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Abstract
The precise mechanism by which propofol enhances GABAergic transmission
remains unclear, but much progress has been made regarding the underlying
structural and dynamic mechanisms. Furthermore, it is now clear that propofol
has additional molecular targets, many of which are functionally influenced at
concentrations achieved clinically. Focusing primarily on molecular targets, this
brief review attempts to summarize some of this recent progress while pointing
out knowledge gaps and controversies. It is not intended to be comprehensive
but rather to stimulate further thought, discussion, and study on the
mechanisms by which propofol produces its pleiotropic effects.
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Introduction
Propofol is now the most commonly used general anesthesia  
induction agent in the world and is being used for total intrave-
nous general anesthesia and sedation with increasing frequency.  
It is well tolerated and may be associated with fewer post- 
anesthesia effects than many of our other general anesthet-
ics, factors that have undoubtedly contributed to its entrenched 
position in various clinical applications. However, propofol 
has adverse effects, including pain on injection, hypotension, 
hypoventilation, bradycardia, and hyperlipidemia1. Aside from 
clinical usage, propofol is being used extensively in basic neu-
roscience research to better understand consciousness, memory, 
and learning2–4. For example, a recent study reveals a previously 
unknown mechanism of unconscious memory under propofol 
anesthesia, suggesting that general anesthesia acts at stages  
beyond cellular coding to disrupt sensory integration for  
higher-order association2.

The success of this drug is all the more remarkable given how  
little we know of its full spectrum of molecular targets and  
actions. Although it has long been considered to be dominantly  
γ-aminobutyric acid-ergic (GABAergic)5,6, recent research has 
indicated that it is not exclusively so and in fact may rely on  
other molecular targets to produce even its principal desired  
effect: unconsciousness or hypnosis. This review will briefly 
cover recent research on how propofol functions on ligand-gated 
ion channels and then cover other recently revealed molecular  
targets.

Ligand-gated ion channels
Pentameric ligand-gated ion channels (pLGICs), particularly 
GABA type A receptors (GABA

A
Rs), have been extensively  

investigated as molecular targets for propofol in the past7–9.  
Propofol typically inhibits cation-selective pLGICs, including 
the nicotinic acetylcholine receptor (nAChR)10–13 and prokaryo-
tic homologues from Gloeobacter violaceus (GLIC)14,15 and 
Erwinia chrysanthemi (ELIC)16,17. In contrast, propofol at clini-
cal concentrations potentiates agonist-evoked currents of the 
anion-selective GABA

A
Rs and glycine receptors (GlyRs) and 

increases the frequency of channel opening5,6,18,19. Propofol 
can also directly activate GABA

A
Rs at intermediate concen-

trations, but then inhibit conductance at high, supra-clinical  
concentrations6,19. Exploration of the structural basis of propo-
fol action on pLGICs is still at an early stage. Only a few crystal 
structures or cryo-electron microscopy structures of eukaryotic 
pLGICs have been determined20–24, and none of these structures  
includes anesthetics. In contrast, propofol and other general anes-
thetics as well as alcohols have been successfully co-crystallized 
with the prokaryotic GLIC25,26 and ELIC17,27–29.

The crystal structure of GLIC in a presumed open/desensitized 
state shows propofol localized to an intra-subunit pocket at the  
extracellular end of the transmembrane domain α-helices25.  
Photoaffinity labeling of a propofol analogue to purified GLIC in  
solution leads to the same propofol location as observed in the  
crystal structure30. This intra-subunit transmembrane pocket 
is probably a common anesthetic-binding site for inhibition of 
pLGICs. For example, desflurane binds close to this location in  

GLIC25, and propofol inhibits ELIC via binding to the equiva-
lent site31. Similarly, propofol32, etomidate33,34, and halothane35  
also bind to an intra-subunit site within the δ subunit helix bundle 
of the eukaryotic nAChR, another pLGIC that is inhibited by  
anesthetics.

A significant role of β3GABA
A
R in behavioral effects of  

propofol and etomidate has been demonstrated by the reduced  
sensitivity of β3(N265M) mice36, and considerable progress has  
been made in revealing the underlying mechanisms36–43. Two 
recent articles42,43 have described sites for propofol in expressed 
αβGABA

A
R, albeit with somewhat different locations. In one 

case, ortho-propofol diazirine (o-PD) was found to adduct to a β3  
residue at the transmembrane/extracellular domain interface43  
while azi-propofol meta (aziPm) formed an adduct with resi-
dues deeper in the α1β3 transmembrane domain interface42.  
Differences are likely due to different photochemistry of o-PD  
and aziPm. The less thermally stable o-PD is thought to undergo 
more complex chemistry on illumination and produce a longer- 
lived reactive intermediate than the carbene generated by illumi-
nation of aziPm. This more stable and likely more hydrophilic 
o-PD photoproduct then has more time to seek preferential  
photochemistry partners, such as the β3 histidine267 residue that  
may line the pore. A means of distinguishing such photochemi-
cal artifacts from specific binding is an ability of the parent  
drug to inhibit or “protect” the candidate site from photoadduc-
tion. Thus, aziPm photoadduction was indeed inhibited by pro-
pofol, but it is not reported whether o-PD was. Another important  
difference is the milieu in which the receptor resides during  
photolabeling. For the aziPm studies, the expressed αβ GABA

A
R 

resides in a detergent/lipid mixture, but the o-PD studies 
were performed with the recombinant receptor in Spodoptera  
frugiperda (Sf9) cell lipid membranes. Neither milieu is perfectly 
matched to the native neuronal membranes in which GABA

A
R  

normally resides. Thus, further studies will be required to give  
confidence that these sites are indeed physiologically relevant.

There are often multiple anesthetic-binding sites for a given  
anesthetic in a particular protein31,34,42,44–46. The existence of  
multiple anesthetic sites has introduced a more challenging  
question: which specific site or sites among all those identified 
are responsible for the functional modulation? An effective way 
to answer this question is to use chimeras containing domains 
from different channels that have opposite responses to anesthet-
ics. For example, photolabeling of ELIC with the light-activated  
derivative of propofol, aziPm47, identified multiple aziPm- 
binding sites in the extracellular domain and one intra-subunit  
site in the transmembrane domain31. To determine the function-
ally relevant propofol-binding site(s), we constructed an ELIC– 
GABA

A
R chimera16,28,31 that contains the ELIC extracellular  

domain and the transmembrane domain of α1β3GABA
A
R. In  

contrast to inhibiting ELIC, propofol potentiates the ELIC–
GABA

A
R chimera as it does on α1β3GABA

A
R. These results  

support a functionally dominant propofol-binding site in the 
transmembrane domain of ELIC16,31. In heteromeric GABA

A
Rs,  

propofol binds to multiple allosteric sites at the transmembrane 
β–α and α–β interfaces37,42. Both potentiation and direct activation 
of GABA

A
Rs are mediated by the same propofol-binding sites48,  
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but it is not clear whether one site plays a more critical role 
than others. It is also important to realize that propofol binding 
affects, not only channel activity but also receptor assembly and  
trafficking49,50.

A homomeric pLGIC, such as GLIC, has five identical subu-
nits and five equivalent binding sites of each type; the crystal  
structure shows five propofol molecules bound symmetrically 
in the transmembrane domain25. Is full occupancy of all five 
sites necessary for functional modulation? Molecular dynamic  
simulations suggest that asymmetric binding of propofol to only 
one, two, or three GLIC sites accelerated channel dehydration,  
increased conformational heterogeneity of the pore-lining  
helices, and shifted GLIC toward a closed-channel conformation51 
as compared with symmetrical (five-site) occupancy. Similarly, 
in homo-pentameric pLGICs, occupancy of from one to three 
sites by anesthetics has been found to be sufficient to potentiate  
channel currents52–55. Thus, it appears that maximum functional 
effects are produced by asymmetric occupancy of these channels.

The effect of propofol binding on channel function is largely  
determined by the intrinsic dynamics of the channel. The cation-
conducting GLIC is inhibited by clinically relevant concentrations 
of general anesthetics14,15. The introduction of three mutations at 
the selectivity filter and one at the hydrophobic gate converted 
wild-type (wt) GLIC into GLIC4, an anion channel15. None 
of the mutated residues is within the propofol-binding pocket, 
so propofol binding is probably the same in both GLIC4 and  
wtGLIC25,30,31. Nevertheless, propofol is unable to inhibit GLIC4 
as it does wtGLIC15. Molecular dynamic simulations revealed  
that, compared with wtGLIC’s pore, GLIC4’s pore was more  
resistant to perturbation from propofol binding15. These results 
underscore the importance of pore dynamics and conformation  
in ligand modulation of channel functions.

Other molecular targets of propofol
The search for other molecular targets has occurred in three  
principal ways. The first approach examined the transcriptomic, 
proteomic, or metabolomic response to propofol exposure in 
cells or intact animals. Depending on the analysis of the data, this  
approach has led to hundreds of potential molecular substrates56. 
Because it is rarely clear whether, or how many of, these  
substrates are actually direct molecular binding targets of propofol,  
additional studies are required; some have been reported. In the  
second approach, propofol was altered to allow it to covalently 
bind to its targets on exposure to ultraviolet light (photolabe-
ling), thereby serving as a tag. Tagged proteins then are discov-
ered by using a variety of other technologies. In some cases, 
the tag is a radiolabel on the altered anesthetic, and scintillation  
counting and mass spectrometry (MS) are used to detect and 
identify adducted proteins. More commonly today, the tag is  
simply the additional mass of the adduct, and tagged proteins can 
be identified with shotgun MS approaches. The Achilles heel of 
this approach is that the identified targets are heavily biased toward 
the most abundant proteins, such as mitochondrial complexes,  
tubulin, and voltage-dependent anion channels57. In fact, known 
targets of propofol, such as GABA

A
R (above), were not detected 

and this is presumably because of their low abundance. Thus, in the 

third approach, photolabeling approaches were refined to include 
another functional group on the aziPm molecule, in this case an 
alkyne (in place of the remaining isopropyl), in order to attach  
subsequent groups after photolabeling by using “click” chemistry58.  
Remarkably, this heavily modified clickable photoactive deriva-
tive of propofol was still a potent general anesthetic and was still 
GABAergic59. Deploying this “aziPm-click” compound involved 
first photolabeling in the presence of synaptosomes and then  
using click chemistry to attach a biotin moiety to the propofol 
analogue now covalently bound to its direct binding targets. An 
avidin column captured all of these biotin-decorated proteins 
and then in-column proteolysis released peptides, which were  
identified by using MS. The results were startling. From a total 
of about 4,500 proteins identified by MS in crude synaptosomes,  
about 12% (540) were captured by using the click strategy, and, 
of these, about 200 were deemed to be “propofol specific” on the  
basis of propofol protection assays. Although many captured  
proteins may be simply associated with propofol targets and not 
themselves true propofol-binding targets, it is clear that propo-
fol is a promiscuous drug, and dozens and perhaps hundreds of  
molecular targets are influenced at clinical concentrations. In  
contrast to the results of the simple “shotgun” approach, several 
of the captured proteins were low-abundance ion channels and,  
gratifyingly, several synaptic GABA

A
R subunits. This is the first 

demonstration of direct propofol binding to GABA
A
R when 

still in its native synaptic environment. Curiously, only α and β  
subunits were captured, despite the relative abundance of the γ 
subunit in synapses. Subsequent molecular dynamic simulations 
provided a plausible explanation. The γ–β and γ–α interfaces were 
overly hydrated as compared with the α–β ones, indicating that 
water was competing with binding of the propofol analogue. This  
aligns with results discussed above in that the resulting asym-
metric binding pattern around the heteropentamer (Figure 1)  
should be more functionally provocative than a symmetric one 
where all interfaces are occupied51. Moreover, this implies the 
importance of H-bonding within the interfacial sites, a hypoth-
esis directly tested with a propofol variant that replaced the  
hydroxyl with an isosteric fluorine. The resulting “fropofol”  
molecule has physicochemical properties very similar to those 
of propofol but no anesthetic or sedative properties whatsoever. 
This highlights the importance of the hydroxyl in functionally  
relevant targets60 like the GABA

A
R. Fropofol should be  

distinguished from other non-immobilizers (for example, the  
cyclobutanes61), as those molecules had such pronounced  
physicochemical differences that a lack of activity was almost 
certainly due to very low water solubility. Fropofol, however, still 
has significant effects on myocardial (but not skeletal) contrac-
tility, indicating that these targets lack an important H-bond in 
their sites60. This is one of the first demonstrations that primary  
and side effects are separable through fairly minor changes to the 
alkylphenol molecule.

Voltage-gated ion channels
Monovalent voltage-gated ion channels (VGICs), which are  
necessary for setting membrane potential and the initiation 
and propagation of action potentials, are plausible targets of  
anesthetics. In general, potassium channels are relatively insen-
sitive to propofol62, although most inhalational anesthetics and  
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alcohols inhibit them63. Sodium channels, on the other hand, appear 
to be inhibited by clinically relevant propofol concentrations64.  
The precise mechanisms are not yet clear, but evidence for 
anesthetic sites on these VGICs exists. Propofol and sevoflu-
rane sites in the simpler Kvx channels have been revealed by  
photolabeling studies62,65, while evidence for propofol sites in the 
more complex Navx channels has been largely through molecu-
lar modeling and mutagenesis, although isoflurane sites have 
been revealed via nuclear magnetic resonance studies66. The data  
suggest at least two general classes of anesthetic sites. First, bind-
ing to an important “hinge” site, located between the voltage  
sensor and the pore domain (S4–5 linker) at the intracellular  
membrane surface, can alter activity in either direction63, and,  
second, the pore domain itself.

The pore is an amphiphilic environment fairly well suited to  
anesthetics, occupancy of which would be expected to produce 
inhibition. The direction of modulation in these many examples of 
Kvx and Navx will then depend on relative affinity, and therefore 
occupancy, of each of these sites.

HCN-1
The importance of the hyperpolarization-activated cyclic  
nucleotide-regulated (HCN) channels to propofol actions was 
demonstrated by a diminished sensitivity to propofol in HCN1- 
knockout mice67. Moreover, HCN channels are thought to, in 
part, underlie the afferent hyperexcitability resulting in neuro-
pathic pain. Propofol and related alkylphenols inhibit the HCN-1  
channel at subhypnotic concentrations, making the alkylphenol 
a reasonable chemotype for further medicinal chemistry to cre-
ate an analgesic drug with less hypnotic potency68–71. This recent 
work suggests that increasing the bulk and hydrophobicity of the 
alkylphenol side chains (for example, 2,6-Di-tert-butylphenol)  
accomplishes this to some degree, lending confidence that an 
entirely novel class of analgesic, useful for neuropathic pain, 
may emerge from the alkylphenol chemotype72. Binding sites 
and mechanisms by which the alkylphenols inhibit this channel  
are not yet clear, but the recent publication of a cryo-electron  
microscopy structure73 should facilitate work in the area.

Kinesin
Building on work over the previous two decades which  
implicated actin, tubulin, and other cellular or synaptic cytoskel-
eton and transport machinery in general anesthetic action74–76,  
investigators recently examined the effects of propofol on the  
anterograde motor kinesin. Kinesin is like a locomotive that runs 
along microtubule “tracks” by using its dimeric motor heads to 
step from β to β tubulin subunit77. Should these tracks be decorated 
with bound anesthetic molecules, it is plausible that motor func-
tion and ultimately transport would be altered. In single-molecule  
experiments, where, instead of its usual cargo, kinesin is attached 
to a fluorescent bead and microtubules are immobilized on a  
substrate, it was noticed that clinically relevant concentrations 
of propofol reduced run length by half and had no effect on  
velocity78. In other words, the train goes just as fast but derails. 
This might indicate extensive tubulin binding of propofol, but  
could also be due to effects within kinesin itself. If the latter, the 
single-molecule results suggest that the propofol site is allos-
teric to the nucleotide-binding site and that it is not influencing  
ATPase activity. Most likely, an allosteric site in kinesin is 
formed when the motor head binds to β tubulin. In either case, 
though, the result is the same, and cargo is transported by these 
anterograde kinesins reaching their destinations more slowly or 
not at all. Depending on redundancy, this may have important 
consequences in terms of the critical timing of cellular/neuronal  
activity. Applying the anesthetic-null variant fropofol (see above) 
had no effect, lending some credence to the possibility that  
kinesin modulation underlies propofol-induced unconscious-
ness. It is also plausible that an interaction between kinesin and  
propofol underlies a number of propofol’s less desirable actions, 
such as neurotoxicity at the extremes of age79.

TRPx receptors
It is well known that propofol both causes pain on injection 
and sensitizes nociception. The candidate molecular targets for  
transducing these effects are the widely distributed TRPA and 
TRPV receptors80,81. TRPA-1, in particular, is known to be 

Figure 1. Asymmetric occupancy of the αβγGABAA receptor by 
propofol. (A) Photolabeling has identified interfacial binding sites for 
propofol (colored blobs) in the transmembrane region (seen from the 
extracellular view here). Furthermore, several lines of evidence now 
suggest that asymmetric occupancy of these sites confers a larger 
change in activity than symmetric occupancy (all five subunits). Click-
enabled propofol analogues have confirmed asymmetric occupancy 
of αβγGABAA receptor sites in their native, unperturbed state in that 
only α and β subunits were photoadducted. The mechanism in the 
case of this heteropentamer is differential affinity of the interfaces.  
(B) The relationship between H-bond probability (Phb) and affinity 
(pKD) from molecular dynamic simulations shows where each 
interfacial binding site lies. The two γ-containing interfaces have a 
much lower Phb and therefore lower affinity.
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modulated by propofol in a biphasic manner: activated at low,  
clinically relevant concentrations and inhibited at higher  
concentrations. The mechanism or mechanisms by which propofol  
produces these actions are suggested by recent mutagenesis82 
and photolabeling results with aziPm83. For example, the  
canonical “hinge” region of these channels, connecting sensor to 
pore domains and typically located in and around the cytoplasmic 
face of the transmembrane region, forms a binding site whereby, 
when occupied, the open state is stabilized, enhancing current 
flow (Figure 2). However, when the channel is in the open state,  
a lower-affinity pore site is created which becomes progressively 
occupied as the propofol concentration is raised, reducing current 
flow. This sequential occupancy of two sites of differing affinity 
and effect is presumably responsible for the bimodal modulation  
of the TRPA-1 receptor and may be a general model for actions 
on other channels. Since activation of a nociceptor is not a  
desirable attribute of a general anesthetic, it would be important 

to determine characteristics of the binding site in order to use  
medicinal chemistry approaches to weaken binding to this  
activating site. This may not only reduce pain of injection but also 
increase anesthetic potency, depending on the central nervous  
system (CNS) distribution of the TRPA-1 receptor.

SIRT-2 deacetylase
On evaluation of the propofol-binding proteome of various CNS 
tissues, it was found that myelin contained a highly specific  
protein target of propofol that was ultimately determined to be 
the SIRT-2 deacetylase84. The acetylase and deacetylase enzymes 
are key intracellular regulators of a wide variety of events85; thus, 
an effect of anesthetics would be expected to have far-reaching  
consequences. Since a binding target does not necessarily indicate 
a functional target, a number of experiments were conducted to  
determine whether propofol had an effect on SIRT-2 deacety-
lase activity and at a clinically relevant concentration. Indeed, 

Figure 2. Recent examples of propofol-binding proteins. In both the TRPA1 (A, B) and SIRT2 (C, D), note that the propofol-enhanced 
active or open state (B, D) suggests that the alkylphenol-binding pocket is actually enlarged somewhat as compared with the closed or 
inactive state (A, C). We believe that this is an example of enhanced affinity as a result of reduction in the entropic penalties of binding and 
may be a common feature in conformationally sensitive binding, a form of “induced fit”. The yellow stippled shapes in (A) and (B) represent 
multiple poses of both propofol and azipropofol when docked in the vicinity of the photolabeled residues. In (C) and (D), the red shapes are 
photolabeled residues and the black shape is the surface rendering of the cavity occupied by propofol.
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when isolated SIRT-2 was exposed to low-micromolar concentra-
tions of propofol, its activity was significantly inhibited, and the  
structural mechanism was characterized (Figure 2)84. Though 
unlikely to underlie the primary, desired action of propofol, this 
interaction may underlie one or more of the many side effects of 
propofol. Since acetylation and methylation systems are respon-
sible for epigenetic regulation, this interaction could even be  
responsible for delayed or persistent effects of propofol, such as 
developmental neuromodulation79.

Summary
Much progress has been made in understanding the mecha-
nisms of propofol’s actions on its canonical molecular target, the  
GABA

A
R, but a role for other molecular targets is gaining  

momentum. Propofol is undeniably a promiscuous anesthetic  
ligand, and its diverse molecular targets are integrated in a manner 

that is still poorly characterized. Finally, evidence suggests that  
further medicinal chemistry of the alkylphenol chemotype may 
allow enhancement of selected actions.
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