-Saharan Africa and close to 30 million

people in north of Africa, Asia and South America [1]. Recent

estimates indicate that 779 million people live in risk areas across

70 countries [2,3,4] raising the possibility that morbidity associated

with the disease may be considerably under-estimated [5]. The

disease pathology is typically a consequence of an inflammatory

granulomatous reaction due to parasite egg deposition in the liver

and other host tissues [6]. The major etiological agent of human

schistosomiasis is the platyhelmith Schistosoma mansoni which is

known to digest large amounts of blood in order to complete its

development and sexual maturation [7]. During this process, host

hemoglobin is degraded by several proteolytic enzymes [8,9]

forming peptides, amino acids and the prosthetic group heme [10].

Heme is an amphyphilic molecule of low molecular weight that

plays essential biological roles, from cell respiration to drug
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detoxification [11]. A large body of evidence has demonstrated

that once in a ‘‘free’’ state, heme is able to induce oxygen-derived

free radicals formation [12,13], lipid peroxidation [14,15] and

protein [16] and DNA [17] oxidation. Due to its amphyphilic

nature, ‘‘free’’ heme also interferes with phospholipid membrane

stability and solubility, in a mechanism independent of its pro-

oxidant effects [18,19], eventually resulting in cell lysis. As a

consequence, it is apparent that blood-feeding organisms evolved

efficient adaptations in order to circumvent the deleterious effects

of ‘‘free’’ heme [20]. A particular mechanism present in some

blood-feeders, such as shown in malaria parasites (Plasmodium sp.)

[21], the kissing bug Rhodnius prolixus, a Chagas’ disease vector [22]

and the blood fluke S. mansoni consists of the crystallization of heme

into a dark brown pigment known as hemozoin (Hz) [23]. Our

group has shown that heme crystallization represents a major

heme detoxification mechanism in both R. prolixus and S. mansoni,

acting as a preventive antioxidant defense [24]. We have also

shown that adult females of S. mansoni produce large amounts of

Hz within the gut [23], involving extracellular lipid droplets

present in the gut lumen in this process [25,26]. Moreover, the

hydrophilic-hydrophobic interface provided by the gut lipid

droplets, seems to play a key catalytic role in heme crystallization,

adding a strong biological support to the interface-mediated heme

crystallization model recently proposed by Egan and co-workers

[27].

Due to the essential nature of Hz formation in Plasmodium [27]

the development of antimalarials throughout the years has been

largely limited to the 4-aminoquinoline compounds, such as

chloroquine (CLQ) and quinoline methanols such as quinine (QN)

and quinidine (QND). These compounds exert potent action

against the blood stages of Plasmodium in a mechanism that impairs

Hz formation [28]. It was shown that 4-aminoquinolines interact

with ‘‘free’’ heme, hindering its crystallization into Hz. The ‘‘free’’

heme interacts with membranes and exerts severe toxic effects,

ultimately killing the parasite through oxidative stress [29]. An

additional theory suggests that heme-quinoline complexes incor-

porate into a growing crystal face influencing its external

appearance, and blocking its growth [30,31]. Regardless of the

mechanism by which 4-aminoquinolines act on Hz formation, our

group has shown that CLQ inhibits heme crystallization in vivo in

both R. prolixus [32], and also in S. mansoni [33,26]. In this regard,

we showed that in vivo treatment of S. mansoni -infected mice with

CLQ decreased the overall severity of experimental murine

schistosomiasis [33]. These results indicated for the first time that

interfering with Hz formation in this parasite is a valuable

approach for chemotherapeutic development. In addition, the Hz

formation pathway is peculiar to blood-feeding parasites (including

S. mansoni) and is absent in the host, which makes it an

exceptionally attractive drug target. Very recent evidence indicates

that the antimalarial mefloquine exerts potent antischistosomal

effects, reducing worm burden [34], although its mechanism of

action remains to be elucidated.

Currently, the main control strategy for schistosomiasis relies on

chemotherapy [35], praziquantel (PZQ) being the main drug of

choice for this purpose, as recommended by the World Health

Organization. PZQ is safe, well tolerated and effective in a single

oral dose treatment against the adult stages of all forms of

schistosomiasis [36–38]. Despite the threat of resistance develop-

ment of S. mansoni to PZQ [39–40], the establishment of true

resistance so far is not conclusive [41]. Nevertheless, reliance on

single PZQ therapy raises real concern and, as a result, this has

prompted the search for new therapeutic targets and drugs against

this disease. Other studies have suggested the antimalarial

artemether as a new drug for schistosomiasis [42] due to its

potent action against young schistosomula [43–45]. Alternative

approaches, such as inhibition of the cysteine protease cathepsin

B1 by K11777 early in the infection, have drastically decreased

both worm and eggs burdens, delaying the egg-associated organ

pathology [46]. The recent discoveries on the role of thioredoxin-

glutathione reductase (TGR) activity for parasite redox balance

and survival have prompted new chemotherapeutic development

studies targeting this enzyme [47–49]. Inhibitors of S. mansoni

TGR, such as oxadiazoles [49], and other drugs discovered in a

massive screening [48], has provided new lead compounds that

specifically inhibited parasite TGR with high potency, showing

that an imbalance in the redox cascade is deleterious to S. mansoni,

regardless of parasite stage [47–49].

Here we investigated the effects of the antimalarial quinolines

QN, QND and QCR on S. mansoni-infected mice, by evaluating

infection, biochemical, pathological, ultrastructural and molecular

parameters.

Methods

Ethics statement
All animal care and experimental protocols were conducted

following the guidelines of the institutional care and use committee

(Comission for Evaluation of Animal Use for Research from the

Federal University of Rio de Janeiro, CAUAP-UFRJ) and the

NIH Guide for the Care and Use of Laboratory Animals (ISBN 0-

309-05377-3). The protocols were approved by CAUAP-UFRJ

under the registry #IBQM002. Technitians dedicated to the

animal facility at the Institute of Medical Biochemistry (UFRJ)

carried out all aspects related to the mice husbandry under strict

guidelines to assure careful and consistent handling of the animals.

Parasites and host animals
S. mansoni LE strain was maintained in the laboratory using

Biomphalaria glabrata snails and Swiss mice as intermediate and

definitive hosts, respectively. Cercariae released from snails were

Author Summary

Heme is an essential molecule to most living organisms,
but once in a free state it exerts toxic effects. Blood-
feeding organisms evolved efficient ways to detoxify free
heme derived from hemoglobin digestion. A key mecha-
nism present in some hematophagous organisms consists
of the crystallization of heme into a pigment named
hemozoin. Schistosoma mansoni is one of the etiologic
agents of human schistosomiasis, a parasitic disease that
affects over 200 million people in tropical and subtropical
areas. Hemozoin formation represents the main heme
detoxification pathway in S. mansoni. Here, we report that
the antimalarial quinoline methanols quinine and quini-
dine exert schistosomicidal effects notably due to their
capacity to interfere with hemozoin formation. When
quinine or quinidine were administered intraperitoneally
during seven days to S. mansoni-infected mice (75 mg/kg/
day), both worm and eggs burden were significantly
reduced. Interestingly, hemozoin content in female worms
was drastically affected after treatment with either
compound. We also found that quinine caused important
changes in the cellular organization of worm gastrodermis
and increased expression of genes related to musculature,
protein synthesis and repair mechanisms. Together, our
results indicate that interference with hemozoin formation
is a valid chemotherapeutic target for development of new
schistosomicidal agents.
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injected in mice cervices through a subcutaneous route. Mice were

kept in a animal care facility at Institute of Medical Biochemistry

(UFRJ). Forty-two days after infection, adult worms were obtained

from the mice by mesenteric perfusion with saline as previously

described [50].

Regurgitant isolation
About 150 female adult worms were obtained by mesenteric

perfusion of mice, placed in 1 mL of ultrapure water at room

temperature for 80 minutes and gently shaken every 5 minutes.

After that, the precipitated worms were discarded and superna-

tant, hereafter referred to as ‘‘regurgitant’’, was colleted and kept

at 270uC, as previously described by our group [26]. Protein

content from regurgitant were measured relative to bovine serum

albumin as a standard [51].

Syntheses of new quinolines
The syntheses of compound 3 (C3), compound 6 (C6),

compound 7 (C7), and compound 8 (C8) were accomplished by

following a method previously described [52]. Synthesis of

compound 9 (C9) was carried out using the protocol described

in the literature [28]. For synthesis of compound 10 (C10), 4,7-

dichloroquinoline (300 mg, 1.51 mmol) was added to a stirred

solution of cyclopentylmethylamine (1.00 mL, 5.83 mmol) under

N2. The mixture was heated under pressure in a cyclo-addition

tube at 120uC overnight. After, the mixture was allowed to cool to

room temperature, it was poured into saturated brine (20 mL) and

extracted with ethyl acetate (3650 mL). The organic layer was

dried (Na2SO4) and concentrated in vacuo to afford a crude

product, purified by flash column chromatography using a mixture

of ethyl acetate: hexane (90:10) as eluent to give C10 (295 mg,

87%) as a light-yellow solid, m.p. (EtOAc :Hex) 147–151uC; dH

(CDCl3, 400 MHz) 8.51 (1H, d, J = 5.5 Hz), 7.94 (1H, d,

J = 1.8 Hz), 7.63 (1H, d, J = 9.2 Hz), 7.32 (1H, dd, J = 1.8,

7.3 Hz), 6.43 (1H, d, J = 5.5 Hz), 5.05 (1H, br s), 4.01 (1H, m),

2.15 (2H, m), 1.80–1.61 (8H, m); dC (CDCl3, 100.5 MHz) 151.8,

149.3, 149.0, 134.8, 128.7, 125.2, 121.0, 117.2, 100.0, 54.3, 33.3.

Heme crystallization inhibition assays
The assay utilized to evaluate inhibition of heme crystallization

by quinoline antimalarials was based on a previous method

described by Ncokazi et al, with minor modifications [53]. This

method makes use of the known physico-chemical properties of

heme that slowly and spontaneously crystallize into Hz particles in

vitro in acidic conditions, in such a way that the reaction kinetics

depends on the temperature, ionic strength, and time [54]. After

reaction is complete, pyridine is added to the medium to promote

the solubilization of the non-crystallized heme, since it is unable to

solubilize heme within the Hz crystals. Then, aliquots of the

supernatant were taken to determine the light absorption of non-

crystallized heme at 405 nm. Samples corresponding to 15 mg of

protein from whole regurgitant were incubated overnight at 37uC
in 0.5 M sodium acetate buffer, pH 4.8, in the presence of

100 mM hemin (prepared in 0.1 N sodium hydroxide) in a 96-well

plate with different concentrations of compounds (from 5 mM to

100 mM) in a total volume of 170 mL. Commercial quinolines and

non-quinoline drugs were prepared in 100% ethanol whereas new

quinolines were in 100% methanol. After that, 80 mL of 30.0% (v/

v) pyridine solution in 20 mM Hepes sodium salt, pH 7.5 was

added to each well, mixed and incubated for 15 minutes at room

temperature, in order to allow sedimentation of Hz crystals. Then,

38 mL of supernatant were transferred to another 96-well plate,

diluted to 250 mL in 30.0% (v/v) pyridine solution and the amount

of free heme was determined using a microplate reader at 405 nm

as previously described [53]. Hz content was determined by

subtracting the amount of total heme added to the samples minus

the values found in the experimental group. After that, data were

plotted with GraphPad Prism 4.0 software and the IC50 was

determined.

Quinolines treatment in vivo
Female mice aged around 30 days were infected with S. mansoni

by subcutaneous injection of 250 cercariae in the cervical region.

Mice were treated in two different protocols, being the first one from

day 11 to 17 after infection, with daily intraperitoneal injections of

75 mg/kg quinine hydrochloride dihydrate (QN), quinacrine

(QCR) or quinidine (QND) prepared as 30.0% ethanol solutions.

Control mice were treated with 30.0% ethanol alone (control). The

volumes injected in each mouse was about 100 mL. Worms were

collected by mesenteric perfusion 42 days after infection. In the

second protocol, mice were treated from day 42 to 45 after infection

with daily intraperitoneal injections of 100 mg/kg QND in 30.0%

ethanol and the worms were collected by mesenteric perfusion 46

days after infection. The worms were separated by sex, counted and

utilized for biochemical, ultrastructural and molecular assays. Mice

small and large intestines, liver and plasma were collected for

subsequent analyses. Non-infected mice were also treated with QN

or 30.0% ethanol alone during the same period.

Egg counting
Liver, small and large intestines of each mouse were collected

after mesenteric perfusion, washed with phosphate buffered saline,

weighed, sliced into small pieces, and subsequently digested

overnight at 37uC in 10 mL of 4.0% potassium hydroxide

(prepared in ultrapure water), as previously described [55].

Aliquots of digested tissues (10 mL) were placed onto a glass

coverslip, and the number of eggs was determined by counting

with a Zeiss stereomicroscope (Stemi SV11 MC80).

Transmission electron microscopy (TEM)
Adult S. mansoni worms collected after mesenteric perfusion from

mice were fixed in 1 mL of 2.5% glutaraldehylde and 4.0%

formaldehyde in 0.1 M sodium cacodylate buffer, pH 7.4. The

worms were fixed and post-fixed in 1.0% osmium tetroxide and

0.8% potassium ferricyanide in the same buffer, dehydrated in

acetone and embedded in epoxy polybed resin. Thin cuts of the

blocks were produced, contrasted in uranyl acetate and lead citrate

and observed in a transmission electron microscopy Zeiss CEM

902, as described earlier by our group [25].

Hz quantification
Hz in adult worms was extracted and quantified based on

methods previously described by our group [23]. Worms were

separated by sex, counted and homogenized in protease inhibitor

cocktail (containing 0.1 mg/mL leupeptin trifluoroacetate salt,

2 mM benzamidine hydrochloride and 0.1 mg/mL soybean

trypsin inhibitor in ultrapure water), hereafter referred as

‘‘homogenate’’. For Hz extraction, 1 mL of female and male

homogenates of S. mansoni were centrifuged at 15.0006g for

15 minutes at 25uC and then their supernatants were discarded.

The pellets were washed three times in 1 mL of extraction buffer

(contained a mixture of 0.1 M sodium carbonate and 2.5%

sodium dodecyl sulphate), pH 9.1 and twice with 1 mL of

ultrapure water. The final pellet was solubilized in 1 mL 0.1 N

sodium hydroxide and shaken for 30 minutes. Hz content was

determined spectrophotometrically at 400 nm in a GBC-UV/Vis-

920 (Australia).

Effects of Antimalarial Quinolines on Schistosoma
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Histopathology
Livers collected after mesenteric perfusion from control and

QN-treated mice were washed with phosphate buffered saline,

sliced into small pieces, fixed in 5 mL of 2.5% glutaraldehyde and

4.0% formaldehyde in 0.1 M sodium cacodylate buffer, pH 7.4

and kept at 4uC. Tissue slices were embedded in paraffin, stained

with hematoxylin and eosin dyes and observed in an Olympus

BX51 microscope. The mean granuloma area was analysed by

using the ImageJ software available at the website (http://rsb.info.

nih.gov/ij/).

Microarray analysis
Freshly perfused adult female worms were incubated with cold

RNAlater solution (Ambion, USA) and kept at 4uC until RNA

extraction. Total RNA was extracted using Trizol reagent

(Invitrogen, USA) according to the manufacture’s instructions.

RNA was quantified using a Nanodrop ND-1000 UV/Vis

spectrophotometer and its quality was assessed with an Agilent

2100 Bioanalyzer, a micro fluidics-based electrophoresis platform.

1 mg of total RNA from each sample was amplified using the T7-

RNA polymerase based SuperScript Indirect RNA amplification

system (Invitrogen, USA) and subsequently 3 mg of aminoallyl-

modified amplified RNA was labeled using Cy3 or Cy5 reactive

dye (GE Healthcare, USA). Amplification and labeling were done

according to manufacturer specifications. Pools of RNA from

worms treated with QN were hybridized against RNA from

control worms. In order to ensure the uniformity of data, all

experiments were performed using slides from the same printing

batch and dyes from the same lot. Technical and biological

replicates were performed. Dye swap was employed in order to

account for dye biases. A total of eight different replicated data

values were obtained for each condition and for each probe on the

array. The Cy3- and Cy5-labeled samples were combined, dried

and re-suspended in hybridization buffer (50% formamide, 25%

RNase free water and 25% Microarray Hybridization buffer 46);

hybridization and washings were done according to the manufac-

turer GE Healthcare (USA). Samples were hybridized overnight to

cDNA microarray slides containing 4,000 elements in duplicate

(GEO accession: GPL3929) [56] using ASP hybridization

chambers (GE Healthcare, USA) at 42uC. After washings, slides

were air dried and scanned using a microarray dual channel laser

scanner (GenePix 4000B, Molecular Devices, USA) at 5 mm

resolution, 100% laser power and PMT levels were adjusted in

order to obtain similar average intensities of red and green signal.

Data were extracted using the program Array Vision 8.0. To

correct for systematic biases on the data originated from small

differences in the labeling and/or detection efficiencies between

the fluorescent dyes, expression ratios were logged (base 2) and

normalized using a locally weighted linear regression (LOWESS)

algorithm [57]. Normalized log2 (ratios) were further analyzed

with the Significance Analysis of Microarrays tool (SAM) [58]

using a 0.1% false discovery rate (FDR) to find differentially

expressed genes. Genes identified in the previous step were filtered

using a 1.7 fold change cutoff in at least 4 out of the 8 data points.

This step is critical in identifying biological relevant changes. The

fold change filter was used after identification of significant

differentially expressed genes, thus avoiding the bias caused by

data trimming before significance testing [59]. Our microarray

data was deposited in GEO with the accession number

GSE14751.

Aminotransferase assay
The activities of aspartate aminotransferase (AST) and alanine

aminotransferase (ALT), indicators of hepatocellular damage,

were measured in the plasma of control and QN-treated mice.

Heparinized blood samples were obtained by cardiac puncture,

centrifuged at 1.0006g for 10 minutes at room temperature and

the plasma collected. AST and ALT activities were spectropho-

tometrically determined, as previously described [60].

Determination of total thiol content
The assay utilized to quantify the total thiol content was based

on a previous method described by Sedlack and Lindsay [61].

Aliquots of 50 mL of the total homogenates (corresponding to

150 mg of protein) were mixed with 150 mL of 200 mM TRIS

buffer, pH 8.2, 10 mL of 10 mM DTNB (5, 59-dithiobis-(2-

nitrobenzoic acid) and 790 mL of 100% methanol. A reagent

blank (without homogenate) and the sample blank (without

DTNB) were prepared in a similar manner. The samples with

or without DTNB were incubated at 25uC for 15 minutes. After

that, samples were centrifuged at 3.0006g for 15 minutes at 25uC
and the supernatants were used to estimate the thiols content by

measuring light absorption at 412 nm in a GBC-UV/Vis-920.

The total thiol content in the homogenate was determined by

subtracting the values found in the experimental group minus the

values found in the sample blank. The molar extinction coefficient

of DTNB (13600 M21 cm21) was used to calculate the amount of

DTNB reduced in each sample. The cellular content of thiol was

plotted with GraphPad� Prism 4.0 software and expressed as

nanomols of reduced DTNB/mg protein.

Determination of lipid peroxidation by the thiobarbituric
acid reactive substances assay (TBARS)

Samples corresponding to 120 mL of S. mansoni male or female

homogenates were added to 180 mL sodium phosphate buffer,

pH 7.4 plus 200 mL of 1.0% TBA in 50% acetic acid. The samples

were incubated at 95uC for 15 minutes, cooled and added 500 mL

n-butanol. The samples were centrifuged at 20.0006g for

10 minutes at room temperature and the absorbance of organic

phase was measured spectrophotometrically at 532 nm in a GBC-

UV/Vis-920. For quantification purposes, the millimolar extinc-

tion coefficient of malondialdehyde (MDA) of 156 mM/cm21 was

utilized.

Assessment of intracellular reactive species
Female and male adult worms obtained by mesenteric perfusion

of mice treated or not with QN were incubated with 1 mg/mL of

29,79-dichlorofluorescin diacetate (CMH2-DCFH-DA, Molecular

Probes) in 200 mL of RPMI 1640 medium supplemented with 5%

of fetal bovine serum, 2 mM of glutamine and 10 U.I/mL of

penicillin and 10 mg/mL streptomycin for 30 minutes in the dark.

After that, the worms were washed with saline solution and were

observed in the fluorescence microscope (Axio Observer. Z1,

Zeiss, Germany) using the excitation and emission wavelengths of

480 nm and 530 nm, respectively.

S. mansoni culture
For cultivation of schistosomula, cercariae released from

Biomphalaria glabrata snails were processed and converted to

schistosomula by following a method previously described [62].

A water solution containing approximately 7200 cercariae was

passed through a syringe needle (0.7 mm) four times and, after

that, was left undisturbed for 90 minutes at room temperature to

separate schistosomula from cercariae tails. In the laminar flow,

the schistosomula pellet was washed five times in 5 mL of sterile

saline solution containing 20 U.I/mL of penicillin and 20 mg/mL

streptomycin, counted and transferred to 24 wells plates at a
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density of 150 schistosomula per well. Then, 2 mL of RPMI 1640

medium supplemented with 5% of fetal bovine serum, 2 mM of

glutamine and 10 U.I/mL of penicillin and 10 mg/mL strepto-

mycin was added in each well, followed by 2 mL of human red

blood cells (hRBC). The culture was kept at 37uC and 4% CO2

and the medium supplemented with hRBC was changed everyday.

Different concentrations of QN were added to the culture medium

five days after starting the culture and was left for additional five

days. In control group, ethanol was added to the culture medium

to reach 0.1% of final concentration

Culture of adult worms was carried out by following the method

described earlier with minor modifications [63]. Briefly, adult

worms were obtained by mesenteric perfusion of mice with sterile

saline, forty-two days after infection. In the laminar flow, the

worms were washed three times with 5 mL of RPMI 1640

supplemented with 5% of fetal bovine serum, 2 mM of glutamine,

20 U.I/mL penicillin and 20 mg/mL streptomycin. A worm

couple was plated per each well of a 24-wells plate in the presence

of 2 mL of RPMI 1640 medium supplemented with 5% of fetal

bovine serum, 2 mM of glutamine, 10 U.I/mL of penicillin and

10 mg/mL streptomycin. Human RBC (10 mL) was added to each

well everyday and cultures were kept at 37uC and 4% CO2. The

medium supplemented with hRBC was changed everyday. After

two days of culture, QN was added to medium to reach 14.3 mM

and 28.6 mM of final concentrations and kept for the following five

days of culture. In control group, ethanol was added to the culture

medium to reach 0.1% of final concentration. On the sixth day of

culture the worms were collected and prepared for TEM as

described above.

Data analysis
The statistical analyses were done by non-paired Student’s t test

or one-way ANOVA analysis of variance and a posteriori Tukey’s

test for pair-wise comparisons. For all tests, a difference of p,0.05

was considered to be significant. Student’s t test, ANOVA, Tukey’s

test and correlation analysis were performed by using GraphPad

� Prism version 4.00 for Windows (GraphPad Software, USA).

Results

Quinoline compounds inhibit Hz formation induced by S.
mansoni regurgitant in vitro

Although the mechanisms by which quinolines exert their

antimalarial action are not completely understood, the capacity of

these compounds to form complexes with heme in vitro and in vivo

was already demonstrated [64,65]. In fact, Kaschula and

colleagues have shown that such antimalarial activity of quinolines

normalized for pH trapping is directly correlated with their ability

to inhibit Hz formation [28]. Previous evidence has indicated the

schistosomicidal activity of some antimalarial compounds in

murine models [33,34,66]. As demonstrated in table 1, a search

over the literature revealed that from 11 antimalarial compounds

tested so far in schistosomiasis models, 5 exhibited activity against

S. mansoni. All these 5 compounds had their inhibitory action on

heme crystallization reported elsewhere in chemically-driven heme

crystallization (b-hematin formation) or in Plasmodium derived

products-driven reactions. Therefore, our first attempt was to

investigate the efficacy of quinoline and non-quinoline compounds

to inhibit heme crystallization induced by S. mansoni regurgitant.

Recent findings from our group demonstrate that, in S. mansoni, Hz

is produced at the surface of extracellular lipid droplets (LD) found

in the gut lumen and that enriched preparations of gut content,

known as regurgitant, were able to produce Hz in vitro in reactions

sensitive to quinolines [26]. We tested commercial quinolines such

as QCR, QND and QN, new synthetic quinolines named C3, C6,

C7, C9 and C10, and the non-quinolines artemisinin (ART),

clotrimazole (CTZ) and praziquantel (PZQ) (Figure 1). Represen-

tative curves of inhibition of Hz formation by QN, QND and

QCR are shown in Figure S1. We observed that all tested

commercial quinolines efficiently inhibited heme crystallization,

exhibiting the following IC50 values: QCR = 4.63 mM,

QND = 2.41 mM and QN = 13.38 mM (Table 2). Also, synthetic

C7 and C10 revealed to be potent inhibitors of this process, with

IC50 values of 9.00 mM and 17.50 mM respectively (Table 2).

Clotrimazole (CTZ) also showed great efficacy in inhibiting heme

crystallization, with an IC50 value (10.22 mM) comparable with

those of quinolines (Table 2). It was not possible to determine the

IC50 values for ART, C3, C6 and C9 because no complete

inhibition of heme crystallization was achieved up to the maximal

concentration tested (100 mM). In addition, PZQ failed to interfere

with heme crystallization, as previously demonstrated by our

group [33], even in higher concentrations (1 mM). Thus, 9 out of

12 compounds tested, are known antimalarials and, from these, 8

inhibited reactions of b-hematin formation in vitro, as reported by

the literature [28,52]. Interestingly, all compounds tested in table 2

that inhibited in some extent Hz formation induced by S. mansoni

regurgitant exhibit antimalarial effects and also interfere with b-

hematin formation.

Treatment of S. mansoni-infected mice with antimalarial
quinoline methanols decreases worm burden and eggs
production

Based on data shown in Table 2, we selected QN, QND and

QCR for further tests of their potential schistosomicidal effects in

vivo in a murine model. Due to the limited amounts of the synthetic

compounds C7 and C10, in vivo assays with these compounds were

not carried out. Then, in the first protocol tested, S. mansoni-

infecetd mice received a daily intraperitoneal injection of QN,

QND or QCR (75 mg/kg) over 7 days, beginning the treatment

11 days after infection. In this regime, QN administration was not

toxic to mice (Figure S2A and S2B). During this period of drug

administration the immature worm forms are usually located in

the hepatic portal venous system, exhibiting developed and

functional guts, and ingesting host blood to meet their nutritional

demands. The worms were then recovered 42 days after infection

by mesenteric perfusion of infected mice, a time point in which

adult females are actively laying eggs that are frequently found in

host liver, intestines and feces [67]. Table 3 shows that QN and

QND treatment caused significant reductions not only in total

worm (39% and 61%, p,0.001) but also in female worms burden

(40% and 58%, p,0.001), respectively. QN treatment also caused

a dose-dependent reduction in the viability of in vitro-transformed

schistosomula kept in culture medium for five days (Figure S3). On

the other hand, the acridine antimalarial QCR caused slight

reductions in both total (24%) and female (18.5%) worms count

(Table 3). QND was also tested by treating S. mansoni-infected mice

with daily intraperitoneal injections of the drug (100 mg/kg)

during 4 days, beginning the treatment 42 days after infection.

Although in this regime QND was not toxic to mice (Figure S2C

and S2D), there were no significant changes in the parasitemia

(Figure S4A), viability (Figure S4B), and Hz content (Figure S4C).

Table 4 shows that QN-treated mice had significant reductions in

the eggs burden in the small intestine (65%, p,0.001), in the large

intestine (89%, p,0.001), and also in the liver (42%, p,0.05). In

QND-treated mice, significant reductions in egg burden were

observed only in the small intestine (72%, p,0.05). Also, QCR

treatment caused no significant inhibition of eggs deposition in all

three tissues investigated (Table 4). Figure 2 shows that in QN-
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treated animals there were clear morphological changes in the

granulomatous reaction surrounding the eggs deposited in the liver

compared to control mice. In fact, QN treatment significantly

decreased the size of granulomatous fibrotic foci which surround

the eggs (39%, p,0.001) (Figure 2C).

Antimalarial quinoline methanols affect in vivo heme
crystallization in S. mansoni

Aiming to investigate whether the effects of QN, QND and

QCR treatment on S. mansoni were related to the impairment of

heme crystallization process, Hz content was determined in both

male and female worms using previously established methods [23].

The reduction of Hz content in the gut of QN-treated females was

clearly visible when observed by bright field microscopy

(Figure 3A). QN treatment also caused a clear reduction of Hz

crystals present on the surface of LDs in the gut lumen of S. mansoni

females (Figure 3B, arrows). Since Hz formation in S. mansoni occurs

at the surface of LDs [26], one could argue that reductions in the

amount of crystals found in QN-treated worms could be a

consequence of less LDs present in the gut lumen. This seems not

the case since an inspection of TEM images showed that there

were no changes in the number of LDs observed in female’s gut

caused by QN treatment (Figure 3C). In fact, both QN and QND

significantly decreased Hz content in female worms by 40% and

65%, respectively (Table 5). Curiously, reductions in the Hz

content were less pronounced in male worms treated with both

drugs (17% to 21%) compared to females. Also, QCR treatment

caused slight reductions in Hz content in both male and female

worms (7% to 25%). Interesting to note is that relative reductions

in both total and female parasitemia strongly correlated (R2 = 0.90

to 0.95, p,0.05) with the relative reduction in the Hz content

found in female worms (Figure 4). In addition, QN, QND and

QCR treatment did not cause any changes in the total protein

content of both male and female worms (Figure S5). Curiously,

inhibition of heme crystallization did not result in redox imbalance

in adult worms since the content of total reduced thiols, as well as

the levels of lipid peroxidation products remained unchanged in

Figure 1. Chemical structures of quinoline and non-quinoline drugs. QN - quinine; QND - quinidine; QCR - quinacrine; C3 - compound 3; C6 -
compound 6; C7 - compound 7; C8 - compound 8; C9 - compound 9; C10 - compound 10; CTZ - clotrimazole; PZQ - praziquantel; ART - artemisinin.
doi:10.1371/journal.pntd.0000477.g001
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QN-treated S. mansoni females (Figure S6). Finally, fluorescence

microscopy analyses revealed that in QN-treated worms the levels

of reactive species is undistinguishable from control ones assessed

by the fluorescent reactive probe CMH2-DCFDA (Figure S7).

Quinine treatment causes remarkable ultrastructural
changes in the gastrodermis of adult worms

In an attempt to investigate whether inhibition of heme

crystallization promoted by QN treatment affected parasite

ultrastructure, we observed control and QN-treated adult worms

by transmission electron microscopy (TEM) as shown in figure 4.

An initial inspection of different parasite regions indicated that

QN indeed caused ultrastructural modifications in S. mansoni.

Curiously, we did not observe substantial alterations in the

tegument and musculature of both female (Figure S8A and S8B)

and male (Figure S8C and S8D) worms recovered from QN-

treated mice. More importantly, detailed analyses indicated that

QN treatment caused remarkable ultrastructural changes in the

gastrodermis of both female (Figure 5A and 5B) and male worms

(Figure 5C and 5D). Noteworthy is the extensive loss of electron

density and clear indications of both cytoskeleton disorganization

and mitochondrial swelling observed in female gastrodermis

(Figure 5B). Regarding the male worms, the most striking change

observed in QN-treated worms was the washed-out aspect of the

cytosol of gastrodermis cells (Figure 5D). In addition, mitochon-

dria were found inside autophagic vacuoles in the gastrodermis

(Figure S9A) as well as with swollen appearance, washed-out

matrix and with remnants of inner membranes in the sub-

tegumentar region of QN-treated female worms (Figure S9C).

Finally, adult females cultured in vitro in the presence of QN

(14.3 mM) for 48 h promoted gastrodermis vacuolization and the

appearance of huge electrondense particles within the tissue

(Figure 6B). Interestingly, QN caused a complete destruction of

females gastrodermis after 72 h of treatment as shown in figure 6C

where LD usually found in the gut lumen were found in close

association in mitochondria, possibly derived from the gastro-

dermis.

Quinine treatment increased expression of transcripts
related to sexual differentiation, musculature,
cytoskeleton and repair mechanisms in S. mansoni
females

In order to characterize the effect of QN treatment at the

molecular level, we performed large-scale gene expression analyses

using cDNA microarrays with approximately 4,000 different S.

mansoni gene fragments (GEO accession number: GPL3929) [58].

Gene expression levels were compared between female adult

worms recovered from infected mice that were treated with QN

and female worms recovered from control (non-treated) infected

mice. We have found 25 transcripts significantly up-regulated in

QN treated parasites (Figure S10). These transcripts were mapped

Table 1. Reported schistosomicidal activity and inhibitory
effect on heme crystallization by antimalarial compounds.

Drugs
Schistosomicidal
activity

Inhibitors of heme
crystallization*

Amodiaquine 2a +b

Chloroquine +a +b

Mefloquine +a +b

Quinine +a +b

Halofantrine +a +b

Pyronaridine 2a +b

Lumefantrine +a +c

Sulfadoxine 2a 2

Sulfamethoxypyrazine 2a 2

Atovaquone 2a 2

Pyrimethamine 2a 2

aFrom Keiser et al [34].
bFrom Ncokazi and Egan [53].
cFrom Egan personal communication.
*The reported inhibitory activity of antimalarial compounds on heme
crystallization were obtained in synthetic reactions in vitro, and not in
Schistosoma.

doi:10.1371/journal.pntd.0000477.t001

Table 2. Effect of different compounds on heme crystallization induced by S. mansoni regurgitant in vitro.

Drugs IC50 (mM) Hz formation Antimalarial activity Inhibitor of bH formation

Quinacrine (QCR) 4.6360.57 + +

Quinidine (QND) 2.4160.28 + +

Quinine (QN) 13.3860.82 + +

Compound 3 (C3) _ _ +b

Compound 6 (C6) _ + +b

Compound 7 (C7) 9.0061.00 + +b

Compound 8 (C8) 51.0065.00 + +b

Compound 9 (C9) _ + +a

Compound 10 (C10) 17.5062.38 NT +c

Artemisinin (ART) _ + _

Clotrimazole (CTZ) 10.0162.22 + +

Praziquantel (PZQ) _ _ _

aFrom Kaschula et al [28].
bFrom Ncokazi and Egan [53].
cEgan personnal communication.
doi:10.1371/journal.pntd.0000477.t002
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to the draft genome sequence and gene predictions generated by

the S. mansoni Genome Project [68] (Table 6). Additional

annotations were obtained by similarity searches against the

NCBI nr database (Table 6). A considerably high proportion (6/

25 = 24%) of the up-regulated genes is composed of muscle-related

genes, including myosin heavy and regulatory chains (C604749.1,

C607128.1 and C600026.1); tropomyosin (C608351.1); troponin

(C605852.1) and titin (C609457.1). Moreover, the expression of

two different kinases was induced after QN treatment: a src

tyrosine kinase (TK3) (C600304.1) and a SNF-1 related kinase

(SNRK) (C603981.1). Over-expression of a GPI-anchored surface

glycoprotein (C601690.1), described to be critical for PZQ

effectiveness [69], was detected in QN-treated parasites. Increased

expression of GPI-anchored surface glycoprotein was confirmed

by real-time PCR experiments (data not shown). Based on the data

shown here, the most significant changes observed in parasite gene

expression promoted by QN treatment were the increased

expression of genes related to repair mechanisms: aldehyde

dehydrogenase (ADH) (C609066.1) and rad25/xp-B DNA repair

helicase (C704554.1). We have also detected an increased

expression of aminophospholipid flippase (or translocase)

(C605890.1), which is involved in prevention of apoptosis by

avoiding phosphatidylserine externalization on cell surface

[70,71]. Activation of these genes may represent a key strategy

to avoid recognition of damaged parasite cells by the host immune

system.

Discussion

We reported here that interference with heme crystallization in

S. mansoni represent an important mechanism by which antima-

larial quinoline methanols exert their schistosomicidal action.

These compounds caused significant reductions in both worm and

egg burden, whereas remarkable changes in the ultrastructural

organization of parasite gastrodermis, as well as induced

expression of genes related to musculature, protein synthesis and

repair mechanisms were seen in worms treated with QN. From all

the three compounds tested, QN and QND caused the most

striking reductions in the Hz content on female worms, which are

more susceptible to interference in this process [33]. Interestingly,

reduction in total and female parasitemia, obtained after treatment

with QN, QND and QCR, was positively correlated with the

Figure 2. QN treatment decreases the granulomatous reaction to parasite eggs trapped in the liver parenchyma. Bright-field
microscopy images of cross section of liver from control (A) and QN-treated (B) mice. Arrows indicate S. mansoni eggs deposited in mouse liver.
Original magnification6100. (C) Quantification of granuloma area in liver from control (closed squares, n = 17) and QN-treated (open squares, n = 38)
mice (*p = 0.0021, Student’s t test). Each symbol represents data from individual mice. The horizontal bars represent the median of granuloma area of
each treatment.
doi:10.1371/journal.pntd.0000477.g002

Table 3. Effect of daily doses (75 mg/kg/day, intraperitoneal route from 11th to 17th day post infection) of two quinoline
methanols and an acridine on worm burden to S. mansoni-infected mice, stratified by sex.

No. mice Mean number of worms per mouse (SEM) Worm burden reduction (%)

Total Male Female Total Female

Control 51 101.7 (5.91) 60.68 (3.50) 43.38 (2.65) - -

Quinine 36 61.86 (4.79)a 41.77 (3.51)a 25.92 (2.58)b 39,17a 40,25a

Quinidine 8 39.50 (9.87)a 21.50 (5.43)a 18.00 (4.53)c 61,16a 58,50b

Quinacrine 6 76.83 (11.71) 41.50 (6.72) 35.33 (5.24) 24,45 18,55

Total number of S. mansoni worms was obtained after mesenteric perfusion of control, quinine, quinidine, and quinacrine-treated mice 42 days after infection. Statistical
analyses between groups were performed by using ANOVA and a posteriori Tukey’s test.
ap,0.001.
bp,0.01.
cp,0.05 compared to control.
SEM, standard error from mean.
doi:10.1371/journal.pntd.0000477.t003
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Table 4. Effect of daily doses (75 mg/kg/day, intraperitoneal route from 11th to 17th day post infection) of two quinoline
methanols and an acridine on eggs burden to S. mansoni-infected mice, stratified by tissue distribution.

No. mice Mean number of eggs deposited in mice tissues 6102/g tissue (SEM) Egg burden reduction (%)

Small intestine Large intestine Liver Small intestine Large intestine Liver

Control 44 89.41 (11.95) 31.04 (7.35) 50.32 (5.70) - - -

Quinine 40 30.53 (7.74)a 3.11 (1.41)a 29.17 (4.81)c 65,85a 89,98a 42,03c

Quinidine 8 24.84 (10.90)c 0.62 (0.35) 23.09 (7.64) 72,22c 98,00 54.11

Quinacrine 6 48.09 (10.47) 4.93 (1.77) 33.39 (12.01) 46,21 84,11 33,64

Total number of S. mansoni eggs was obtained after mesenteric perfusion of control, quinine, quinidine, and quinacrine-treated mice 42 days after infection. Statistical
analyses between groups were performed by using ANOVA and a posteriori Tukey’s test.
ap,0.001.
cp,0.05 compared to control.
SEM, standard error from mean.
doi:10.1371/journal.pntd.0000477.t004

Figure 3. QN treatment decreases Hz content on S. mansoni females in vivo. (A) Bright field microscopy images of control and QN-treated
(QN) females of S. mansoni, showing clearly a reduction in the pigment content of the gut. Original magnification 625. Control: S. mansoni-infected
mice. QN: S. mansoni- infected mice treated with 75 mg/kg/day QN. (B) TEM of cross sections of gastrodermis from control and QN-treated (QN) S.
mansoni females. The arrows indicate the lipid droplets found in the gut lumen. (C) Quantification of LDs in the gut of control (C, n = 12) and QN-
treated (QN, n = 28) female worms obtained from TEM images at 12.0006magnification. Results are means6SEM. Bars denote the scale in
micrometers.
doi:10.1371/journal.pntd.0000477.g003
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percentage of Hz content reduction in female worms (Figure 3),

strenghtening the concept that interference with heme crystalliza-

tion plays an important role on the mechanism of schistosomicidal

action of antimalarial quinoline methanols. The present work,

together with previous evidence describing schistosomicidal

activity of antimalarial quinolines [33,34,66], strongly indicates

that heme crystallization in Schistosoma is a promising target for the

development of new schistosomicidal compounds.

Hz formation represents the main heme detoxification mech-

anism in S. mansoni, accounting for more than 50% of total heme

content in female worms [23]. Our group firstly proposed that

interference in Hz formation could be a potential target for new

therapies against schistosomiasis [33] by showing that treatment of

S. mansoni-infected mice with multiple intraperitoneal injections of

CLQ caused an important decrease in the overall severity of

disease. In this regard, it is important to notice some aspects

related to the results of inhibition of heme crystallization by

antimalarial quinoline methanols obtained in the present work, as

following: i) Hz content observed in female worms after QN and

QND treatment were normalized by the worm’s protein content

(Table 5), a parameter that was not affected after quinoline

methanols treatment (Figure S5). Thus, reductions in the Hz

content observed (Table 5) were not related to reduced worm

counts (Table 3) or to increased protein levels found upon

treatment; ii) since the LDs found in the gut lumen are responsible

for Hz production in S. mansoni [26] reduced Hz formation

(Table 5) is not a consequence of less LDs found in the gut lumen,

since treatment with antimalarial quinoline methanols did not

affected LD counts (Figure 3C); iii) the relative reduction in

parasitemia was positively correlated with the relative reduction of

Hz content in females (Figure 4), which, once again strongly

denotes the role of heme crystallization to parasite survival; iv)

previous evidence from the literature, demonstrating schistosomi-

cidal activity of antimalarial drugs, show a high agreement with

Figure 4. Relative reduction in female parasitemia correlates with reduction of their Hz content. Circles represent values of both
percentage of reduction in total parasitemia as well as the percentage of reduction in Hz content in females after treatment with 75 mg/kg/day QN,
QND or QCR from day 11 to 17 after infection. Black circles represent the data from female worms whereas white circles were from total worms.
Values of correlation analyses are expressed in the graph.
doi:10.1371/journal.pntd.0000477.g004

Table 5. Effect of daily doses (75 mg/kg/day, intraperitoneal route from 11th to 17th day post infection) of two quinoline
methanols and an acridine on hemozoin content in S. mansoni, stratified by sex.

No. mice Mean hemozoin content in worms as nmols heme/mg protein (SEM) Reduction in Hz content (%)

Male Female Male Female

Control 27 2.48 (0.35) 36.67 (3.97) - -

Quinine 27 1.95 (0.20) 21.90 (2.19)a 21.37 40.28c

Control 8 1.12 (0.19) 19.86 (1.52) - -

Quinidine 6 0.93 (0.30) 6.92 (0.91)a 17.31 65.16a

Quinacrine 6 0.84 (0.19) 18.46 (2.07) 25.54 7.05

Hemozoin content was obtained from S. mansoni worms recovered after mesenteric perfusion of control, quinine, quinidine, and quinacrine-treated mice 42 days after
infection. Statistical analyses between groups were performed by using ANOVA and a posteriori Tukey’s test.
ap,0.001.
cp,0.05 compared to control.
SEM, standard error from mean.
doi:10.1371/journal.pntd.0000477.t005
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those compounds that also inhibit synthetic b-hematin formation

(Table 1). The only exception is amodiaquine, since the drug

interferes with heme crystallization in vitro, although did not cause

any change in parasitological parameters described by Keiser and

collagues [34] (Table 1). Conceivably, the metabolic processing of

amodiaquine, and its short plasmatic half-life (5.2 minutes), may

affect not only the drug accucmulation inside Schistosoma gut, but

also the final concentrations necessary to inhibit Hz formation,

ultimately failing to cause parasite death [34]; v) in table 2, from 12

compounds tested, 9 are known antimalarials and, from these, 8

are known inhibitors of b-hematin formation in vitro, as reported

by the literature [28,52]. Interestingly, 6 out of these same 8

Figure 5. QN treatment in vivo causes remarkable ultrastructural changes in the gastrodermis of adult worms. TEM images of cross
sections from adult females (A, B) and males (C, D) gastrodermis. Panels A and C were from control mice, while panels B and D were from QN-treated
mice. GD-gastrodermis; LD- Lipid droplets; Rr- Red blood cells remnants; m- mitochondria. Bars denote the scale in micrometers.
doi:10.1371/journal.pntd.0000477.g005

Figure 6. QN treatment affected the gastrodermis of adult worms cultured in vitro. TEM images of gastrodermis cross sections from adult
females of S. mansoni cultured in vitro for six days. Panel A represents female worms treated with 0.1% ethanol for 48 h. Panel B represent female
worms treated with 14.3 mM QN for 48 h. Panel C represents female worms treated with 14.3 mM QN for 72 h. GD-gastrodermis; LD- Lipid droplets; m-
mitochondria; V-vacuoles. Asterisks indicate electron-dense particles within gastrodermis cells. Bars denote the scale in micrometers or nanometers.
doi:10.1371/journal.pntd.0000477.g006
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compounds inhibited Hz formation induced by S. mansoni

regurgitant with different intensities. Therefore, although alterna-

tive explanations can be raised, interference with Hz formation

seems to be the simplest explanation for the findings presented

here.

Several reports proposed the relevance of a chlorine atom at 7-

position of the quinoline ring as an important structural

determinant for the inhibitory effects on heme crystallization in

vitro [28,53]. Despite its obvious relevance, this feature alone is not

sufficient to determine their antimalarial effect because another

important aspect must be considered. Drugs accumulation within

the Plasmodium food vacuole play also a key role since this allow

quinoline compounds reach intracellular concontrations necessary

to inhibit with Hz formation. In fact, Kaschula and colleagues

obtained an excellent correlation between antiplasmodial activity,

normalized for pH trapping, and beta-hematin inhibitory activity

[28]. In this regard, despite the lower IC50 values obtained in vitro,

neither Hz formation in vivo nor parasite burden were affected by

QND when it was administered later on infection (Figure S4).

However, reduction in both Hz content in female worms (Table 5),

as well as parasite and eggs burden were achieved when QND was

administered early on the infection (Tables 3 and 4), indicating

that interference with heme crystallization is an important aspect

to determine its schistosomicidal effects. Also, QCR treatment

caused no changes in worm burden and Hz formation as well

(Tables 3 and 5). Thus, based on the data presented here, we

cannot exclude the possibility that drug accumulation, through pH

trapping, could be also determining some of the schistosomicidal

effects of antimalarial quinoline methanols. Since these com-

pounds are weak bases, it is possible that their accumulation may

affect the parasite gut pH and then interfering with parasite

proteolytic enzymes. In fact, Bogitsch and Davenport demonstrat-

ed that lysosomotropic agents, such as chloroquine, accumulates

within S. mansoni schistosomula cultured in vitro [72]. Further

research on these aspects will provide a better understanding on

the contribution of these factors in determining the schistosomi-

cidal action of quinolines.

Praziquantel (PZQ) administration represents the main strategy

for schistosomiasis control worldwide, but the threat of resistance

development to PZQ has prompted the search for new

schistosomicidal compounds [39]. In this sense, quinoline

compounds have been used as the main therapeutic option for

malaria treatment for more than 300 years [73]. Their wide use in

the treatment of malaria is in part due to their high safety and

efficacy, in addition to their well known pharmacokinetics.

Consensus over the mechanism of antimalarial action of CLQ

suggests that it relies on its interaction with heme [64] by forming

a complex that accumulates within the acidic food vacuole [74]

which impairs heme crystallization therein [75]. The complex

formed between heme and quinolines increased heme affinity for

biological membranes, enhancing its toxic effects [29,74,75] and

also inhibiting heme crystallization in Plasmodium [76,77,78].

Possibly, heme molecules derived from hemoglobin digestion

would be diverted from their natural fate (Hz) by forming a stable

complex with quinoline methanols, which, in turn, would increase

their association with hydrophilic-hydrophobic interfaces present

not only in LD but also in other biological membranes, such as

those of the gastrodermis cells (Figures 3B, 5B, 5D and 6C).

Moreover, increased association of heme-QN complex with the

plasma membrane of gastrodermis cells would explain the

remarkable cytoskeleton disorganization observed in QN-treated

worms (Figures 3B, 5B, 5D and 6C), caused by heme-induced

changes in membrane stability and oxidative modifications. An

interesting observation in table 2 is that PZQ caused no effect on

heme crystallization in vitro, reinforcing the potential of therapeutic

regimens combining PZQ with antimalarial quinoline methanols,

as these compounds affect distinct metabolic pathways. Further

research is necessary to determine whether this combined

treatment turns out to be a valuable clinical strategy for

schistosomiasis chemotherapy.

Quinoline methanols administration did not result in complete

elimination of parasites from S. mansoni-infected mice, and a

possible explanation could be the induction of genes that enable

parasite survival upon impaired heme crystallization. Changes

observed in parasite gene expression would be a consequence of

increased levels of non-crystallized heme complexed to quinoline

methanols. Noteworthy, QN-exposed parasites showed up-regu-

lation of 25 genes (Table 6), which can be grouped into 8

categories: sexual differentiation, musculature, cytoskeleton, signal

transduction, transcription/translation, protein digestion, recogni-

tion, and repair mechanisms. Curiously, among the induced genes

was TK3 (probe C600304.1), a gene encoding a src tyrosine kinase

predominantly expressed in the reproductive organs, as well as in

female’s vitellarium [79], being involved in signal transduction

pathways related to the cytoskeleton in Schistosoma gonads [79].

TK3 is a herbimycin probable target, having key functions in

regulating gonad development and egg production [80]. Over-

expression of a kinase with putative cell-architecture regulatory

function may indicate that a cytoskeleton reorganization process

takes place as part of an effective survival response to QN

administration.

In QN-treated worms we have detected over-expression of a

gene encoding a GPI-anchored surface glycoprotein (probe

C601690.1), described to be critical for PZQ effectiveness [69].

It has been postulated that antibodies that develop against some

unique glycoproteins exposed at the parasites’ tegument surface

are important for an effective action of PZQ [42], as PZQ

effectiveness is impaired in immune-deficient animals [42]. In fact,

monoclonal antibodies that recognize the GPI-anchored surface

glycoprotein are able to restore PZQ efficacy in B-cell depleted

mice [69]. It is tempting to hypothesize that the observed QN-

induced over-expression of the tegument glycoprotein gene could

favor an augmented action of PZQ, thus favoring the idea of a

QN-PZQ combined treatment; since the threat of PZQ resistance

development represents a real concern, QN would be a good PZQ

partner for schistosomiasis treatment.

Despite the schistosomicidal effects of quinoline methanols,

direct evidence linking this property to increased oxidative stress

conditions, due to impaired heme crystallization in parasite gut

(Figure 3B, and Table 5) remains inconclusive. Measurements of

total reduced thiol content (Figure S6A) as well as lipid

peroxidation products (Figure S6B) and the assessment of reactive

species in QN-treated worms by using the fluorescent probe

CMH2-DCFA (Figure S7), failed to demonstrate changes in these

parameters. We speculate that the absence of oxidative stress

markers in QN-treated parasites could be explained by an

increased expression of genes related to repair mechanisms. In

fact, we observed that 4 out of 25 genes over-expressed in QN-

treated worms were related to mechanisms involved in cellular

repair and maintenance (Table 6). Noteworthy is the increased

expression of aldehyde dehydrogenase (ADH) gene, which encodes

an enzyme involved in detoxification of lipid peroxidation

products such as reactive malondialdehyde and hydroxynonenal

[81], and of rad25/xp-B DNA repair helicase gene. Increased

expression of both ADH and rad25/xp-B DNA repair helicase

genes would explain the preserved ultrastructure in surviving

parasites recovered at the end of the treatment period. Further,

ultrastructural evidence (Figure S9A) indicates that mitochondrial
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autophagy in the gastrodermis of QN-treated female worms would

play a cellular protective role by eliminating dysfunctional

organelles and preventing mitochondrial-induced apoptosis.

In conclusion, the results presented here show that interference

with heme crystallization in S. mansoni by quinoline methanols

exerts promising schistosomicidal effects, causing significant

reductions in several pathologic parameters of disease. Since the

endemic areas of malaria and schistosomiasis overlap in many

regions of the globe and, considering that Hz formation occurs

both in Plasmodium and Schistosoma parasites, retrospective clinical

analyses of malaria patients treated with quinolines in these

regions would be quite informative concerning the potential use of

heme crystallization inhibitors as anti-parasitic agents for both

diseases.

Supporting Information

Figure S1 Dose-dependent inhibition of S. mansoni regurgitant-

driven Hz formation in vitro by QN, QND and QCR.

Representative IC50 curves of inhibition of Hz formation in

reactions promoted by S. mansoni female regurgitants were

conducted in the presence of different concentrations of (A) QN,

(B) QND and (C) QCR, as described in the methods section. All

drugs were tested in concentrations ranging from 5–100 mM.

Found at: doi:10.1371/journal.pntd.0000477.s001 (7.16 MB TIF)

Figure S2 QN and QND treatment were not toxic to S. mansoni-

infected mice. Alanine aminotransferase (ALT) (A and C) and

aspartate aminotransferase (AST) (B and D) activities were assayed

in plasma samples from C, QN (A, B) or QND (C, D) treated mice

infected with S. mansoni as markers for hepatocellular damage. QN

treatment means S. mansoni-infected mice treated with 75 mg/kg/

day QN from day 11 to 17 after infection, whereas in QND

treatment mice were treated from day 42 to 45 after infection with

daily intraperitoneal injections of 100 mg/kg QND. Results were

expressed as mean6SEM (n = 10, for A and B; n = 3, for C and

D).

Found at: doi:10.1371/journal.pntd.0000477.s002 (4.14 MB TIF)

Figure S3 QN caused a significant reduction in the viability of

cultured in vitro transformed schistosomula. Effect of QN

treatment on the viability of cultured in vitro-transformed

schistosomula assessed by MTT reduction. Control means

schistosomula treated with 0.1% ethanol, whereas in the

experimental groups, QN was added in concentrations ranging

from 10–100 mM. Results were expressed as mean6SEM. *

p,0.001, QN 10–100 mM vs. control (C) (one-way ANOVA and

a posteriori Tukey’s test).

Found at: doi:10.1371/journal.pntd.0000477.s003 (1.30 MB TIF)

Figure S4 QND treatment later on infection did not affect

parasite burden, viability or Hz content. (A) Effect of QND

treatment on total number of S. mansoni female and male worms in

control (n = 5) and QND-treated (n = 5) mice. (B) Effect of QND

treatment on the viability of S. mansoni female and male worms in

control (n = 5) and QND-treated (n = 5) mice. (C) Hz content in

female and male S. mansoni worms in control (n = 5) and QND-

treated (n = 5) mice. Hz was extracted from S. mansoni and

quantified as described in materials and methods. Control (C): S.

mansoni-infected mice treated with about 100 mL of 30.0% ethanol.

QND: S. mansoni-infected mice treated with 100 mg/kg/day QND

from day 42 to 45 after infection. Results are expressed as

mean6SEM.

Found at: doi:10.1371/journal.pntd.0000477.s004 (3.35 MB TIF)

Figure S5 QN and QND treatment did not affect protein

content in adult worms. (A) Effect of QN treatment on protein

content in female and male S. mansoni worms. Results are

expressed as mean6SEM (n = 27). (B) Effect of QND and QCR

treatment on protein content in female and male S. mansoni worms

(n = 4–9). Control (C) means S. mansoni-infected mice treated with

about 100 mL of 30.0% ethanol. QN, QND and QCR mean S.

mansoni-infected mice treated with 75 mg/kg/day of each

compound from day 11 to 17 after infection. Results were

expressed as mean6SEM. * p,0.001 one-way ANOVA and a

posteriori Tukey’s test, for males vs. their respective female groups.

Found at: doi:10.1371/journal.pntd.0000477.s005 (2.50 MB TIF)

Figure S6 QN treatment did not affect total thiol levels nor

induce lipid peroxidation in adult worms. (A) Effect of QN

treatment on the total thiol content in female and male S. mansoni

worms (n = 27). (B) Effect of QN treatment on lipid peroxidation in

female and male S. mansoni worms (n = 12), assessed by the TBARS

method. Control (C) means S. mansoni-infected mice treated with

about 100 mL of 30.0% ethanol, whereas QN means S. mansoni-

infected mice treated with 75 mg/kg/day QN from day 11 to 17

after infection. Results are expressed as mean6SEM.

Found at: doi:10.1371/journal.pntd.0000477.s006 (2.41 MB TIF)

Figure S7 QN did not increase reactive species formation in

adult worms. Effect of QN treatment on the reactive species

formation in female (A) and male (B) S. mansoni worms.

Intracellular reactive species from S. mansoni worms were

quantified as described in methods section using the fluorescent

probe CMH2-DCFDA. Control means S. mansoni-infected mice

with about 100 mL of 30.0% ethanol, whereas QN means S.

mansoni-infected mice treated with 75 mg/kg/day QN from day 11

to 17 after infection. Images of worms were acquired in both

bright field (left) and epifluorescence (right) microscopy.

Found at: doi:10.1371/journal.pntd.0000477.s007 (8.43 MB TIF)

Figure S8 QN treatment did not cause ultrastructural changes

in the tegument of adult worms. TEM images of tegument cross

sections from females (A, B) and males (C, D) of S. mansoni. Panels

A and C were from control worm, while panels B and D were from

QN-treated worm. T- tegument and MF- muscle fibers. Bars

denote the scale in micrometers.

Found at: doi:10.1371/journal.pntd.0000477.s008 (9.60 MB TIF)

Figure S9 QN treatment promotes mitochondrial autophagy

and morphological changes in female worms. TEM of cross-

sections images from S. mansoni adult females obtained from QN-

treated mice. (A) Gastrodermis of QN-treated female worm

showing a mitochondrion inside of an autophagic vacuole depicted

inside the white-dashed box. Panels B and C were from sub-

tegumentar region of a female worm obtained from control (B) and

QN-treated mice (C). MF-muscular fiber. Arrows indicate a clear

swelling of the mitochondria and arrowhead indicates remnants of

inner mitochondrial membrane. The asterisk indicates a washed-

out mitochondrial matrix and the inset in panel C depicts a

magnification of a swollen mitochondrion. Control means S.

mansoni-infected mice treated with about 100 mL of 30.0% ethanol,

whereas QN means S. mansoni-infected mice treated with 75 mg/

kg/day QN from day 11 to 17 after infection. Bars denote the

scale in micrometers.

Found at: doi:10.1371/journal.pntd.0000477.s009 (9.43 MB TIF)

Figure S10 QN treatment changed gene expression of S. mansoni

female worms. Genes identified as differentially up regulated in

female worms treated with quinine when compared with control

females (see methods for details). Heat map representing the 25

genes identified as significantly (FDR 0.1%) over-expressed after

treatment. Each line represents one gene and each two adjacent

columns represent replicas of one experiment, as indicated at the
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bottom of the panel. Expression levels of genes are represented by

the log2 (treatment/control ratio). Sample 1.x and 2.x represent

the dye swap replicates for sample 1 and 2, respectively.

Found at: doi:10.1371/journal.pntd.0000477.s010 (0.82 MB TIF)
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