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Myosin 1f-mediated activation of microglia contributes to the
photoreceptor degeneration in a mouse model of retinal
detachment
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Photoreceptor death and neurodegeneration is the leading cause of irreversible vision loss. The inflammatory response of microglia
plays an important role in the process of neurodegeneration. In this study, we chose retinal detachment as the model of
photoreceptor degeneration. We found Myosin 1f was upregulated after retinal detachment, and it was specifically expressed in
microglia. Deficiency of myosin 1f protected against photoreceptor apoptosis by inhibiting microglia activation. The elimination of
microglia can abolish the protective effect of myosin 1f deficiency. After stimulation by LPS, microglia with myosin 1f deficiency
showed downregulation of the MAPK and AKT pathways. Our results demonstrated that myosin 1f plays a crucial role in microglia-
induced neuroinflammation after retinal injury and photoreceptor degeneration by regulating two classic inflammatory pathways
and thereby decreasing the expression of inflammatory cytokines. Knockout of myosin 1f reduces the intensity of the immune
response and prevents cell death of photoreceptor, suggesting that myosin 1f can be inhibited to prevent a decline in visual acuity
after retinal detachment.

Cell Death and Disease          (2021) 12:926 ; https://doi.org/10.1038/s41419-021-03983-3

BACKGROUND
The loss of photoreceptors and retinal function disorder is the
feature of photoreceptor degeneration, which leads to irrever-
sible vision loss [1]. Pathogenesis is involved in many retinal
diseases, including retinal detachment, retinitis pigmentosa, and
age-related macular degeneration. In particular, retinal detach-
ment is a kind of disease that photoreceptors lose nutritional
support after being separated from the retinal pigment
epithelium (RPE) layer and choroidal vessels, which leads to the
death of photoreceptors [2]. Rhegmatogenous retinal detach-
ment (RRD) is the most common form of retinal detachment (RD),
with an incidence of 13 per 100,000 persons annually [3].
Although surgery can reattach the retina with a high success
rate, a small portion of patients still experience vision loss due to
photoreceptor death [4, 5]. Therefore, discovering the mechan-
isms of the process of cell death is crucial to neuroprotection and
intervention.
Although many death effectors have been discovered and

targeted to prevent the loss of photoreceptors, little progress on
rescuing photoreceptor function after retinal injury [6]. Recently,
transcriptome analysis has revealed that inflammatory responses
play an important role in the process of photoreceptor
degeneration [1, 7]. Many chemokines—such as TNF-α, IL-1β,

IL-6, IL-8, and MCP-1—can reach a high level after 1 h following
retinal detachment [8, 9]. These cytokines can activate microglia
and recruit macrophages in the subretinal space [1]. In the
meantime, the activated microglia can release MCP-1, which
contributes to the increased expression of MCP-1 in Müller cells
and macrophages [10]. The positive feedback aggravates the
immune response and maintains a high level of neuroinflamma-
tion [1, 11], which can be harmful to photoreceptors [2].
Microglia plays a key role in the inflammatory feedback loop,

which is a potential therapeutic target for neuroprotection in
retinal degeneration. Activated microglia can express TNF-α and
IL-1β, which are widely implicated in retinal degenerative
disease. TNF-α can combine with TNF receptors 1 and 2, which
are distributed on the membranes of neurons, leading to
cytotoxicity by causing mitochondrial dysfunction and oxidative
stress. IL-1β is able to combine with interleukin receptors and
leads to cell death in a manner similar to TNF-α signaling [12, 13].
Meanwhile, it secretes MCP-1 to recruit and activates astrocytes
and immune cells from circulation, aggravating the immune
response [1, 11, 14]. Thus, it is important to discover the
mechanisms by which microglia affect this loop in order to
potentially inhibit the overactivation of microglia and the release
of toxic cytokines. Mitogen-activated protein kinases (MAPKs)
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regulates the expression of pro-inflammatory cytokines such as
TNF-α, IL-1β, and IL-6 [15]. Activated protein kinase B (PKB), also
named AKT, can regulate inflammatory response by downstream
factors [16]. However, the upstream mechanism is not entirely
understood.
The myosin family, as a component of the cytoskeleton, has

been reported to play a crucial role in cell signaling [17, 18]. Class
1 myosins have been revealed to be key components during
pinocytosis [19], phagocytosis [20], cell motility [21], and
secretion [22]. Therefore, the exploration of myosin function in
microglia can lead to a better understanding of pathogenesis
after retinal detachment. In this study, we have proven that
myosin 1f is involved in the activation of microglia by regulating
the MAPK and AKT pathways in mouse models of photoreceptor
degeneration.

METHODS
RNA-seq, sequencing data extraction, and bioinformatics
analysis
The sequencing data (GSE28133) were downloaded from GEO, which is a
public database of chips and microarrays. The data contain 38 human
retinal samples, including 19 samples from RD patients and 19 control
samples without RD.
Four pooled detached retinas were collected as one sample from both

WT and myosin −/− mice at day 3. The sequencing platform is from
illumine HiSeq 2500 system.
The data were normalized first, then DEGs were analyzed by a limma

algorithm using the R programming language. The log fold change cutoff
and adjusted P value or P value were set as 1.5 and 0.05, respectively.
Points without gene symbols were removed.
A GO enrichment analysis of DEGs was obtained using the online tool

DAVID (https://david.ncifcrf.gov/home.jsp, version 6.8). The bubble maps
were drawn using Hmisc and ggplot2 via the R programming language.
The GSEA analysis was conducted using GSEA_4.0.1 software.

Retinal-detachment model animals
Myosin 1f−/− mice were purchased from Jackson Laboratory, then
bred in the Shanghai General Hospital animal facility. All animal
experiment protocols were in agreement with the Statement of the
Association for Research in Vision and Ophthalmology for biomedical
research. The animals were randomly assigned into two groups. The
sample size is estimated based on the sum of the minimum sample
sizes required for each experiment. All the measurements of animal
models were taken blindly.
We used 1% atropine sulfate oculentum (Santen, Japan) and 0.5%

tropicamide (Santen, Japan) on the ocular surface of mice to dilate the
pupil. We applied 0.4% oxybuprocaine eye drops (Santen, Japan) as surface
anesthesia. The mice were anesthetized using isoflurane gas (1.5% mixed
with 50% air and 50% O2). We applied 0.3% of ofloxacin oculentum
(Shanghai, China) as a magnifying lens to obtain a clearer view.
The RD model was conducted as previously described [23, 24]. The sclera

was exposed and punctured at 2 mm posterior to the limbus with a 34-G
needle. The vitreous humor was slowly aspirated with a 34-G glass needle
until the retina separated spontaneously from the underlying RPE layer.
Then the 34-G needle tip was inserted into the subretinal space through
the same scleral hole, and sodium hyaluronate (HA, Shanghai, China) was
gently injected. The fundus was observed and injection was halted after
the retina was detached in every quadrant. The scleral hole was then
sealed using cyanoacrylate surgical glue to prevent HA leakage. Finally,
tobramycin and dexamethasone ointments (Alcon, USA) were applied to
the ocular surface to prevent infection. The eyes with ocular infection
would be excluded from further experiments.

Immunofluorescence
The eyeballs were fixed in 4% paraformaldehyde and cut to a thickness of
10 μm to fabricate eye sections. We removed the chamber and kept the
entire retina to prepare for the retinal stretched preparation after fixation.
We stained for the following antibodies: IBA1 (1:1000, Wako, 019–19741),

F4/80 (1:1000, Abcam, 6640), GFAP (1:1000, Abcam, 4674), Opsin (Sigma),
Tuj1 (Abcam), and myosin 1f (1:1000, Abcam, ab197215). The immuno-
fluorescence was observed under a confocal microscope (Leica TCS SP8

confocal 137 microscope, Germany) and quantitatively analyzed using
ImageJ software (Fiji, NIH, USA).

HE stains and ONL thickness
After being fixed in 4% paraformaldehyde, the eyeballs were embedded in
paraffin and sectioned into 10-μm slices. The eye sections were stained
with hematoxylin and eosin. We measured ten points of thickness within
the outer nuclear layer (ONL) on one section with the same spacing
distance [23, 24], then calculate the average thickness of each eyeball. We
compared the average thickness of different groups. The “n number” in the
figure is the number of eyeballs. The measurements were taken using
ImageJ software (Fiji, NIH, USA).

TUNEL assay
In-Situ Cell Death Detection Kits (Roche, Germany) were applied to the
eye sections to detect apoptosis. The sections were permeated with 0.1%
Triton X-100 in 1% sodium citrate for 10 min, then they were incubated
with a TUNEL reaction mixture for 1 h at 37 °C. The sections were
observed under the confocal microscope, and all TUNEL-positive cells
were counted.

Cell culture and myosin 1f knockdown
We grew the immortalized murine microglial BV2 cell line because BV2 can
be a good substitute for primary microglia in many experimental settings
[25]. All cell lines were tested for mycoplasma contamination before
use. Small interfering RNA (siRNA) of myosin 1f (768: CCACAUCUACUAC
CAGCUUTT AAGCUGGUAGUAGAUGUGGTT; 1413: GCAGGAGGAGUAUGUG
CAATT UUGCACAUACUCCUCCUGCTT; 2662: GCGGACAGCUUCUUAGAAATT
UUUCUAAGAAGCUGUCCGCTT) and TransIT-2X (MIR 6000, Mirus) were
chosen for the knockdown of myosin 1f. For stimulation, 100 ng/ml of
lipopolysaccharide (LPS, L2880, Sigma Aldrich, St. Louis, USA) was applied
after 24 h.

Western blot analysis
Retina and cell samples were lysed in a lysis buffer containing 50 mM Tris‐
HCl (pH 8.0) and 0.1% SDS, as well as the complete Protease Inhibitor
Cocktail (11697498001; Roche Applied Science), 150 mM NaCl, 1% Triton
X‐100, and 1% sodium deoxycholate. We incubated the primary
antibodies overnight. The antibodies were as follows: GAPDH (Protein-
tech, 60004‐1‐Ig, RRID: AB_2107436; Proteintech, Chicago, IL, USA),
β-actin (Proteintech,20536-1-AP), AKT (C67E7, Rabbit mAb, CST), p-AKT
(Ser473, D9E, XP, Rabbit mAb, CST), ERK1/2 (137F5, Rabbit mAb, CST), p-
ERK1/2 (D13.14.4E, XP, Rabbit mAb), JNK (#9252, CST), p-JNK (81E11,
Rabbit mAb #4668, CST), myosin 1f (1: 1000, Abcam, ab197215) (Santa
Cruz, sc-376534).

ELISA procedures
TNF-α and IL-1β were detected by using ELISA kits according to the
manufacturer’s protocols (MTA00B, MLB00C, R&D Systems, Minneapolis,
USA). The tissue samples were lysed in PBS, and the supernatant was
collected. The cell samples were then collected from the cultural
supernatant.

Skeleton analysis and Sholl analysis
We used software Fiji (1.0) from https://imagej.net/Fiji/Downloads to
complete the quantitative skeleton analysis [26]. The plugin of AnalyzeS-
keleton was downloaded from https://imagej.net/Fiji/Downloads http://
imagej.net/AnalyzeSkeleton. First, turn the image to 8-bit and convert it to
grayscale. Adjust the brightness and contrast to make sure the microglia
can be visualized. Click Despeckle toolbar to remove the noise of the
image. Turn the image into binary by the Threshold toolbar. Skeletonize
the image by clicking the toolbar of Skeletonize. Click the plugin
AnalyzeSkeleton (2D/3D), then analyze it in Fiji by clicking the toolbar
Skeleton/Analyze. We can get the average branch length and other data,
such as the length of every branch, the endpoints voxel, the maximum
branch length.
The Sholl analysis can plot the number of dendrite intersections against

the radial distance from the soma center, which can also be performed by
Fiji [27]. Adjust the brightness and contrast to make the image visualized.
Download and install the plugin Simple Neurite Tracing and trace all the
paths of microglia. Then click the Sholl analysis toolbar to calculate the
intersection at a different distance from the soma.
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Quantitative real-time PCR
The primer sequences were acquired from Primerbank (bank: https://pga.
mgh.harvard.edu/primerbank/), including TNF-α (F: CCCTCACACTCAGAT
CATCTTCT, R: GCTACGACGTGGGCTACAG), IL-1β (F: GAAATGCCACCTTTTGA
CAGTG, R: TGGATGCTCTCATCAGGACAG), IL-6 (F: TAGTCCTTCCTACCCCAA
TTTCC, R: TTGGTCCTTAGCCACTCCTTC), IRF8 (F: CGGGGCTGATCTGGGAAAAT,
R: CACAGCGTAACCTCGTCTTC), CD68 (F: TGTCTGATCTTGCTAGGACCG, R:
GAGAGTAACGGCCTTTTTGTGA) and myosin 1f (F: CTTTCACTGGCAGAGTCA
CAA, R: ATGAAGCGTTTGCGGAGGTT).

Photography and optical coherence tomography (OCT) in vivo
The mice were anesthetized before the operation. Fundus photography
and optical coherence tomography were performed on eyes with dilated
pupils. The equipments were purchased from Phoenix Research Labs, Inc.
Systems (Phoenix, USA).

Flow cytometry
Digest the retina tissue into single cells, and stained with Annexin V/PI
(Annexin V-FITC Apoptosis kit (Beyotime)) according to the manufacturer’s

instructions. We assessed fluorescence intensity by flow cytometry using
CytoFLEX (Beckman Coulter).

Data and statistical analysis
The statistical analysis was conducted using Prism8 software. The data are
presented as mean ± SEM, unpaired Student’s t test, *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001; P > 0.05 was regarded as insignificant.

RESULTS
Myosin 1f is upregulated after retinal detachment
We analyzed the data of GSE28133 from GEO datasets. Differential
expression analysis revealed that 990 genes were upregulated and
272 genes were downregulated (|FC | > 1.5 and P < 0.05) (Fig. 1A).
GO analysis indicated that immune response was involved in the
pathology of RD (Fig. 1B, C). GSEA enrichment analysis also
confirmed the results (Fig. 1D) (Supplementary 1, Fig. A). To
discover the expression pattern of myosins after RD, a heatmap

Fig. 1 Transcriptome analysis of human retinal detachment. A Identification of differential expressed genes (DEGs) were set as |FC | > 1.5 and
P < 0.05. Red dots on the volcano plot (A) represent upregulated genes while blue dots represent downregulated genes. B, C Gene ontology
analysis. Cellular components analysis (B) and biological process analysis (C) showed possible functions of DEGs. D Gene-set enrichment analysis
(GSEA) also revealed possible pathways possibly correlated to RD, including inflammatory response. E, F Expression pattern of myosins. Heatmap
(E) demonstrated the most evaluated myosin, myosin 1f, with a FC= 1.786 (F). G The fold changes of at different RD duration.
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was examined and revealed that several myosins were upregu-
lated, including MYO1F, MYO3A, and MYO5C, in the RD groups
(Fig. 1E), and MYO1F was the most upregulated among the 3, with
an FC of 1.786 (Fig. 1F). To figure out the expression pattern of
MYO1F along with time, we divided the patients into three groups
according to the RD duration, including within 1 month, 1 month
to 3 months, and more than 3 months. The fold change MYO1F is

the highest among the patients with a RD duration within one
month (FC= 2.19493181) (Fig. 1G), suggesting an upregulation of
MYO1F in the early phase.
To verify the results of the RNA sequencing, we detected the

expression of myosin 1f in mouse retina samples. A western blot
revealed that myosin 1f was upregulated on the detached retina,
and it reached the peak at day 3 after detachment (Fig. 2A, B).
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qPCR results revealed that the transcription level of myosin 1f
reaches to the peak at day 1 after the retinal-detachment model,
earlier than protein expression (Fig. 2C). It is reasonable that the
transcription is earlier than the protein translation and expression.
We examined the location of myosin 1f via immunofluores-

cence. Immunofluorescence confirmed that myosin 1f was
upregulated within the retinal section after RD (Fig. 2D, E), and
it was co-located with microglia markers, including F4/80 and IBA1
(Fig. 2F, G). Thus, myosin 1f is specifically expressed in IBA1 and
F4/80-positive cells, since there was no sign of co-location
between myosin 1f and GFAP (Fig. 2H), myosin 1f and Tuj1
(Fig. 2I), myosin 1f and Opsin (Fig. 2J).
Rd1 mouse is a model for retinitis pigmentosa, which is also

characterized by photoreceptor death and microglia activation
[28]. Light damage is another model of photoreceptor degenera-
tion [29, 30]. We discovered the same expression pattern of
myosin 1f in both the rd1 mouse model (Fig. 2K) and the light
damage model (Fig. 2L). Similarly, myosin 1f was expressed on F4/
80-positive cells within the retina sections of the rd1mouse model
(Fig. 2M) and the light-damaged eye (Fig. 2N).

Myosin 1f deficiency protects against photoreceptor death
To further study the function of myosin 1f, we investigated its
effect on photoreceptor death in a myosin 1f−/− mouse model
[18, 31, 32]. To verify that myosin 1f deficiency does not
contribute to retinal injury and photoreceptor death, we
observed the structure and function of the retina. Twenty-week-
old myosin 1f−/− mice were compared with age-matched wild-
types and showed normal structures on both optical coherence
tomography (Supplementary 4, Fig. A, B) and HE section
(Supplementary 4, Fig. C, D), and the amplitude of ERGs for both
groups was within the normal range (Supplementary 4, Fig. E).
We chose the RD model and light damage model as

representative models of photoreceptor degeneration. Then
we observed the myosin 1f−/− mice at 3 days after RD because
it is reported that the apoptosis of photoreceptors is most
extensive on the 3rd day. We also observed the phenotype of
myosin 1f−/− mice in the light damage model on day 3 and day
5 (Fig. 3A). Fundus photography and HE staining showed that
the retina remained detached on the 3rd day (Fig. 3B, C). To
assess photoreceptor loss, we calculated the thickness of the
outer nuclear layer (ONL) (Fig. 3D). Myosin 1f−/− mice exhibited
thicker ONLs after RD (Fig. 3E). In addition, there were fewer
TUNEL-positive cells in the myosin 1f−/− (Fig. 3F, G), which
suggests that myosin 1f deficiency can protect against photo-
receptor apoptosis. Cleaved caspase 3 is the activated caspase 3,
which can be a marker of apoptosis [33, 34]. The count of
cleaved caspase 3-positive cells is less in the myosin 1f−/−
group compared to WT on the cleaved caspase 3 staining
(Fig. 3H, I). Flow cytometry of Annexin V/PI further confirms the
protective effect of myosin 1f deficiency (Fig. 3J, K), the Annexin
V-positive cells were less in the myosin 1f−/− group. The
expression of cleaved caspase 3 in western blot was lower in the
myosin 1f−/− group (Fig. 3L).

In the light damage model, swe observed the ERG and apoptosis
in the retina on day 3 and day 5. The ONL thickness was thinner in
THE myosin 1f−/− group (Fig. 3M, N). In addition, there were fewer
TUNEL-positive cells (Fig. 3O, P) and cleaved caspase 3-positive cells
in the myosin 1f−/− group (Fig. 3Q, R) on day 3. Annexin V-positive
cells were also less in the myosin 1f−/− group (Fig. 3S, T) at day 3.
However, the difference of TUNEL-positive cells at day 5
(Supplementary 5, Fig. A, B) was not significant, the same as the
percentage of Annexin V-positive cells (Supplementary 5, Fig. C, D).
The disappearance of difference at day 5 may be due to the severe
damage in the retina of both groups. Western blot results of
cleaved caspase 3 showed a distinct difference between the two
groups at day 3, while the less difference at day 5 (Fig. 3U). The
amplitude of a wave and b wave on ERG were stronger at 3.0 and
4.0 log cd sec/m2 in myosin 1f−/− group at day 3 (Fig. 3V, W). The
ERG signal was almost extinguished at day 5 in both groups, which
suggests the severe damage in the retina (Supplementary 5, Fig. E).

Myosin 1f influences the activation of IBA1-positive cells
We analyzed the morphology of IBA1-positive cells 3 days after RD
via stretched preparation and immunofluorescence. The cells were
more extended and had more branches in the retina of myosin
1f−/− mice, whereas the microglia of the WT retina were more
shrunken and tended to be round (Fig. 4A). A quantitative skeleton
analysis and a Sholl analysis showed more intersections in the
myosin 1f−/− group (Fig. 4B, C). This indicates that myosin 1f may
contribute to microglia activation. We have also counted the
IBA1+ cells of the stretched preparation and cell counts on the
retina of myosin 1f−/− showed no difference (Fig. 4D). Microglia
can migrate to injury sites after RD, especially the outer nuclear
layer (ONL), however, we have not observed the difference in
numbers of infiltrated microglia (Fig. 4E, F).
IL-1β, IL-6, and TNF-α are classic pro-inflammatory cytokines in

activated microglia [35]. The ELISA analysis suggests IL-1β and
TNF-α (Fig. 4G) were also downregulated in myosin 1f−/− mice
at day 3. The mRNA expression is in accordance with the protein
expression pattern. We observed the downregulation of IL-1β,
TNF-α, and IL-6 in myosin 1f–/− mice at day 3, compared to WT
mice. In addition, CD68 and IRF8, markers related to the degree
of activation [36, 37], were lower at day 1 in myosin 1f−/− mice
(Fig. 4H).

Elimination of microglia can abolish the protective effect of
myosin 1f deficiency
To verify that myosin 1f deficiency can protect photoreceptors by
regulating the activation of microglia, we administered PLX3397
[38] to mice via oral gavage to eliminate mononuclear
phagocytes, including microglia. PLX3397 is an inhibitor of the
CSF1R receptor, which is widely expressed in mononuclear
phagocytes [39]. It is reported that PLX3397 can reduce tissue
macrophages without affecting myeloid cells [40]. We started
gavage on day 1, and a dose was delivered every day until day 7.
We conducted the RD model experiment on day 4 and observed
on day 7 (Fig. 5A). Another two groups without PLX3397 gavage

Fig. 2 Myosin 1f is upregulated after the mouse model of retinal detachment. A, B The expression of myosin 1f at day 1, day 3, day 7 on
western blot, it reached to peak at day 3 (A). The expression value is calculated by the optical density ratio of myosin 1f and GAPDH (B). C The
expression of myosin 1f at day 1, day 3, day 7 on qPCR. D The count of F4/80 and myosin 1f-positive cells on eye sections under every scope
(×40). E The count of IBA1 and myosin 1f-positive cells on eye sections under every scope (×40). F The Representative image of eye sections
stained for F4/80 (green), myosin 1f (red), and dapi (blue). The eyeballs were taken down on day 3 after RD. G Representative image of eye
sections stained for IBA1 (green), myosin 1f (red), and dapi (blue) (day 3). H Eye sections stained for GFAP (green), myosin 1f (red), and dapi
(blue) (day 3). I Eye sections stained for Tuj1 (green), myosin 1f (red), and dapi (blue) (day 3). J Eye sections stained for Opsin (green), myosin 1f
(red), and dapi (blue) (day 3). K Myosin 1f is also upregulated in rd1 mouse day 7 after birth, quantification value is calculated by the optical
density ratio of myosin 1f and GAPDH. L Myosin 1f is also upregulated in the light-injured retina (day 5), quantification value is calculated by
the optical density ratio of myosin 1f and GAPDH. M Retinal sections of rd1 mice (day 7 after birth) stained for F4/80 (green), myosin 1f (red),
and dapi (blue). N Retinal sections of the light-injured retina (day 5) stained for F4/80 (green), myosin 1f (red), and dapi (blue). Data were
presented as mean ± SEM, unpaired t test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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were set as matched groups. PLX3397 gavage significantly
reduced microglia number according to the IBA1-positive cells
on the retina (Fig. 5B, C).
The retinal thickness and the TUNEL-positive cells were

calculated to evaluate photoreceptor death. The ONL was thicker
in the WT group compared to the myosin 1f−/− group without
PLX3397, the same as the results in Fig. 3; While there was no

difference in ONL thickness between the WT and myosin 1f−/−
group with PLX3397 (Fig. 5D, E). Likewise, there were more TUNEL-
positive cells in the WT group compared to the myosin 1f−/−
group without PLX3397, while there were no significant differ-
ences in TUNEL-positive cell counts between the two groups with
PLX3397 (Fig. 5F, G). The cleaved caspase 3 staining demonstrated
the same results. There were more cleaved caspase 3-positive cells
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in the WT group compared to the myosin 1f−/− group without
PLX3397, while there were no significant differences in cleaved
caspase 3-positive cell counts between the two groups with
PLX3397 (Fig. 5H, I).
We then detected mRNA expression after microglia elimination.

Interestingly, IRF8 expression even reversed after PLX3397 (Fig.
5J). Similarly, the mRNA expression of IL-1β and TNF-α also
disappeared or reversed (Fig. 5K). That is to say, microglia
elimination abolished the protective effect of myosin 1f deficiency.

Myosin 1f affects microglia activation by regulating the
MAPK/ AKT pathways
To further explore the molecular mechanism underlying myosin
1f-mediated photoreceptor degeneration, we used lipopolysac-
charide (LPS) to stimulate BV2 cell lines in vitro. BV2 is an
immortalized cell line derived from mice [41]. We noticed the
upregulation of myosin 1f after stimulation (Fig. 6A, B). The
transcription level of IL-1β rose 6 h after stimulation. In addition,
an ELISA analysis suggests that TNF-α rose after LPS stimulation
(Fig. 6C). Furthermore, we developed a siRNA knockdown system
for myosin 1f. We designed three sequences of siRNA, including
768, 1413, and 2662; all of them led to a significant decrease of
myosin 1f at the protein level (Fig. 6D). We chose 2662 to detect
the quantitative efficiency of the siRNA, and the efficiency reached
about 80% (Fig. 6E).
We used LPS to stimulate the control and myosin 1f knockdown

cells. Then we detected the expression of IL-1β and TNF-α in the
cellular supernatant at hour 24 via ELISA, and we found that both
cytokines went down in the knockdown group (Fig. 6F).
Transcriptional analysis has identified 673 DEGs involved in the

biology process of myosin 1f-mediated photoreceptor degenera-
tion (Fig. 6G). KEGG analysis indicates TNF signaling pathway, NF-
kappa B signaling pathway, PI3K-AKT signaling pathway are
possibly related to the microglia activation (Fig. 6H). Previous
studies also suggested that MAPK and AKT signaling pathways
were implicated in the activation of microglia [42, 43]. TNF
signaling pathway is closely related to MAPK, AKT, and NF-kappa
B signaling pathways through the activation of two receptors
[44–47]. We then detected the expression of proteins related to
MAPK and AKT. The proportion of phospho-AKT decreases after
24 h of LPS stimulation (Fig. 6I, J). As the two main components of
MAPK, phospho-ERK, and phospho-JNK also showed significant
decreases (Fig. 6I, J). In addition, we repeated western blot to
detect the phosphorylation protein in the detached retina of WT
and myosin 1f−/− mice (Fig. 6K, L). In vivo results may further
verify the consequences of myosin 1f regulation of microglia
activity through the MAPK and AKT pathways.

DISCUSSION
In this study, we have discovered that myosin 1f was significantly
upregulated after photoreceptor degeneration in both the human
retina and mouse model. We further demonstrated that myosin 1f
can regulate microglia activation, whereas the absence of myosin
1f can protect photoreceptors by inhibiting the MAPK and AKT
pathways and decreasing the expression of inflammatory
cytokines, such as TNF-α and IL-1β, in microglia (Fig. 6M).
The vision loss after RD is mainly due to photoreceptor death

[48]. Various forms of cell death are involved in this pathology,
including apoptosis, necrosis, and autophagy, which peak at
2–3 days after RD [49]. No current techniques can stop
photoreceptor death completely [6]. This indicates that cell death
is a complicated process involving different pathologies, including
inflammation. The sequence of the human retina sample after RD
demonstrated that immune response and neurodegeneration are
two major biological processes involved in RD [7].
Besides, we have discovered that myosin 1f was upregulated

after photoreceptor degeneration. Myosin 1f, a class 1 myosin, can
regulate the immune response [32, 50, 51]. We found that myosin
1f was the most upregulated myosin by re-analyzing human RD
sequence data, and we verified the results in a mouse RD model.
MYO1F is upregulated at the early phase and downregulated at
day 7, the protein expression is even lower than the baseline
according to Fig. 2B. It remains unclear that the specific
mechanism of myosin 1f regulation, how it rises, and how it
reduces. Our data suggested myosin 1f is involved in the early
damage of photoreceptors, indicating the importance of inter-
vention time when choosing myosin 1f as a therapeutic target in
photoreceptor degeneration.
We also found that myosin 1f is generally upregulated in rd1

mutation mouse model and light-induced retinal injury. The rd1
mouse is a classical model for retinitis pigmentosa [52]. Microglia
are activated and express inflammatory cytokines in the rd1
mouse model retina. A similar pathology occurs in light-induced
injury. Thus, we discovered that myosin 1f was also upregulated in
the two latter cases, which suggests it could play a key role in
photoreceptor degeneration. It is reported that myosin 1f is also
upregulated in brain neurodegeneration, such as Alzheimer’s
disease (AD), Huntington’s disease (HD), and Parkinson’s disease
(PD) [53], suggesting the upregulation of myosin 1f is a common
phenomenon in neuroinflammation.
We also discovered that myosin 1f is highly expressed in

microglia. Via immunofluorescence, we found that myosin 1f
displayed a strong co-localization with mononuclear macro-
phages, indicating a possible relationship between myosin 1f
and microglia activation after retinal injury. Interestingly,

Fig. 3 Observation of myo1f KO mice after retinal-detachment model and light damage after RD model. A Two groups of mice, myo1f KO
and WT, were sacrificed on day 3 after RD. Two groups of mice were sacrificed on day 3 and day 5 after light damage. B, C Fundus
photography (B) and HE (C) showed detachment of RPE and photoreceptor (day 3). D, E HE staining showed the thickness of ONL on the
detached retina (day 3) of two groups (D). Scale bar, 100 μm. Measurements of ONL were taken by image J (E) (WT group n= 5, myo1f KO
group n= 5). F, G Representative TUNEL staining in ONL (in green) (3 days after induction of RD) showed apoptosis of photoreceptors, scale
bar, 50 μm (F), quantification of TUNEL-positive cells in ONL (G) revealed the significance (n= 5). H, I Representative cleaved caspase 3 staining
in ONL (in green) (3 days after induction of RD) also showed apoptosis of photoreceptors, scale bar, 25 μm (H), quantification of cleaved
caspase 3-positive cells in ONL (I) revealed the significance (n= 5). J, K Representative flow cytometry figure of Annexin V/PI staining (J), and
quantification of the proportion of Annexin V+ and Annexin V/PI+ (K) revealed the significance. L Western blot of cleaved caspase 3. The
expression value is calculated by the optical density ratio of cleaved caspase 3 and GAPDH. M, N HE staining showed the thickness of ONL on
the light-injured retina (day 3) of two groups (M). Measurements of ONL were taken by image J (N (WT group n= 4, myo1f KO group n= 4).
O, P Representative TUNEL staining in ONL (in green) (3 days after induction of light damage) showed apoptosis of photoreceptors, scale bar,
50 μm (O), quantification of TUNEL-positive cells in ONL (P) revealed the significance (n= 4). Q, R Representative cleaved caspase 3 staining in
ONL (in green) (3 days after induction of light damage) also showed apoptosis of photoreceptors, scale bar, 50 μm (Q), quantification of
cleaved caspase 3-positive cells in ONL (R) revealed the significance (n= 3). S, T Representative flow cytometry figure of Annexin V/PI staining
after light damage (S), and quantification of the proportion of Annexin V+ and Annexin V/PI+ (T) revealed the significance. UWestern blot of
cleaved caspase 3 at day 3 after light damage. The expression value is calculated by the optical density ratio of cleaved caspase 3 and GAPDH.
V, W ERG of two groups after light damage (V) and quantification of a wave and b wave at 4.0 log cd sec/m2 and 3.0 log cd sec/m2 (W). Data
were presented as mean ± SEM, unpaired t test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Y. Wang et al.

7

Cell Death and Disease          (2021) 12:926 



myosin 1f can also regulate the M1 polarization by stimulating
intercellular adhesion in macrophages via AKT, STAT3, and NF-
κb pathways [18]. Microglia originates from the yolk sac, it
evolves from yolk sac macrophages, and colonizes the
embryonic central nervous system [54, 55]. It is not surprising
that microglia and macrophage have many characteristics and

functions in common. Our study provides further evidence that
myosin 1f plays an important role in mononuclear phagocytes
activation.
To further determine the function of myosin 1f, we developed a

myosin 1f KO mouse model, and it showed a significant reduction
in neuron death. It suggested that myosin 1f deficiency could be

Fig. 4 Knockout of myosin 1f affects the function of microglia. A Flatmount of the detached retina of WT and myo1f KO mice, stained by
IBA1 (in red), showed the morphology of microglia. Scale bar, 25 μm. B, C Skeleton analysis (B) and Sholl analysis (C) were conducted to
quantify microglia morphology. The less average branch length is, the more activated microglia is. Similarly, the less interaction number is, the
more activated microglia is. D IBA1+ cell counts of the stretched preparation of retina after retinal detachment (n= 8). E The cell count of
both F4/80+ IBA1+ cells infiltrated into the outer nuclear layer (n= 4). F Representative F4/80+ (green) IBA1+ (red) staining in ONL (3 days
after induction of RD). G ELISA analysis of IL-1β and TNF-α in the detached retina of WT and myo1f KO mice (day 3). The quantification of total
protein was 0.4 μg/ml. H QPCR analysis of IL-1β and TNF-α in the detached retina at day 3, CD68 and IRF8 at day 1. Data were presented as
mean ± SEM, unpaired t test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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protective to neurons and it is possible to work by affecting the
activation of microglia.
Microglia, as a resident immune cell, is among the main effector

cells of neuroinflammation after retinal injury [56]. In our study, we
have discovered that myosin 1f deficiency has reduced the
expression of inflammatory cytokines such as TNF-α and IL-1β.
Besides, we found the morphological difference of microglia in
myosin 1f KO retina and WT retina after RD. After the elimination
of microglia, the protective effect of myosin 1f KO disappeared.

Therefore, we think myosin 1f can regulate the activation of
microglia and involved in neuroinflammation, which leads to the
death of photoreceptors. By eliminating microglia, we want to
emphasize that microglia have to exist first, then it could be
regulated by myosin 1f. In fact, microglia is a double-edged sword
[57]. Although overactivated microglia can release cytotoxic factors
that lead to neuron death [54, 58], it can also protect neurons by
secreting neuroprotective factors and phagocytosing injured cells
[59]. The state of microglia can be decided by the course of the

Fig. 5 Elimination of microglia reverses the protective effect of myosin 1f deficiency. A PLX3397 was given to WT and myo1f KO mice every
day from day 1 to day 6, the mice were sacrificed on day 7, 3 days after the mouse model of retinal detachment (day 4). B, C Representative
image of flatmount of the detached retina (B) and elimination efficacy (C). D, E Representative HE staining showed the thickness of ONL on the
detached retina (D) (scale bar, 50 μm) and quantification of ONL thickness (E) (n= 4). F, G Representative TUNEL staining (F) (in green) (3 days
after induction of RD) (scale bar, 75 μm) and quantification of TUNEL-positive cells in ONL (F) among four groups showed apoptosis of
photoreceptors after microglia elimination. H, I Representative cleaved caspase 3 staining (H) (in green) (3 days after induction of RD) (scale
bar, 50 μm) and quantification of cleaved caspase 3-positive cells in ONL (I) among four groups showed apoptosis of photoreceptors after
microglia elimination. J, K qPCR analysis demonstrated the fold change of IRF8, IL-1β, and TNF-α (day 3). Data were presented as mean ± SEM,
unpaired t test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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disease, the immune microenvironment, and interactions with
other cells. Still and all, the two states of microglia are dynamic and
coexist. Discovering a way to inhibit the inflammation pathway is
still a promising target for retinal degeneration.
We discovered that myosin 1f can regulate the MAPK and AKT

pathways to promote the transcription of pro-inflammatory
cytokines and activate microglia. It is known that MAPK and

NF-κb pathways are crucial in the release of microglia pro-
inflammatory cytokines. MAPK can enhance the activation of NF-
κb in LPS-induced BV2 microglia. The inhibitor of MAPK/NF-κB
signaling pathways, such as sulforaphane [42], SB203580, and
PDTC can downregulate microglia-mediated neuronal damage
[60]. Mitogen-activated protein kinases (MAPK) signal the trans-
duction pathway, which consists of ERKs, c-Jun NH2-terminal
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kinases (JNKs), and p38 MAPKs and is reported to be related to
inflammation, cell proliferation, and apoptosis [61, 62]. It is also
associated with microglia-induced neuroinflammation and the
secretion of neurotoxic cytokines [63, 64]. AKT is an important
protein of signaling transduction, which is involved in multiple
pathways [16], and it can promote the expression of pro-
inflammatory cytokines [43]. AKT can also be an upstream
regulator of the NF-κb pathway [65]. NF-κb is a classic, crucial
transcription factor in both innate and adaptive immune
responses, and it participates in microglia-induced neuroinflam-
mation [42, 66]. Our results reveal that myosin 1f could be the
common upstream of MAPK and AKT pathways, making it a
promising target for neuroprotective approaches.
The Myosin family, as a component of the cytoskeleton, was

reported to be involved in several kinds of biological processes,
including muscle contraction, intracellular transport, tethering,
signaling, cell division, and cytoskeleton organization [67].
Myosins can influence signaling through phosphorylation, recep-
tor recycling, interaction with integrin, and so on [68, 69]. Class II
myosin can increase the integrin β1 activity by clustering, and
integrin β1 is required for the activation of the AKT pathway [69].
Myosin 1C, myosin 1E, and myosin 1G can regulate TGF-β
signaling by regulating the recycling and redistribution of TGF-β
receptors to the cell membrane. Myosin 1f may work in a similar
way. However, more future researches are needed to explore the
interaction of myosin 1f and downstream pathways.
Myosin 1f can help neutrophil to transform and migrate to

injury sites, as it consists of a motor domain with an actin-binding
site, which enables the force transmission to nuclear and enables
nuclear to transform [31]. Besides, it is reported that myosin 1f
enhances intracellular adhesion through regulating the mobiliza-
tion and stability of αVβ3 integrin [18]. Though myosin 1f is
involved in the motility of neutrophils [31], it is surprising that
myosin 1f does not affect the migration of microglia to the injury
site. Instead, it affects the morphology of microglia, suggesting
that the function of myosin 1f could be various among different
immune cell types. The chemotaxis and migration of microglia are
controlled by numerous signaling pathways and key molecules,
such as PI3K, PLA2, PKA, Src family kinase, and myosin families
[70]. It is reported that non-muscle myosin II enhances migration
and phagocytosis by regulating the activity of myosin light chain
kinase (MLCK) and interaction with actin [71–73]. In summary,
class II myosins are the probably main effector molecules in
microglia migration instead of myosin 1f.
In this study, we have revealed the function of myosin 1f in

neuroinflammation, through the regulation of microglia activation.
We wondered that the upregulation of myosin 1f may be universal
in other retinal degeneration models, such as light damage and
the rd1 mouse model. Our finding may provide a new perspective
for neuroprotection in photoreceptor degeneration. It is reported
that several compounds have been discovered as the inhibitors of
myosins, such as pentachloropseudilin (PCLP), a pseudilin
derivative, which is a class one myosin-specific inhibitor [51, 74];
Blebbistatin [75], a myosin-2 inhibitor; Azidoblebbistatin, a
photoreactive myosin inhibitor [51]. Our data suggest that myosin

1f may be a novel pharmacological target for protecting
photoreceptors and preserving visual acuity.
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