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Drug combinations can increase the therapeutic effect by reducing the level of

toxicity and the occurrence of drug resistance. Therefore, several drug

combinations are often used in the management of complex diseases.

However, due to the exponential growth in drug development, it would be

impractical to evaluate all combinations through experiments. In view of this,

we developed Pathway Interaction Network (PINet) biological model to

estimate the optimal drug combinations for various diseases. The random

walk with restart (RWR) algorithm was used to capture the “disease state”

and “drug state,” while PINet was used to evaluate the optimal drug

combinations and the high-order drug combination1. The model achieved a

mean area under the curve of a receiver operating characteristic curve of 0.885.

In addition, for some diseases, PINet predicted the optimal drug combination.

For example, in the case of acute myeloid leukemia, PINet correctly predicted

midostaurin and gemtuzumab as effective drug combinations, as demonstrated

by the results of a Phase-I clinical trial. Moreover, PINet also correctly predicted

the potential drug combinations for diseases that lacked a training dataset that

could not be predicted using standard machine learning models.
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1 Introduction

Compared with the “one disease, one gene” drug paradigm, drug combinations can

more effectively cope with multifactorial diseases such as infections, cardiovascular

diseases, and tumors (Bayat Mokhtari et al., 2017) (Huffman et al., 2017). Drug

combinations can also delay the development of drug resistance and are often used in

the treatment of acquired immunodeficiency syndrome (AIDS) and multi-drug resistant
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bacteria (Liu et al., 2021) (Cihlar and Fordyce, 2016). Network or

multi-pharmacology involves the combinations of several drugs

used for different targets to create a synergistic effect that can

perturb the biological networks and thus increase the clinical

benefits (Jia et al., 2009).

The development of optimal drug combinations typically

involves three stages: the intuition phase, the clinical trials

phase, and the biological data mining phase. However, since

the development of the current drug combination is based on

the researchers’ intuition and expertise, the process is often

inefficient. As a result, it is now gradually being replaced by

the high-throughput screening method (Shinn et al., 2019).

Nevertheless, as the number of approved drugs increases, the

number of drug combinations requiring high-throughput

screening verification has increased exponentially,

eventually leading to a significant prolongation of the

verification process and research costs. Machine learning

and deep learning, which can mine the correlation between

massive amounts of biological data, are increasingly being

used in the discovery of effective drug combinations (Shi et al.,

2018) (Li et al., 2020) (Kim et al., 2021) (Zagidullin et al.,

2021). Since machine learning depends on training datasets, it

is mostly used for tumors. However, for diseases that lack

training datasets, the model is difficult to optimize because it is

not possible to fit the parameters into the model. In addition,

the results provided by the machine learning algorithms are

often difficult to explain, and therefore clinicians find it

difficult to apply the machine learning solution in clinical

practice. An alternative approach to the data-driven machine

learning method is to use theory-driven methods based on the

knowledge of biological systems and networks (Wang et al.,

2021) (Jafari et al., 2022). Compared with data-driven

methods, theory-driven methods are more explanatory, and

their performance is not affected by the quality of the training

dataset. The limitation of theory-driven methods is that they

rely on the accurate generation of a theoretical hypothesis.

(Yang et al., 2008) define two network biological states: the

disease and normal states. According to (Yang et al., 2008), the

transition from the disease state to the normal state is achieved

through the perturbation of specific target combinations within

the arachidonic acid network (a kind of inflammation-related

network). This approach has several limitations. First of all,

there is a lack of uniform standards to define the disease and

normal states. Therefore, the definition of these states often

requires the subjective input of expert professionals. In

addition, not all disease targets have corresponding drugs

available, and more than one pathway may be involved in

the development of a specific disease (Geva-Zatorsky et al.,

2010). found that the protein responses to drug combinations

can be accurately described by a linear superposition (weighted

sum) of each protein’s response to each specific individual drug.

Based on this finding (Lee et al., 2012), made use of gene set

enrichment analysis to convert the gene expression profile of

specific cancers (non-small cell lung cancer and triple-negative

breast cancer) into related signaling pathways. The data about

the linear drug superposition combinations was combined with

the disease pathways data to obtain the optimal drug

combination. Through this method (Lee et al., 2012), found

two combination drug pairs with a synergistic effect on lung

cancer cells. However, this method still has a number of

shortcomings since it ignores the relationship between

pathways. Moreover, the theory of linear superposition does

not fit all kinds of protein. Because drugs acting on the same

pathway through different targets or drugs regulating a

relatively small number of highly-connected pathways are

more likely to produce synergistic effects (Chen et al., 2016),

proposed a “pathway to pathway interaction” network model to

predict the therapeutic effect of synergistic drug combinations.

This model resulted in an area under the curve (AUC) of a

receiver operating characteristic curve of 0.75. The method

proposed by (Chen et al., 2016) still has some shortcomings.

This method ignores the disease condition, and only the

pathway associations of gene overlap are retained, while the

pathway associations of protein interactions and function

associations are discarded. In addition, the drug

combinations are evaluated based on the shortest path

without considering the global topology features2. Therefore

(Cheng et al., 2019) quantifyied the network-based relationship

between drug targets and the diseased human protein to protein

interaction. Although this method revealed the existence of six

distinct potiential drug combinations, only one of these six drug

combinations correlated with therapeutic effects. Eventually, a

beneficial therapeutic effect was noted when the drug targets hit

the same disease module located in separate neighborhoods.

Still, the application of this model is limited as it ignores the

pathway information and uses the shortest path to evaluate the

optimal drug combinations without considering the global

topology features.

In view of this, we constructed a Pathway Interaction

Network (PINet) model to overcome the limitations of the

models described in previous studies (Table 1). This new

model abstracts the human body as a two-layer network

containing gene and pathway information and describes the

influence of a disease or drug on the human as a probability

distribution in the network, which is called “disease state” and

“drug state.” In addition, it predicts the optimal drug

combinations by combining “disease state” and “drug state”.

The main advantage of the PINet model over the other

models is that it can evaluate 5-drug combinations, while

most models can only evaluate 2-drug combinations. In

addition, PINet is also sensitive to various diseases.

2 The regulatory distance of upstream targets to downstream targets
may exceed the shortest path (usually 3).
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2 Dataset

PINet is composed of four types of entities and eight types of

relationships3: The four types of entities include pathways, genes,

drugs and diseases, while the eight types of interactions include

pathway to pathway, pathway to gene, gene to gene, drug to gene,

disease to gene, disease to pathway, drug to disease and drug to

pathway. Except for drug to disease, other data come from databases

(Table 2). The specific data cleaning and processing methods are

described in the Supplementary Material S1.1; Supplementary

Material S1.2.

Databases include KEGG (Kanehisa et al., 2021), STRING

(Szklarczyk et al., 2021), DrugBank (Wishart et al., 2018),

TABLE 1 Optimization of previous research.

Inadequacies of predecessors Improvement measures

Ignore global topology features Chen et al. (2016), Cheng et al. (2019) Analyzing networks using RWR

Ignore pathway information Yang et al. (2008), Cheng et al. (2019) Building a two-layer heterogeneous network

It is difficult for users to select indicators Yang et al. (2008) Redefine disease states without user selection

Only applicable to 1 or 2 diseases Yang et al. (2008), Lee et al. (2012) Chen et al. (2016),
Cheng et al. (2019)

The new model incorporated multiple diseases and the sensitivity of the specific
disease was validated

TABLE 2 Data source.

Data Number Source

Pathway 345 KEGG

Gene 18,532 STRING, KEGG, HVIDB, DrugBank, BindingDB, CTD

Drug 6,259 DrugBank, BindingDB

Disease 8 CTD, KEGG

Pathway-pathway 1,659 KEGG

Pathway-gene 34,426 KEGG

Gene-gene 5,680,317 STRING, HVIDB

Drug-gene 39,805 DrugBank, BindingDB

Drug-pathway 57,067 KEGG enrichment analysis

Disease-gene 683 CTD

Disease-pathway 10 KEGG

Drug-disease 257 Clinical guidelines (Table 3)

TABLE 3 Disease-specific drug combinations.

Disease Drug
combinations

Clinical guidelines References

acquired immunodeficiency
syndrome (AIDS)

13 Office of AIDS Research Advisory Council
(OARAC)

https://clinicalinfo.hiv.gov/en/guidelines/adult-and-
adolescent-arv

inflammatory bowel disease (IBD) 34 The American Gastroenterological
Association (AGA)

Terdiman et al. (2013), Ko et al. (2019), Feuerstein et al.
(2020), Feuerstein et al. (2021)

Diabetes* 32 the American Diabetes Association (ADA) American Diabetes (2021)

Atherosclerosis 63 the American College of Cardiology (ACC) Grundy et al. (2019), Kumbhani et al. (2021), Virani et al.
(2021)

acute myeloid leukemia (AML) 25 The National Comprehensive Cancer
Network (NCCN)

https://www.nccn.org/guidelines/category_1

Breast cancer 60

Non-small cell lung cancer (NSCLC) 30

Diabetes including type 1 and type 2 diabetes.

3 Relationship between drugs is predicted by the model. So it does not
appear in the model. We assume that the patient has only one disease,
so the relationship between diseases does not exist in the model.
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BindingDB (Gilson et al., 2016), CTD (Davis et al., 2021) and

HVIDB (Yang et al., 2021).

3 Methods

3.1 The theoretical basis of the model

The theoretical basis of the model was built based on the

findings of four studies (Yang et al., 2008). Showed that

perturbing the targets can shift the disease state to the

normal state. Based on this study, we introduce the

probability distribution of different drugs or diseases in the

network as drug states or disease states and the higher

degree of overlap between the drug state and the disease

state, the better the efficacy of the drug. Chen et al. (2016).

showed that the effect of a disease or drug on the body is

achieved through the manipulation of genetic pathways.

Therefore, our model included information on the genes

and pathways. We also made use of the work of Geva-

Zatorsky et al. (2010), which simplified the drug

combinations as a linear summation of drug targets. The

targets of drug A within our model were denoted as (a1, a2,

and a3), and the targets of drug B were denoted as (b1, b2).

Based on the study of (Geva-Zatorsky et al., 2010), the drug

state of the combination of drugs A and B was deemed to be

equivalent to the drug state of the virtual drug V, of which

targets are (a1, a2, a3, b1, b2). Finally, to narrow down the scope

of potential drug combinations and reduce the computational

power costs, we used the research of Cheng et al. (2019),

which demonstrated that drug synergy is more likely to occur

when the drugs act on different disease targets at the

same time.

3.2 Construct network model

PINet consists of seven networks4 (pathway to pathway,

gene to gene, pathway to gene, drug to gene, drug to pathway,

disease to pathway, disease to gene), each stored in an

adjacency matrix (Figure 1). The main part of the PINet

model was based on the restart random walks (RWR)

algorithm built on the pathway to pathway, gene to gene,

and pathway to gene networks. Further details about the

model constructions are provided in the Supplementary

Material S1.3.

3.3 Capturese state

The effect of a drug or disease on the body can be

represented by a vector that contains both pathway and

genetic information, which is called a drug state or disease

state. These two states were obtained by selecting specific initial

nodes on the model to perform the RWR, and the stable

probability distribution was defined as the drug or disease

state. The specific state capture is described in more detail in

the Supplementary Material S2.

3.3.1 Random walk with restart
Biological systems can be simplified into heterogeneous

networks, and the RWR algorithm is widely used in the

analysis of heterogeneous networks (Cho et al., 2016) (Luo

et al., 2017). The RWR algorithm was developed by

determining the initial probability, the transition matrix, and

the stable probability distribution threshold as follows. More

detail about the RWR algorithm is available in the

Supplementary Material S2.

3.3.1.1 Determination of the initial probability

The initial nodes were composed of disease or drug-related

genes and pathways. The initial probability in a specific network

was composed of the initial gene to gene and pathway to pathway

networks and can be calculated according to a specific node. For

example, in the case of influenza, the initial gene was associated

with influenza, and the initial pathway path: hsa05164 was

identified from the KEGG database and was fixed to 1. On

the other hand, for a drug, the original gene was considered

as the drug target, the initial pathway was identified through

pathway enrichment analysis, and the number of potential initial

pathways was not fixed.

FIGURE 1
The network model of PINet. PINet model consists of four
entities and seven relationships. The genes and pathways were
directly related to RWR, and the drugs and viruses were integrated
with the RWR algorithm through indirect connections.

4 The drug-disease relationship is the data used to evaluate the model.
So it doesn’t appear in the model.
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The initial probability of the pathway to pathway network a0
was formed so that equal probabilities were assigned to the initial

nodes in the pathway to pathway network, and the sum of the

nodes’ probabilities was equal to 1. Therefore if the probabilities

of non-initial nodes are 0, then the initial probability of the gene

to gene network b0 is the same. This relationship is summarized

by the equation.

p0 � 0.5[ a0
b0

] (1)

Whereby a0 is the pathway initial probability, and b0 is the gene

initial probability. Both a0 and b0 are vectors.

3.3.1.2 Determination of the transition matrix

The transitionmatrix describes the transition characteristics of all

nodes within the network model. There are four transfer modes in

PINet: pathway to pathway, pathway to gene, gene to gene, and gene

to the pathway. Each transfer mode requires a transition matrix. The

description of the PINet transition node requires a large transition

matrix M composed of four small transition matrices Mi.

The (t) th probability distribution was obtained by mapping

the (t-1) th probability distribution through the transition matrix

as follows:

(1 − r)[M1 M2

M3 M4
][ at

bt
] + rp0 � [ at+1

bt+1
] � pt+1 (2)

Whereby M1 is the pathway to pathway, M2 is the gene to

pathway,M3 is the pathway to gene, andM4 is the gene to gene. r

is the restart probability which is generally equal to 0.5.

3.3.1.3 Determination of the stable probability

distribution threshold

The initial node was selected to perform the RWR. As the

number of iterations increased, the probability distribution

gradually became stable. When the difference in the

probability distribution between the (n)th and the (n+1)th

was less than the given threshold, the (n)th probability

distribution was considered to be a stable probability

distribution, and the threshold was generally set to 10–10.

3.3.2 Capturing the disease state
The disease state was then captured through the

identification of the initial nodes of the disease in the pathway

to pathway network and, subsequently, the gene-gene network.

The initial probability p0 of the disease was constructed, and then

RWR was performed until the probability distribution became

stable. The stable probability of the disease site pn was then

captured for the disease state.

3.3.3 Capturing the drug state
The drug state was captured through the identification of

the virtual drug corresponding to the drug combination. The

initial probability p0 of the drug was determined according to

the target and enrichment pathway of the virtual drug. Finally,

RWR was performed until the probability distribution became

stable, and the stable probability pn was captured for the drug

state.

3.4 The drug combination score

Since the drug combinations have certain indications, we

evaluated the drug combinations under specific disease

conditions by “drug state” and “disease state.” The same drug

combinations have different scores on different disease

conditions in PINet. The absolute drug score value was

obtained by calculating the difference between the “drug state”

and the “disease state”.

score � |Sdi − Sdr| (3)

Sdi is the disease state, Sdr is the drug state.

A lower score indicates a higher likelihood of a synergistic

drug combination. Further details on the calculation of the drug

combination score can be found in Supplementary Material S3.

3.5 Evaluation of pathway interaction
network

During the development of PINet, it was assumed that the

drug combination contained two types of information: the drug

composition and the indication. Therefore two tests were

performed to evaluate the sensitivity of PINet to detect disease

and drug quantity. The disease sensitivity analysis assessed

whether PINet can correctly identify the indications for the

different drug combinations. For example, whether PINet will

wrongly judge a drug designed to treat AIDS as a drug used to

treat cancer. The drug quantity sensitivity analysis evaluated the

ability of PINet to identify the n-drugs combination (n = 2, 3, 4,

and 5).

3.5.1 Disease sensitivity
The drug combination highlighted in the clinical guidelines

of each disease was regarded as the positive gold standard

treatment. The clinical indications of the drug combinations

used to manage a specific disease were then modified to represent

a negative example, i.e., another disease. All positive and negative

examples were entered into the PINet for scoring, and the AUC

under the ROC was calculated for each example. An AUC below

0.5 indicates that the PINet model was not sensitive enough to

detect the disease and corresponding drug combinations, and

these were therefore excluded from the model. The remaining

diseases and drug combinations in the clinical guidelines were

evaluated again in the next step.
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3.5.2 Drug quantity sensitivity
The drug combinations may include four possible options

with 2, 3, 4, or 5 drugs. The sensitivity of PINet to different drug

combinations was calculated as follows. First, the drug

combination in the clinical guidelines was used as a positive

example, and the randomly generated drug combination was

used as a negative example. Subsequently, the drug status and

disease status were calculated according to the drug

composition and indications, respectively, as explained in

Section 3.3. Then, the score for each drug combination was

calculated, as explained in Section 3.4. Finally, based on the

calculated score, the AUC was calculated for each drug

combination.

3.6 Prediction of the drug combinations

3.6.1 Primary potential drug combination
Outliers of disease state are identified by Quartile, and these

outliers are key genes and key pathways of the disease. The

potential drugs were selected if the target of the drug had an

intersection with the key gene of the disease and the enriched

pathway of the drug had an intersection with the key pathway of

the disease. We assumed that for N potential drugs, there are Ci
N

primary potential drug combinations (i is the number of drugs in

the drug combination. Refer to Figures 2A–C). More detail about

Quartile is available in the Supplementary Material S4.

3.6.2 Secondary potential drug combinations
The drug combinations with overlapping drug targets were

removed from the primary potential drug combination to obtain

the secondary potential drug combination (Figure 2C).

3.6.3 Evaluation of the potential drug
combinations

To improve the prediction accuracy of the model, we used the

score corresponding to the false positive rate of 10% on the ROC of

the “Drug quantity sensitivity” as the threshold. The scores of the

secondary potential drug combinations were calculated, and those

below the threshold were classified as synergistic drug combinations.

4 Results

4.1 Disease sensitivity

The PINet had a high sensitivity for NSCLC, AML, breast

cancer, and IBD and low sensitivity for diabetes type 1, diabetes

type 2, AIDS, and atherosclerosis (Figure 3).

4.2 Drug quantity sensitivity

Figure 4 illustrates the drug quantity sensitivity after

excluding the diseases with a low PINet sensitivity. The

FIGURE 2
The construction of the potential drug combinations. Taking the key genes of diseases as an example, the key pathways are the same. (A)Genes
above the upper limit are key genes. (B) Eliminate drugs that do not have intersections with key disease genes. (C) A drug combination is constructed,
and if the drugs in the combination have the same target, the combination is eliminated.
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sensitivity of PINet increased as the order of drug combinations

increased. PINet also achieved good results in the identification

of high-order drug combinations. However, since the sample was

too small (2 positive cases and 58 negative cases in the fifth-order

drug combination), the ROC may not be accurate.

4.3 Prediction accuracy

Since PINet had the highest sensitivity for predicting AML,

we decided to use PINet to predict the optimal drug

combinations for this disease. PINet was first used to identify

the key genes and pathways of AML. Subsequently, the drugs

based on these genes and pathways were identified and used to

construct the primary drug combinations. This revealed a total of

26,106 possible primary drug combinations. The drug

combinations with the same target were eliminated, and the

remaining drug combinations (n = 17,713) were scored to

identify the optimal drug combinations (n = 2,590). After

excluding the unapproved drugs, 1,221 possible drug

combinations were identified. The efficacy of two of the drug

combinations identified by PINet has been validated in clinical

trials or in vivo studies. Röllig et al. (2021) demonstrated the

synergy between gemtuzumab ozogamicin and midostaurin in

newly diagnosed AML in a phase-I clinical trial. Tian et al. (2018)

found that Emricasan and Ponatinib can synergistically reduce

ischemia-reperfusion injury in rat brains.

5 Discussion

As the development of new drugs continues to increase, there

is a need to develop novel methods to identify optimal drug

combinations for managing specific diseases. In this study, we

proposed a novel model PINet to make it easier for clinicians to

identify optimal drug combinations. When compared with other

machine learning models, PINet has several advantages and

limitations.

5.1 Advantages of pathway interaction
network

5.1.1 Interpretability
PINet is a theory-driven method for evaluating drug

combinations based on the assumption that “drugs can

correct disease states.” A low PINet score means that the drug

combination is more applicable to a specific disease. This simple

scoring system used in PINet is easily understood by researchers

in the non-data science fields, making PINet easy to generalize.

FIGURE 3
Disease sensitivity of PINet.

FIGURE 4
Drug quantity sensitivity of PINet.
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5.1.2 Non-training set dependency
Unlike machine learning, there is no need to fit all parameters

in PINet, and therefore, PINet does not require a training dataset.

This is crucial for drug combination prediction for some diseases

that lack a training dataset.

5.1.3 High-order drug combinations
Most drug combination prediction models focus on 2-drug

combinations since high-order drug combinations are

computationally expensive to calculate. PINet takes the same

time to evaluate 2-drug combinations as higher-order drug

combinations by narrowing the range of candidate drugs

based on theory to maintain the computational power

consumption within an acceptable range.

5.1.4 Applicable to multiple diseases
A variety of diseases are already included in PINet, and the

model’s effectiveness in predicting optimal drug combinations in

breast cancer, IBD, AML, and NSCL has already been verified.

With the advancement of disease pathway research in KEGG, the

applicability of PINet will be extended to more diseases.

5.2 Disadvantages of pathway interaction
network

5.2.1 Poor sensitivity to some diseases
The sensitivity of PINet in some diseases, such as AIDS and

diabetes, was found to be low in our study. A possible explanation

for this could be that the effect of these diseases on genes is

expressed as either an up-regulation or down-regulation gene

expression. However, PINet simplifies the relationship between

diseases and genes to 0 or 1, resulting in the loss of information.

Furthermore, most anti-infective drugs target pathogens, and the

targets of these drugs do not have corresponding genes in KEGG.

5.2.2 Drug antagonism is not considered
The drug-to-target relationship was simplified to 0 or 1, and

the antagonist effects of drug combinations were not considered

when assessing the drug sensitivity on PINet. This means that

PINet cannot distinguish between synergy and antagonism.

Although we avoided competitive antagonism by narrowing

down the drug candidates, this does not solve the problem on

a theoretical level.

5.2.3 Poor validation
The validation of PINet is not sufficient for the following

reasons: Various theoretical models are suitable for different

diseases, and there are certain differences in the range of drugs

that can be selected, so it is difficult to make an objective

comparison (Table 4). In fact, the drug combinations in PINet

1.0 are all derived from clinical guidelines, and many of these

drugs lack transcriptome data and cannot be evaluated by the

method of (Lee et al., 2012). There are differences between other

methods (Cheng et al., 2019) (Chen et al., 2016) (Yang et al.,

2008) and PINet1.0 in the indication, which makes it impossible

to compare. On the other hand, due to a lack of experimental

conditions, it was not possible to validate the accuracy of the

PINet predictions.

5.3 Recommendations for future practice

Several aspects can be improved on PINet to increase its

prediction accuracy and applicability.

5.3.1 Differentiate between synergies and
indications for drug combinations

In PINet, we evaluate drug combinations by comparing

disease states and drug states, considering both synergy and

indications of the drug combination together. First, we found

that PINet has moderate disease sensitivity but can accurately

distinguish synergistic drug combinations from random drug

combinations, during the evaluation of the model. In addition,

the combination of drugs predicted to treat AML is suitable for

ischemia-reperfusion injury, which may be related to the multi-

targets phenomenon of drugs and multi-phenotypes

phenomenon of diseases (Tian et al., 2018). Furthermore,

synergy was identified by relying only on the shortest path in

the pathway network without disease information (Chen et al.,

2016). Based on the above facts, we suggest that synergy and

indication should be two relatively independent attributes of a

drug combination and these attributes are relatively independent

and may provide a new theoretical basis for the development of a

TABLE 4 Comparison of different models.

Yang et al. (2008) Lee et al. (2012) Chen et al. (2016) Cheng et al. (2019) PINet1.0

Indicationsaa inflammation NSCLC; TNBC \ hypertension Breast cancer; NSCLC; AML; IBD

order of drug combinationbb 2 2 2 2 ≥2

drug rangecc ++ ++ +++ +++ +++

aa: Applicable diseases of the model. bb: The number of drugs in a specific drug combination. cc: Drugs within the model. (Yang et al. (2008) only considered targets and ignored the multi-

target phenomenon of drugs. Lee et al. (2012)’s drug relied on transcriptome data). NSCLC, non-small cell lung cancer; TNBC, triple-negative breast cancer; AML, acute myeloid leukemia;

IBD, inflammatory bowel disease.
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repository for the rapid identification of drug combinations. If

the conjecture is correct, PINet could be used in the future to

evaluate drug combinations independently of the disease state,

eventually increasing the scope of application of the model. As a

result, the indications can be isolated and analyzed separately in

finer divisions according to the drug function (e.g., anti-

inflammatory, or anti-viral) rather than the entire disease.

We plan to elucidate the synergistic effect of drug

combinations through information theory. This will enable

us to locate key pathways and key genes to define the

indications of drug combinations and verify whether the

conjecture is correct.

5.3.2 Increase disease sensitivity
The relationship between diseases and genes can be

optimized as −1, 0, and one to achieve differentiation of

different diseases, thereby improving the disease sensitivity of

PINet.

5.3.3 Identify antagonism
The drug-to-target relationship can also be optimized to −1,

0, and one to simulate the antagonistic relationship between

drugs. In follow-up studies, we will additionally evaluate the

ability of PINet to identify antagonistic drug combinations. Chen

et al., 2012, Hopkins, 2008, Hsieh et al., 2021, Zhang et al., 2021.
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