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Abstract

The white-footed mouse (Peromyscus leucopus) is an important reservoir host for Borrelia burgdorferi, the pathogen
responsible for Lyme disease, and its distribution is expanding northward. We used an Ecological Niche Factor Analysis to
identify the climatic factors associated with the distribution shift of the white-footed mouse over the last 30 years at the
northern edge of its range, and modeled its current and potential future (2050) distributions using the platform BIOMOD. A
mild and shorter winter is favouring the northern expansion of the white-footed mouse in Québec. With more favorable
winter conditions projected by 2050, the distribution range of the white-footed mouse is expected to expand further
northward by 3u latitude. We also show that today in southern Québec, the occurrence of B. burgdorferi is associated with
high probability of presence of the white-footed mouse. Changes in the distribution of the white-footed mouse will likely
alter the geographical range of B. burgdorferi and impact the public health in northern regions that have yet to be exposed
to Lyme disease.
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Introduction

Climate is a major factor constraining the niche and distribution

of a species [1]. Climate is dynamic, and its influence on species is

pervasive, as documented by both paleontological records and

recent observations [2], [3]. Climatic conditions influence a

species’ life cycle by setting the environmental conditions which

affect organisms’ survival, reproduction, physiological tolerance,

phenology, behavior, and sensitivity to habitat quality and food

supply [4], [5]. As an effect of recent global warming, climatic

fluctuations are faster and of greater amplitude than in the past

[6], which further affects species’ niches and distribution patterns.

There is increasing empirical evidence that species are

responding to climate warming, e.g. [3], [7–9], and most agree

that global warming during the 20th century already has had

dramatic effects on the Earth’s biota [10]. Global warming

challenges the stability of a species’ niche, pushing the species’

tolerance and adaptability to its limits [2]. Some species will track

changing climatic conditions and shift their distribution poleward

or upward in elevation, within the limit of their dispersal ability

[8]. Meanwhile, climate change might increase the opportunity for

invasive species to establish in new areas [11].

A prime example of a species shifting its distribution poleward is

the white-footed mouse (Peromyscus leucopus), a successful rodent

native in Eastern North America [12]. Since 1980 its population

has both increased and expanded at a rate of 15 km yr21 on

Michigan’s Upper Peninsula [13]. Historical and recent records

also document a northern expansion of the white-footed mouse in

southern Québec at a rate estimated at around 10 km yr21

(Figure 1). The northern expansion of the white-footed mouse is a

public health concern, since the mouse is known as the main host

for the black-legged tick at the larval stage (Ixodes scapularis), the

vector for the pathogen responsible for Lyme disease (Borrelia

burgdorferi) in North America [14].

The white-footed mouse is a generalist species and successfully

occupies a wide range of habitats [15], [16]. Its distribution at the

northern edge of its range is limited by a number of climatic,

habitat, and anthropogenic factors. The white-footed mouse faces

considerably greater seasonal variation at its northern than

southern range edge, and the winter is the hardest season for

this species [17]. Shift in the distribution of the white-footed mouse

in the Great Lakes area has been associated with a change in snow

cover, minimum temperature, and precipitation [18], [19].

Photoperiod also influences the northern limit of the white-footed

mouse by regulating its reproductive system [20], [21]. Finally, the

probability of occurrence of the white-footed mouse is related to

the degree of habitat fragmentation and availability of food

resources. The habitat must provide enough food resources during

the fall to enable storage for winter reserves [22], [23]. As a

territorial species only a set number of white-footed mice will live

in a given patch [24], [25]. New, mature individuals need to

disperse, but their movements can be hindered in less favourable

habitats such as agricultural fields [26], [27].

Here, we employed species distribution modeling, a widely used

technique to extrapolate and forecast species’ distributions across
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space and time [28–30], to determine some of the climatic

characteristics limiting the distribution of the white-footed mouse.

Then, using climate change projections, we modeled its potential

future distribution under global warming. We finally tested for the

relationship between the predicted current distribution of the

white-footed mouse and the occurrence of B. burgdorferi. By

describing the climatic requirements of the white-footed mouse at

its northern range limit, our results will improve predictions of the

future geographical occurrence of, B. burgdorferi, contributing to the

current effort made for better understanding the pattern of

emergence of Lyme disease [31], [33].

Materials and Methods

Our aim was to characterize the climatic conditions enhancing

(or limiting) the poleward expansion of the white-footed mouse.

Our study area encloses most of the known range of the white-

footed mouse east of –95.4uW [34], between 30.2uN in the USA

and 62.6uN in northern Québec, Canada. We first used a niche

model for southern Québec (45.0uN–47.4uN) to determine the

climatic factors that constrain the distribution of the white-footed

mouse at its northern range limit (Figure 1). We then used a set of

species distribution models at a sub-continental scale, over the

entire study area. This large scale was selected to maximize the

predictive power of the models to project the poleward range shift

[35], [36].

Species Presence Data
Occurrence data for the white-footed mouse were obtained

from the Arctos Collection Management Information System

(http://arctos.database.museum, using records from the Univer-

sity of Alaska Museum of the North, the Museum of Southwestern

Biology and the Museum of Vertebrate Zoology), the Banque de

données sur les micrommamifères et les chiroptères du Québec

[37], and the mammals collection database from the Field

Museum of Natural History [38]. For the niche model, we used

73 records of the white-footed mouse in southern Quebec

collected between1966 and 2011. For the distribution modeling

we used a total of 404 records obtained for the entire study area

that ranged from 1990 to 2011.

Field sampling
We collected an additional 94 white-footed mice at 33 sites

throughout southern Québec. Small mammals were sampled in

forest patches from June to September 2011. At each site, 112

ShermanTM live traps were baited with a mixture of oat and

peanut butter and placed at 4:00 p.m. in 4 grids of 28 (764) traps

placed every 10 m, for one night. Trapping occurred for another

two consecutive nights if no Peromyscus was captured on previous

night. Individuals of Peromyscus were identified to the species level

with a molecular method using species-specific primers as

described by Rogic et al. [27]. All procedures were approved by

the Ministère des Ressources Naturelles et de la Faune du Québec

Figure 1. Study area for the climate niche model (ENFA). The symbols represent capture records for the white-footed mouse over its northern
range coded by successive time periods corresponding to the expansion of the white-footed mouse; blue dots: 1975–1984, red dots: 1985–1994;
yellow dots: 1995–2004. The lines represent the distribution limit of the mouse in 1984 (blue line) and 1994 (red line), estimated by drawing a buffer
of 20 km around the presence points, using the ArcToolbox in ArcGIS [40]. Data are from the Quebec government (Ministere des Ressources
Naturelles et de la Faune, Centre de donnees sur le Patrimoine Naturel du Quebec).
doi:10.1371/journal.pone.0080724.g001
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(SEG Permit #2011-05-15-014-00-S-F), and McGill University

Animal Care Committee (AUP#5420).

At each field site, we also sampled black-legged ticks (Ixodes

scapularis) during the spring, summer and fall of 2011, with three

visits per site. Feeding ticks were sampled by inspection under the

microscope of all small mammal bodies we collected in the field.

Questing ticks were sampled in the vegetation using flag dragging

[39]. Ticks were sampled by dragging a 1 m61 m flannel cloth

along sets of 4 parallel 500 m-long transects spaced 30 m apart,

overlapping the trapping grids. Ticks were collected from the drag

every 25 m along each transect. All ticks sampled were preserved

in ethanol, identified to the species level and assigned to larval,

nymph or adult life stages.

Climatic Variables
A georeferenced database of climatic variables for the period

1961–2005 was generated with ArcGIS10 [40] to calibrate our

models. The white-footed mouse is expected to be most limited by

climate conditions during the coldest time of the year at the

northern limit of its range. We used five climate variables that may

constrain the distribution of the white-footed mouse and

characterize the mean conditions during the winter: mean snow

depth, mean precipitation, minimum and maximum temperatures,

and winter length. Other factors affect the white-footed mouse’s

survival (e.g., photoperiod [20], [21]), but were not considered

here, as we limited our set of variables to those that were available

both for current conditions and future climate scenarios, and were

expected to change in the future. Photoperiod was thus not

considered, as it is not a climatic variable and as a function of

latitude, would not change in the future. Temperature and

precipitation data were derived from the ANUSPLIN dataset

version 4.3, based on Natural Resources Canada’s historical

monthly ,10610 km gridded weather data [41]. Average

monthly temperatures were centered on the Julian day of the

middle of each month and linearly interpolated for the remaining

days. Monthly snow depth was interpolated using data from

Environment Canada meteorological stations for Québec (http://

climate.weatheroffice.gc.ca) and NOAA stations for the United

States (http://www.ncdc.noaa.gov/cdo-web/). Winter season was

defined as the period from when the interpolated temperature of a

grid cell first fell below 0uC after July, until it rose above 0uC in the

following calendar year.

Future climate scenarios for the 2050 horizon (2041–2070) were

created using the delta (D) method [42], in which the monthly

mean difference of temperature, or ratio of precipitation, and

snow depth between a control model run (1971–2000) and the

future climate model run are calculated, then applied to baseline

values of the gridded observed monthly climate data for the same

control period. Future climate scenarios were created using

simulated future climate data obtained from the Canadian

Regional Climate Model, CRCM4 version 4.2.3 [43], as well as

an ensemble of global climate simulations. Nine CRCM4

simulations were run over a domain covering North America

(2016293 grid points) with a horizontal grid-size of 45 km (true at

60uN). Each run was driven by atmospheric fields simulated by

one of three different coupled global climate models (CGCM3,

CNRM, and ECHAM5). An additional 28 future climate

scenarios were produced using output from an ensemble of global

climate models (GCMs) available from phase three of the Coupled

Model Intercomparison Project (CMIP3) [44]. Study requirements

in terms of time horizons and variables (particularly snow depth)

limited the number of available scenarios to a total of 37, divided

among the Intergovernmental Panel on Climate Change (IPCC)

SRES emissions scenarios (12 A1b, 15 A2, and 10 B1) [45].

Climate Niche Modeling
We used a niche model to characterize the climatic conditions

associated with the expansion of the white-footed mouse at the

northern edge of its range. We performed an ecological-niche

factor analysis, ENFA [46], available in the adehabitat package

version 1.8.7 in R statistical software [47], [48]. This method

summarizes the environmental predictors of a species’ niche with a

number of factors [47]. The marginality factor describes the

difference between the average conditions at the sites where the

species was captured and the conditions available over the entire

study area. The first specialization factor is then extracted by

maximizing the ratio between the variance of environmental

predictors for the global study area and the variance for the

species’ distribution area. We tested the significance of these

factors with randomization tests with 1,000 permutations. We also

calculated the tolerance index, which is the inverse of the first

specialization factor and ranges from 0 in highly specialized

species to 1 in highly generalized species [47].

Distribution Modeling
The current and future distribution of the white-footed mouse

were modeled by running seven niche-based modeling techniques

available in the BIOMOD platform Version 2.0.0 (BIOdiversity

MODelling) [49]. We selected the artificial neural networks

(ANN), classification tree analyses (CTA), generalized boosting

models (GBM), generalized linear models (GLM), flexible

discriminant analysis (FDA), multivariate adaptive regression

splines (MARS), and random forest (RF) [49].

The quality of the predictions of the models was evaluated using

a cross-validation technique. The original presence dataset was

split into two subsets, with 70% of the data kept for calibration and

30% for evaluation. This procedure was repeated 10 times.

We further estimated the predictive performance of each model

using the Area Under the ROC (Receiver Operating Character-

istic) curve, AUC [50], and the True Skill Statistic, TSS [51].

Sensitivity (the proportion of actual presence points correctly

predicted) and specificity (the proportion of actual absence points

correctly predicted) were obtained for each model. The TSS

maximizes the sum of the sensitivity and the specificity. Models

with a TSS . 0.8 [51] and an AUC . 0.9 [50] are considered

very accurate.

All models required both presence and absence data. Because

our data set was assembled using mostly museum specimen

databases, it did not include absence data. We thus generated five

data sets of 404 random pseudo-absences using the surface range

envelope (SRE) model in BIOMOD [49], with similar weight for

pseudo-absence and presence points used for modeling [52]. It has

been argued that pseudo-absence data introduce a bias for

modeling species distribution. However, absence data could also

be biased and only reflect the presence of a geographical barrier

that prevents access to a site, rather than unsuitable climatic

conditions [29], [30]. Here we followed the recommendations of

Lobo and Tognelli [53]. They showed that the method we used to

select pseudo-absences data (i.e. outside the environmental

envelope obtained from the presence-data) does not affect the

model performance, especially when a small number of pseudo-

absence is used.

A consensus model was obtained by calculating the weighted

mean of the presence probability obtained from each model [54].

Models were ranked according to their TSS score and a decay of

1.6 was used to assign relative weights to each model. Coefficients

of variation between the model projection outcomes for the

different runs were calculated to identify regions where these

outcomes varied the most.

Climate, the White-Footed Mouse & Lyme Disease
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B. burgdorferi Occurrence and the White-footed Mouse
Distribution

All small mammals and ticks that were collected either in the

vegetation or on small mammals were screened for the presence of

B. burgdorferi following the method described by Ogden et al. [55].

Borrelia burgdorferi was detected by polymerase chain reaction assays

of DNA extracted from small mammal tissue (heart) and ticks

using a two-test PCR procedure. First, the extracted DNA was

screened for B. burgdorferi presence with a multiplex real-time PCR

targeting the 23S rRNA of B. burgdorferi. Positive samples were then

further tested using primers for the ospA gene as reported by

Bouchard et al. [14]. The assays were all performed at the National

Microbiology Laboratory of the Public Health Agency. Sampled

sites were classified as locations with confirmed presence of B.

burgdorferi or those without. We evaluated the relationship between

the probability of occurrence of the white-footed mouse we

obtained from our distribution model and the occurrence of B.

burgdorferi at our study sites with a logistic regression model using

the stats package in R [48].

Results

Limiting Climatic Factors at the Northern Range Edge
Relatively high marginality and low tolerance obtained in the

ENFA indicated that habitat selection is occurring in the white-

footed mouse (Table 1). The marginality and specialization axes

were significant (all p,0.001). The white-footed mouse is

occupying an amplitude of climatic conditions three times smaller

than the whole range of variation available (Table 1). The habitat

of the white-footed mouse at the northern edge of its range was

constrained by the winter length, presumably the mouse avoiding

areas with long winters. The mean maximum and minimum

temperature in the winter also contributed to marginality,

indicating that the white-footed mouse tended to avoid colder

habitats. A specialization for warmer minimum winter tempera-

ture was detected with a strong correlation of this variable on the

specialization axis (Table 1).

Current and Future Distribution of the White-footed
Mouse

Overall, 75% of the entire study area had a probability of

occurrence of the white-footed mouse larger than 97%, while less

than 25% of the study area had a probability below 12%. The

predicted probability of the white-footed mouse’s occurrence

gradually decreased at the northern edge of its range, from 100%

at the USA border to less than 10% north of 47uN (Figure 2A),

matching well the known distribution of the species [12], [34].

Consensus models for each SRES emission scenarios produced

similar projections for the future distribution of the white-footed

mouse (Figure 2B, Figure S1). The probability of observing the

species was greater than 94% for the majority (75%) of the study

area. The probability of occurrence of the white-footed mouse

decreased north, from 100% at approximately 48uN down to less

than 10% at 51uN. Overall, the distribution range edge of the

white-footed mouse is predicted to shift north by 3u latitude, or

approximately 300 km by 2050.

The range of AUC and TSS scores were good to excellent [50],

[51] for all seven models run in the BIOMOD platform, ranging

from 0.71 to 0.99. The sensitivity and specificity were high for all

Table 1. Summary of results of the ecological niche factor
analysis (ENFA).

Marginality Specialization

Tmin 0.417 –0.811

Tmax 0.487 0.332

Prec –0.486 0.051

Sdm 0.327 –0.093

Wlen –0.495 –0.468

Global 2.32 * 3.02 * (0.311)

The correlation between the marginality and first specialization factors and
each climate variables are given. The overall marginality, specialization and
tolerance (in parentheses) are also shown. *: p,0.001.
doi:10.1371/journal.pone.0080724.t001

Figure 2. Current predicted (A) and future projected (B)
distribution of the white-footed mouse modeled in BIOMOD.
The projected distribution for 2050 was modeled with a change in
climate under the A2 greenhouse gas emissions scenario from the IPCC
[45] (WGS 1984 World Mercator). Models for gas emissions scenarios
A1b and B1 are provided in Figure S1. The occurrence probability of the
white-footed mouse is lowest in green and highest in red.
doi:10.1371/journal.pone.0080724.g002
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models, ranging from 70.4% to 95.5% and from 68.9% to 93.9%,

respectively.

The coefficients of variation (CV) of the model predictions

ranged from 0.02 to 3.96 for the current and future (2050)

consensus models. Sites with a higher CV (. 0.97 and . 0.99 to

1.6 for current and future models, respectively) represented 25% of

the study area. These regions were mostly situated above 47uN, as

well as in the most southern regions of our study area, where the

mouse is absent today (Figure S2A). Similarly, regions where the

model predictions deviated the most were located just north of the

predicted northern range limit of the white-footed mouse in 2050

(Figure S2B, C and D). Overall, our model was thus better at

predicting the presence than the absence, or very low probability

of occurrence for the white-footed mouse.

The average winter length and maximum temperature had the

greatest importance for the white-footed mouse distribution (Table

2). The probability of occurrence of the white-footed mouse

decreased when winter length spanned more than 125 to 160 days,

depending on the model (Figure S3). A winter average maximum

temperature of –5uC represented a threshold above which the

probability for the white-footed mouse to occur increased

considerably (Figure S4). Winter average minimum temperature

also limited the distribution of the white-footed mouse in some of

the models (Table 2), but to a lesser extent. When this variable had

a significant contribution to the models, the mouse’s probability of

occurrence was the highest when winter average minimum

temperature was below –7uC (Figure S5). Snow depth contributed

to some of the models, and the probability of occurrence of the

white-footed mouse decreased when snow depth exceeded 0.3 m

(Figure S6). Finally, winter precipitation had no significant

influence for most models (Table 2).

B. burgdorferi Occurrence
A total of 1005 questing I. scapularis were collected in the

vegetation (131 adults, 355 nymphs and 519 larvae) and an

additional 329 feeding ticks were retrieved on small mammals (2

adults, 23 nymphs and 304 larvae). A total of 515 small mammals

were collected, including 315 P. leucopus. Overall, 11.4% of the

ticks examined (all ticks except for larvae collected by dragging)

and 7 small mammals (6 P. leucopus) tested positive for B. burgdorferi.

Altogether, when considering both tick and small mammal data,

the bacterium was detected in 10 of our 33 field study sites

sampled in southern Quebec. We found a significant relationship

between of the probability of occurrence of the mouse and the

occurrence of B. burgdorferi (logistic regression: z = 2.43, p,0.015).

Borrelia burgdorferi was detected at sites where the predicted

probability of presence of the white-footed mouse was above a

threshold value of 97%.

Discussion

We estimated that the expansion of the white-footed mouse into

Southern Québec has been occurring at a rate of approximately

10 km yr21 over the last four decades. This result is consistent with

the rate of 15 km yr21 observed in Michigan over the last three

decades [13]. We predicted a further northern shift of 300 km

over the next four decades, representing a rate of approximately

8 km yr 21, a conservative value when compared to the actual rate

of recent expansion of the white-footed mouse.

In our first set of analyses (ENFA), we identified the climatic

variables — namely winter length and winter maximum and

minimum temperature — that most constraint the niche of the

white-footed mouse at its northern range limit. Under climate

change, the average maximum and minimum winter temperature

increased, while the winter length decreased, thus allowing the

white-footed mouse to colonize new sites where the winter was

warmer and shorter. Overall, climatic variables appear to

describe well the habitat preference of the white-footed mouse,

and thus capture the dynamics of its range shift in a changing

climate.

In our second analysis, we compared the current and projected

distribution of the white-footed mouse obtained from species

distribution modeling. The models presented accurate predictions

of the white-footed mouse’s current distribution, matching well its

known distribution [12], [34]. In our models, winter length and

winter average maximum temperature had the greatest influence

on the distribution of the white-footed mouse, concordant with

results obtained in the ENFA analysis. As future winter conditions

become more clement across northern North America, the

northern range limit of the white-footed mouse may extend up

to 51uN in Québec by 2050.

Our results are consistent with observations of the white-footed

mouse expansion into northern regions of the United States.

Myers et al. [19] stated that the white-footed mouse would not be

able to survive long winters, especially during years when ice lasts

late into the spring (late April and early May). Similar observations

were made in Wisconsin, where temperature and snow cover

appeared to influence the species’ abundance [18]. The similarities

between results from these studies in the northern United States

and ours for Québec suggest that these trends are not site-

dependent and that climate factors play an essential role at

constraining the white-footed mouse distribution independently, to

some degree, of local biotic or habitat conditions.

Our distribution model is based on the assumption that the

distribution of the white-footed mouse is mostly limited by climatic

factors, as it is routinely done with most work involving species

distribution modeling (review in [29]). Recently, there has been a

growing awareness that the distribution of a species is the result of

a number of interacting factors, in addition to climatic ones [29],

[56]. Range shifts in response to recent climate warming are thus

modulated by other factors of the environment, such as landscape

structure or the existence of strong geographic barriers [57], [58],

local interactions with coexisting species such as competition [56],

or the dispersal behaviour of the study species [30]. Moreover,

species distribution modeling assumes no evolution of the

relationship between the study species and its environment (e.g.

the evolution in time of its thermal tolerance). Araujo and Peterson

Table 2. Variable importance scores for the models used in
the analysis.

GLM GBM CTA ANN RF MARS FDA

Snow 0.136 0.008 0.125 0.008 0.090 0.058 0.040

Winter length 0.845 0.182 0.364 0.446 0.208 0.745 0.971

Precipitation 0.000 0.013 0.064 0.133 0.080 0.046 0.015

Tmin 0.250 0.022 0.040 0.305 0.082 0.271 0.220

Tmax 0.410 0.502 0.544 0.947 0.277 0.444 0.185

Snow: mean snow depth, Precipitation: mean winter precipitation, Tmin:
minimum average winter temperature, Tmax: maximum average winter
temperature, and Winter length: average winter length. The importance score
of each variable is one minus the correlation score between the prediction
obtained with all variables and the prediction obtained with only this variable.
The importance score is positively related with the importance of the variable.
The importance of the variables was obtained using 5 permutations for each
model.
doi:10.1371/journal.pone.0080724.t002
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[56] argued that based on empirical evidence, the niche of species

is conserved to some significant degree at the temporal scale

considered in most studies. In sum, the predicted distribution

obtained from our models should be viewed as the potential

future distribution of the white-footed mouse, which does not

take into account the effects of species interaction, the dispersal

ability of the mouse or features of the landscape than may

hinder its dispersal [30]. Yet, as Araujo and Peterson [56] noted,

there is a considerable body of empirical evidence that climate

plays a large role in determining species distribution. In their

recent extensive study, Xu et al [59] found that the local

landscape only accounted for 1–3% of species richness in

terrestrial vertebrates (mammals, reptiles and amphibians) in

China, while climate was identified as the factor influencing

most species richness patterns. The results we present here can

thus be taken as a preliminary but good estimation of the future

potential distribution of the white-footed mouse in southern

Quebec under climate warming.

A number of infectious diseases are emerging and their

incidence has risen over the last few decades [60]. Furthermore,

a majority of emerging infectious diseases are zoonotic [60].

Global change has been associated with the emergence of

infectious diseases [61], [62] and species distribution projections

under climate warming have become a powerful tool to better

describe patterns of emergence and anticipate the future spread of

infectious disease vectors, such as mosquitoes and ticks, as well as

other arthropod species [63], [64]. The transmission cycle of a

pathogen can be defined as a suite of species interactions that lead

to target or incidental hosts [65]. Since the presence of the host

constrains the transmission cycle of a disease, the geographic

distribution of a disease is tied to the distributions of its hosts [63],

[66].

The rapid invasion of the white-footed mouse into southern

Québec has important implications for public health in the region.

For a disease to emerge and spread, the disease transmission cycle

must establish locally, which is ensured by the establishment of

coexisting populations of the host(s) and vector(s) for that disease.

In the case of Lyme disease, different hosts are used by the black-

legged tick at its successive life stages. In our region, larvae,

nymphs and adult ticks feed mostly on small mammals and birds

foraging on the ground, mid-size carnivores and white-tailed deer

[65]. Among these hosts, the white-footed mouse is known to be

the most competent reservoir for B. burgdorferi [65], [66], and

infection does not seem to affect the mouse’s behaviour [67]. The

white-footed mouse is the principal reservoir host within the

complex transmission cycle of B. burgdorferi [14], [65] and it is

estimated that more than 80% of the mouse population is infected

by B. burgdorferi in the northeastern United States [65]. We

detected a significant effect of the occurrence of the white-footed

mouse on the prevalence of B. burgdorferi in southern Quebec.

Changes in the mouse distribution will inevitably alter the

geographical range of Lyme disease and its prevalence [14].

This is further aggravated by the concurrent northern shift of the

black-legged ticks in recent years [31], [32]. The number of

established endemic populations of black-legged ticks is increasing

in southern Quebec [68]. New tick populations are establishing

each year, as new individuals are dispersed over the continent by

migratory birds, which bring tick larvae from the southern and

central United States to more northern regions, including

southern Quebec [68]. There also has been an increase in

abundance of the white-tailed deer in North America during the

twentieth century [65]. In southern Quebec, white-tailed deer

populations have exceeded historical records of abundance in the

last few years [69]. As a result, both the vector (tick) and hosts

(mouse and deer) are rapidly increasing in abundance in southern

Quebec, which is expected to increase the encounter rate

between vectors and hosts and thus provide enhanced conditions

for the emergence and maintenance of B. burgdorferi transmission

cycle in the region. Such a trend will impact public health in

northern regions that have yet to be exposed to Lyme disease

[33]. Our ability to predict the future distribution of the white-

footed mouse is thus a critical step for identifying future areas at

risk for Lyme disease.

Supporting Information

Figure S1 Projected future (2050) distribution of the
white-footed mouse. Change in climate variables are under the

(A) A1b, and (B) B1 greenhouse gas emissions scenarios from the

IPCC [45] (WGS 1984 World Mercator).

(TIF)

Figure S2 Coefficient of variation (CV) of the current (A)
and future (B-D) distribution of the white-footed mouse.
The future projections are under the A1b (B), A2 (C), and B1 (D)

greenhouse gas emissions scenarios from the IPCC [45] (WGS

1984 World Mercator).

(TIF)

Figure S3 Response curves for winter length. Each curve

represents a single run and a different graph is displayed for each

model used. The y-axis is the probability of occurrence of the

white-footed mouse, ranging from 0 to 1. The x-axis is winter

length in days.

(TIF)

Figure S4 Response curves for the winter maximum
temperature. Each curve represents a single run and a different

graph is displayed for each model used. The y-axis is the

probability of occurrence of the white-footed mouse, ranging from

0 to 1. The x-axis is the average maximum temperature in 6C.

(TIF)

Figure S5 Response curves for the winter minimum
temperature. Each curve represents a single run and a different

graph is displayed for each model used. The y-axis is the

probability of occurrence of the white-footed mouse, ranging from

0 to 1. The x-axis is the average minimum temperature in 6C.

(TIF)

Figure S6 Response curves for winter snow depth. Each

curve represents a single run and a different graph is displayed for

each model used. The y-axis is the probability of occurrence of the

white-footed mouse, ranging from 0 to 1. The x-axis is the average

winter snow depth in meters.

(TIF)
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