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Abstract

Background The protein kinase mechanistic target of rapamycin (mTOR) controls cellular growth and metabolism. Although
balanced mTOR signalling is required for proper muscle homeostasis, partial mTOR inhibition by rapamycin has beneficial ef-
fects on various muscle disorders and age-related pathologies. Besides, more potent mTOR inhibitors targeting mTOR catalytic
activity have been developed and are in clinical trials. However, the physiological impact of loss of mTOR catalytic activity in
skeletal muscle is currently unknown.
Methods We have generated the mTORmKOKI mouse model in which conditional loss of mTOR is concomitant with expres-
sion of kinase inactive mTOR in skeletal muscle. We performed a comparative phenotypic and biochemical analysis of
mTORmKOKI mutant animals with muscle-specific mTOR knockout (mTORmKO) littermates.
Results In striking contrast with mTORmKO littermates, mTORmKOKI mice developed an early onset rapidly progressive my-
opathy causing juvenile lethality. More than 50% mTORmKOKI mice died before 8 weeks of age, and none survived more than
12 weeks, while mTORmKO mice died around 7 months of age. The growth rate of mTORmKOKI mice declined beyond 1 week
of age, and the animals showed profound alterations in body composition at 4 weeks of age. At this age, their body weight was
64% that of mTORmKO mice (P < 0.001) due to significant reduction in lean and fat mass. The mass of isolated muscles from
mTORmKOKI mice was remarkably decreased by 38–56% (P < 0.001) as compared with that from mTORmKO mice. Histopath-
ological analysis further revealed exacerbated dystrophic features and metabolic alterations in both slow/oxidative and fast/
glycolytic muscles from mTORmKOKI mice. We show that the severity of the mTORmKOKI as compared with the mild
mTORmKO phenotype is due to more robust suppression of muscle mTORC1 signalling leading to stronger alterations in pro-
tein synthesis, oxidative metabolism, and autophagy. This was accompanied with stronger feedback activation of PKB/Akt and
dramatic down-regulation of glycogen phosphorylase expression (0.16-fold in tibialis anterior muscle, P < 0.01), thus causing
features of glycogen storage disease type V.
Conclusions Our study demonstrates a critical role for muscle mTOR catalytic activity in the regulation of whole-body growth
and homeostasis. We suggest that skeletal muscle targeting with mTOR catalytic inhibitors may have detrimental effects. The
mTORmKOKI mutant mouse provides an animal model for the pathophysiological understanding of muscle mTOR activity in-
hibition as well as for mechanistic investigation of the influence of skeletal muscle perturbations on whole-body homeostasis.

Keywords mTOR kinase activity; Myopathy; Mitochondria; Glycogen; Body composition

Received: 4 December 2017; Revised: 1 June 2018; Accepted: 25 June 2018
*Correspondence to: Yann-Gaël Gangloff, Institut NeuroMyoGene (INMG), Université Lyon 1, CNRS UMR 5310, INSERM U 1217, Lyon, France. Email: yann-gael.
gangloff@univ-lyon1.fr
†Present address: School of Physical Education and Sports Science, Soochow University, Suzhou, China.
‡Q. Zhang and A. Duplany contributed equally to this paper.
§L. Schaeffer and Y.-G. Gangloff contributed equally to this paper.

ORIG INAL ART ICLE

© 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders

Journal of Cachexia, Sarcopenia and Muscle 2019; 10: 35–53
Published online 21 November 2018 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/jcsm.12336

This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any me-
dium, provided the original work is properly cited and is not used for commercial purposes.

http://orcid.org/0000-0001-9031-1184
http://creativecommons.org/licenses/by-nc/4.0/


Introduction

Skeletal muscle integrity is determinant for whole-body
health. Alterations of skeletal muscle metabolism and mass
have been implicated in the pathogenesis of myopathies,
cancer cachexia, and metabolic syndrome as well as in age-
related diseases, including sarcopenia. The full understanding
of the signalling pathways regulating skeletal muscle homeo-
stasis is thus essential to develop therapeutic strategies
aiming to prevent disease and improve quality of life. Body
of evidence demonstrates that the mechanistic target of
rapamycin (mTOR) signalling pathway is required for
muscle growth and metabolism in response to mechanical
stimuli, nutrients, growth factors, and hormones.1,2 The
serine/threonine protein kinase mTOR forms the catalytic
core of at least two signalling complexes, the mTOR complex
1 (mTORC1) containing Raptor, which is partially sensitive to
rapamycin,3 and the mTORC2 containing Rictor, which is only
sensitive to sustained rapamycin treatment.4 Pharmacologi-
cal and genetic approaches have determined that skeletal
muscle homeostasis is mainly controlled by mTORC1 signal-
ling. For instance, rapamycin blunts muscle compensatory hy-
pertrophy and recovery after injury, as well as mechanical
load-induced growth.5–7 Accordingly, mice lacking muscle
mTOR (mTORmKO) or Raptor (RAmKO), but not Rictor
(RImKO), show reduced muscle mass and develop a late on-
set myopathy leading to death between the ages of 6 and
8 months.8–10 Intriguingly, however, the mass of the slow-
twitch/oxidative soleus (SOL) muscle is preserved in young
mTORmKO mice, while that of the fast-twitch/glycolytic mus-
cles displays a moderate 20–30% reduction, contrasting with
the severe inhibitory effect of rapamycin on postnatal muscle
growth in rat pups11 and on regenerating myofibre growth.12

This raises the possibility that the consequences of mTORC1
inactivation in skeletal muscle, using human skeletal actin
(HSA)-Cre mice, were previously underestimated due to the
supply of mTOR to mutant fibres from unrecombined muscle
progenitors during early postnatal muscle growth and muscle
regeneration. Indeed, these processes rely on the recruit-
ment of nuclei from satellite cells (SC)13–15 in which the
HSA-Cre transgene is not active.16

Paradoxically, sustained activation of muscle mTORC1 in
TSC1mKO mice also proved to be detrimental, causing late-
onset myopathy,17 thereby demonstrating that balanced
mTORC1 signalling is required for the maintenance of muscle
integrity. Indeed, mTORC1 regulates both muscle anabolism
and catabolism.18 The two well-known mTORC1 effectors
regulating protein synthesis are the S6 kinases (S6K) and
eIF-4E-binding proteins (4E-BP). Noteworthy, S6K KO mice
and 4E-BP mutant mice show muscle atrophy but do not
develop muscle dystrophy.19,20 On the other hand, mTORC1
activity inhibits autophagy-mediated muscle proteolysis
through phosphorylation of Unc-51-like kinase-1 (ULK1), tran-
scription factor EB, and PKB/Akt.21 Besides protein synthesis

and degradation, mTORC1 controls energy metabolism.
mTORC1 promotes the expression of mitochondrial-related
genes at the level of transcription and translation, respec-
tively, via the regulation of YY1-PGC-1α interaction22,23 and
4E-BPs.24 Consistently, muscle oxidative capacity is impaired
in mTORmKO and RAmKO mice,8,9 while enhanced in
TSC1mKO mice.25 Although defects in muscle PGC-1α and
YY1 have also been implicated in dystrophic changes,23,26 re-
storing PGC-1α expression and mitochondrial function in
RAmKO and mTORmKO mice does not prevent the myopathy
nor extends lifespan.27 Finally, mTORC1 signalling regulates
muscle energy stores by controlling glucose metabolism via
a feedback inhibition of insulin signalling.28 Accordingly, mus-
cles from mTORmKO and RAmKO mice display enhanced
PKB/Akt activation and elevated muscle glycogen stores,8,9

whereas muscles with activated mTORC1 show reduced
PKB/Akt signalling.17 Muscle glycogen stores were neverthe-
less increased in TSC1mKO mice due to enhanced glucose
uptake through GLUT1.29

While kinase-independent functions of mTOR have been
clearly implicated in myogenesis,30 much less is known in dif-
ferentiated muscle fibres. To further investigate cell autono-
mous mTOR catalytic functions in skeletal muscle, we have
generated a new mutant mouse model, hereafter called
mTORmKOKI (mTOR muscle-specific KnockOut and mTOR
Kinase Inactive) mice, in which Cre-mediated mTOR inactiva-
tion and expression of an mTOR kinase inactive mutant pro-
tein occur conjunctively in differentiated myofibres. This
model allowed us to examine the physiological impact of
sustained inhibition of mTOR kinase activity in mouse skeletal
muscle. Our comparative analysis reveals exacerbated alter-
ations in mTORmKOKI mice compared with mTORmKO litter-
mates. It further indicates that catalytic-independent
functions of mTOR do not rescue any parameters found to
be altered in mTOR-depleted muscle fibres and, unexpect-
edly, that muscle mTOR determines the mass of peripheral
organs. Collectively, our results demonstrate that the impor-
tance of muscle mTOR was underestimated in previous
mouse models of mTORC1 inactivation.

Methods

Animals

The generation of animals harbouring conditional mTOR al-
leles (mTORflox/flox) and of animals with muscle-specific mTOR
inactivation (HSA-Cre+; mTORflox/flox herein called mTORmKO)
on F6; C57BL/6 background has been previously described in
Risson et al.9 Transgenic mouse lines overexpressing FLAG-
tagged Kinase-Inactive (Asp2357Glu) human mTOR (herein
called mTORmKI) or FLAG-tagged human mTOR (herein called
mTORmWT) in skeletal muscle have been previously
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described in Ge et al.12 For this study, mTORmKI and
mTORmWT mouse lines were outcrossed six times to
C57BL/6 background. They were next bred with mTORflox/flox

mice to generate mice homozygous for the mTORflox locus.
On the one hand, mTORmKI mice were then bred with
mTORmKO mice to generate the following littermates: Con-
trol, mTORmKI, mTORmKO, and mTORmKOKI, the latest be-
ing knockout for the muscle mTORflox locus while
overexpressing an mTOR kinase inactive protein from the
transgene. On the other hand, mTORmWT mice were then
bred with mTORmKO mice to generate the following litter-
mates: Control, mTORmWT, mTORmKO, and mTORmKOWT,
the latest being knockout for the muscle mTORflox locus
while overexpressing mTOR from the transgene.

The animals were provided with mouse chow and water ad
libitum under a light–dark cycle (12 h), in a restricted-access,
specific pathogen–free animal care facility at AniRA PBES,
Lyon, France. For experimental convenience, the animals
analysed were males, unless otherwise stated. Experiments
were conducted using littermates from multiple litters. To
minimized physiological variation, mTORmKOKI male mice
that did not reach 7 g at 4 weeks of age were excluded from
analysis. All procedures were performed in accordance with
French and European legislation on animal experimentation
and approved by the ethics committee CECCAPP and the
French ministry of research.

PCR genotyping was performed with the following primers:
mTORflox Fw: GCTCTTGAGGCAAATGCCACTATCACC
mTORflox Rev: TCATTACCTTCTCATCAGCCAGCAGTT
mTORKI/mTORWT Fw: CCTCGTCTCCGGAGCCACAC
mTORKI/mTORWT Rev: ACTCATCTCTCGGAGTTCCATGG
Cre Fw: CGATGCAACGAGTGATGAGG
Cre Rev: GCATTGCTGTCACTTGGTCGT

Muscle histology, morphometric measurements,
and imaging

Tibialis anterior (TA) and SOL muscles were collected, embed-
ded in tragacanth gum, and quickly frozen in isopentane
cooled in liquid nitrogen. Cross-sections (10 μm thick)
were obtained from the middle portion of frozen
muscles and processed for histological, immunohistochemi-
cal, enzymohistological analysis according to standard proto-
cols. The fibre cross-sectional area and the number of
centrally nucleated fibres were determined on TRITC-labelled
WGA (L5266, Sigma) and DAPI-stained sections. Number of
peripheral myonuclei were determined on WGA-Alexa 488
(W1161, Invitrogen TM) and DAPI-stained sections. Fluores-
cence microscopy and transmission microscopy were per-
formed using Axioimager Z1 microscope with CP Achromat
5x/0.12, 10x/0.3 Ph1, or 20x/0.5 Plan NeoFluar objectives
(Carl Zeiss, Inc.). Images were captured using a charge-
coupled device monochrome camera (Coolsnap HQ;

Photometrics) or colour camera (Coolsnap colour) and
MetaMorph software. For all imaging, exposure settings were
identical between compared samples. Fibre number and size,
central nuclei and peripheral myonuclei were calculated
using ImageJ software.

Quantitative real-time PCR

Total RNA was prepared from frozen TA, SOL, or extensor
digitorum longus muscles using TRIzol (TRI-Reagent, Sigma).
Complementary DNA was generated using RevertAid H minus
Reverse transcriptase (Fermentas) and random hexamer
primers. Real-time quantitative PCR was carried out using
QuantiFast SYBR Green (Qiagen). All data were normalized
to cyclophilin B and GAPDH mRNA levels, which gave similar
results. Delta Delta Ct (threshold cycle) analysis was used to
calculate relative gene expression. The results were plotted
in arbitrary units as mean ± SEM. The sequences of the for-
ward and reverse primers were as follows: mouse mTOR,
50-CAAACCACAGGGTGAGGACT-30 and 50-AGGGCAGCAACAGT
GAGAGT-30; mouse Myh8, 50-CAAGGATGGAGGGAAAGTGA-30

and 50-GGTTCATGGGGAAGACTTGA-30; mouse Myogenin, 50-
CTACAGGCCTTGCTCAGCTC-30 and 50-AGATTGTGGGCGTCTG
TAGG-30; mouse IGF-II, 50-ACCCGACCTTCGGCCTTGTG-30 and
50-AAGCCGCGGTCCGAACAGAC-30; mouse PGC-1α, 50-TCAC
ACCAAACCCACAGAAA-30 and 50-TCTGGGGTCAGAGGAA
GAGA-30; mouse Dystrophin, 50-TGCGCTATCAGGAGACAATG-
30 and 50-TTCTTGGCCATCTCCTTCAC-30; mouse Cyclophilin B,
50-GATGGCACAGGAGGAAAGAG-30 and 50-AACTTTGCCGAAAA
CCACAT-30; mouse GAPDH, 50-GGTCACCAGGGCTGCCATTTG-
30 and 50-TTCCAGAGGGGCCATCCACAG-30; mouse PPARα, 50-
GCGTACGGCAATGGCTTTAT-30 and 50-ACAGAACGGCTTCCTC
AGGTT-30; mouse PPARδ, 50-CTCTTCATCGCGGCCATCATTCT-
30 and 50-TCTGCCATCTTCTGCAGCAGCTT-30; mouse MCAD,
50-ACTGACGCCGTTCAGATTTT-30 and 50-GCTTAGTTACACGA
GGGTGATG-30; mouse LCAD, 50-ATGGCAAAATACTGGGCATC-
30 and 50-TCTTGCGATCAGCTCTTTCA-30; mouse CPT2, 50-
CCAGCTGACCAAAGAAGCA-30 and 50-GCAGCCTATCCAGTCA
TCGT-30; mouse FABP3, 50-GACGAGGTGACAGCAGATGA-30

and 50- TGCCATGAGTGAGAGTCAGG-30; mouse HADH, 50-
AAACCTGCGTTCATCAAACC-30 and 50-TCCCTCAAATATGCCT
TTGG-30; mouse FGF21, 50-TACACAGATGACGACCAAGA-30

and 50-GGCTTCAGACTGGTACACAT-30.

Immunoblotting

Gastrocnemius (GC), TA, and SOL muscles from at least three
mice per genotype were dissected and snap-frozen in liquid
nitrogen until use. Tissues were crushed with beads in a ho-
mogenizer system (FastPrep-24, MP Biomedicals) in 20 mM
tris-HCl (pH 8.0), 138 mM NaCl, 5% glycerol, 1% Nonidet
P40, 5 mM EDTA, 1 mM Dithiothreitol with protease and
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phosphatase inhibitors from Roche. Lysates were then centri-
fuged at 20 000 g for 15 min. Protein concentration was cal-
culated using the Biorad’s DC Protein Assay. Equal amounts of
proteins were subjected to western blot analysis. Antibodies
used: 4EBP1 (#9452; Cell Signaling), phospho-4EBP1 (T37/
46; #2855; Cell Signaling), Akt (#9272; Cell Signaling),
phospho-Akt (S473; #9271; Cell Signaling), phospho-Akt1
(S473; #9018; Cell Signaling), phospho-Akt2 (S474; #8599;
Cell Signaling), phospho-Akt (S308; #4056; Cell Signaling),
AS160 (#2670; Cell Signaling), phospho-AS160 (S588; #8730;
Cell Signaling), phospho-ULK1 (S757; #6888; Cell Signaling),
phospho-ULK1 (S317; #6887; Cell Signaling), anti-mTOR
(#2983; Cell Signaling), phospho-mTOR (S2448; #2971; Cell
Signaling), IRS1 (#2382; Cell Signaling), GAPDH (#4978; Cell
Signaling), S6 (#2217; Cell Signaling), phospho-S6 (S240/244;
#2215; Cell Signaling), α-Tubulin (T6074; Sigma), GPh
(sc66913; Santa Cruz Biotechnology), myoglobin (sc8080;
Santa Cruz Biotechnology), Complex IV subunit I (MS404-SP;
Mitosciences), FGF21 (Ab171941; Abcam).

Transmission electron microscopy

Tibialis anterior muscle was dissected and immediately fixed
with 2% glutaraldehyde and postfixed with 2% osmium te-
troxide in 0.3 M sodium cacodylate buffer pH 7.4. TA muscle
was then dehydrated and embedded in Epon epoxy resin.
Ultra-thin sections (70 nm) were cut with ultramicrotome
Leica Ultracut UCT and contrasted with uranyl acetate. Sec-
tions were examined with a JEM-1400 TEM (Jeol) operated
at an accelerating voltage of 80 KV and equipped with an
Orius CCD Camera (Gatan). Digital images were recorded
and processed with the Digital Micrograph Software (Gatan).

Metabolic measurements

Blood glucose levels were determined from tail venous blood
using an automatic glucose monitor (Roche). Serum levels of
insulin were determined with rat/murine ELISA kit (MERCK).
For glucose tolerance tests, 4-week-old mice were fasted
5 h and injected intraperitoneally with 2 mg glucose/g body
weight. For insulin resistance tests, 5 h fasted mice were
injected intraperitoneally with insulin (0.75 mUI/g body wt;
Sigma-Aldrich).

Glycogen quantification

Glycogen was obtained by 28% KOH treatment of the TA or
GC muscle, heating at 100°C for 2 h followed by precipitation
with EtOH at �80°C and centrifugation at 18 000 g at 4°C.
The resulting pellet was resuspended in development buffer,
and muscle glycogen amount was assessed using glycogen

Assay kit II colorimetric (Abcam #ab169558). The absorbance
spectrum was recorded at 450 nm.

Polysome analysis

Sucrose density gradient centrifugation was used to separate
the subpolysomal from the polysomal fractions as described
in Mazelin et al.31 For each profile, a pool of 3 to 5 frozen
GC muscle (100 mg) was homogenized with ultraturax in
50 mM tris-HCl (pH 7.4), 10 mM MgCl2, 250 mM KCl, 7 mM
β-mercaptoethanol, 0.18 mM Cycloheximide. To remove cell
debris, homogenates were spun at 4000 × g for 10 min at
4°C. Pellets were resuspended in buffer containing 1% Triton
X-100, 0.5% sodium deoxycholate and spun at 4000 × g for
10 min at 4°C. Supernatant from both centrifugations were
pooled and spun at 20 000 x g for 20 min at 4°C to obtain cy-
tosolic supernatant. An aliquot of the supernatant was used
to measure protein concentration. Same protein amount
were layered on a 10–50% linear sucrose gradient (50 mM
tris-HCl (pH 7.4), 10 mM MgCl2, 250 mM KCl, 7 mM β-
mercaptoethanol, 0.18 mM Cycloheximide) and centrifuged
in a SW41 rotor at 200 000 g for 2 h at 4°C. One millilitre
fractions were collected using a Piston Gradient Fractionator
coupled to the BioLogic LP chromatography system (Bio-Rad)
with continuous measurement of the absorbance at 254 nm.
Polysome profiles were performed twice per genotype and
per age.

Statistical analysis

Statistical comparison of the three groups was performed
using the nonparametric Wilcoxon sign-rank test with R©,
version 3.4.1. Results are expressed as mean ± SEM or SD,
and P < 0.05 was considered significant.

Results

mTORmKOKI mice exhibit postnatal growth failure
and short lifespan

To address the cell autonomous significance of mTOR cata-
lytic activity in skeletal muscle homeostasis, we have gener-
ated the mTORmKOKI mouse line that is defective in
endogenous muscle mTOR while expressing an mTOR kinase
inactive (mTORki) protein. This mutant line was obtained by
crossing muscle-specific mTOR knockout mice expressing
Cre recombinase in skeletal muscle and carrying mTOR floxed
alleles (hereafter called mTORmKO)9 with transgenic mice ex-
pressing a FLAG-tagged kinase-inactive (Asp2357Glu) human
mTOR protein in skeletal muscle12 and carrying mTOR floxed
alleles (hereafter called mTORmKI mice) (Figure 1A and
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Figure 1 Characterization of mTOR mutant mice. (A) Strategy to generate the mTOR mutant mouse models. (B) Growth curve of mTORmKI (n = 11),
mTORmKO (n = 11), mTORmKOKI (n = 10), and Control (n = 11) male mice (n ≥ 10 per genotype) between week 1 and 6. (C) Morphology of mTORmKI,
Control, mTORmKO, and mTORmKOKI mice at 4 weeks of age. (D) Survival curve of mTOR mutant and control mice (n = 23). (E) Growth curve of
mTORmWT (n = 11), mTORmKO (n = 11), mTORmKOWT (n = 10), and Control (n = 11) male mice between week 4 and 19. (F) Morphology of
mTORmKO, mTORmKOWT, and Control mice at 23 weeks of age. Data indicate mean ± SD. */#P < 0.05; **/##P < 0.01; ***/###P < 0.001, * is mTOR
mutant vs. Control,

#
is mTORmKOKI vs. mTORmKO.
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Supporting Information, Table S1). As expression of both Cre
and mTORki relies on the HSA promoter rely on the HSA pro-
moter, Cre-mediated recombination of the endogenous
mTORflox locus in mTORmKOKI muscles is conjunctively asso-
ciated with expression of mTORki. Consideration should be
given to the activity of the HSA promoter that is restricted
to fused myotubes and differentiated myofibres throughout
embryonic and postnatal development but is lacking in myo-
blasts and SC.16,32 The four genotypes among the offsprings
of these crosses, including mTORflox/flox (control mice),
mTORflox/flox HSA-KI-mTOR (mTORmKI mice), mTORflox/flox

HSA-Cre+ (mTORmKO mice) and mTORflox/flox HSA-Cre+; HSA-
KI-mTOR (mTORmKOKI mice), were obtained in mendelian
ratio and phenotypically indistinguishable at birth. As
expected from previous studies,12 mTORmKI mice did not
display obvious phenotype (Figure 1B and 1C). Indeed, an
mTORki/mTORwt ratio of 2 to 3 in skeletal muscle was shown
to be insufficient to lead to dominant-negative effects.12

Consistently with our previous observations,9 mTORmKO litter-
mates displayed little but significant reduced body weight
starting from 5 weeks of age as well as late onset myopathy
as spinal deformation appeared at ~13 weeks of age and the
animals died around 7 months of age. Surprisingly, the growth
rate of mTORmKOKI mice declined beyond 1 week of age and
the animals showed a rapid progression of leanness, kyphosis,
and weakness (Figure 1B and 1C). More than 50% mTORmKOKI
mice died before 8 weeks of age and none survived more
than 12 weeks (Figure 1D). Near death, mTORmKOKI mice
became prostrated and subsequently succumbed most likely
from the inability to eat contrasting with the primary cause
of death of mTORmKO mice attributed to respiratory failure.9

To exclude a contribution of the FLAG epitope and/or of the
human-derived mTOR protein in the exacerbatedmTORmKOKI
phenotype, we generated the mTORmKOWT (mTOR muscle-
specific KnockOut and mTOR Wild Type) mouse line by
crossing mTORmKO mice with a transgenic mouse line ex-
pressing a FLAG-tagged human mTOR in skeletal muscle12

and carrying mTOR floxed alleles (hereafter called mTORmWT
mice) (Supporting Information, Table S1). The mTORmKOWT
mice obtained from these crosses were indistinguishable from
Control and mTORmWT littermates all throughout their life
(Figure 1E and 1F). Thus, the FLAG-tagged human mTOR
protein rescued the pathophysiology of mTORmKOmice, dem-
onstrating its ability to compensate for muscle mouse mTOR.

Given the small size of the mTORmKOKI mice, we investi-
gated the weight of various organs and tissues before
weaning at 4 weeks of age. At this age, mTORmKO and con-
trol mice had similar body weights while it was reduced by
37% in mTORmKOKI mice (Table 1). Importantly, the weights
of skeletal muscles and major organs examined were remark-
ably lighter in mTORmKOKI mice as compared with Control
and mTORmKO mice, while only the weights of TA and GC
muscles in mTORmKO mice were reduced as compared with
Controls. In contrast, no differences between the groups Ta
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were found in the lengths of the tibias and femurs. Normali-
zation to body weight showed that all skeletal muscles exam-
ined and white adipose tissues were disproportionately
reduced in mTORmKOKI mice, but only TA and GC muscles
were similarly affected in mTORmKO mice (Table 1). There-
fore, mTORmKOKI mice were smaller than mTORmKO litter-
mates due to a general decrease in organ size, skeletal
muscle, and white adipose tissues being more severely
affected. Collectively, these results reveal that muscle mTOR
kinase is crucial for mouse postnatal muscle growth and,
unexpectedly, also for whole-body homeostasis.

Dystrophic features are exacerbated in
mTORmKOKI as compared with mTORmKO mice

We next examined the histology of the slow-twitch oxidative
SOL and fast-twitch glycolytic TA muscles in mTOR mutant
mice at 6 weeks of age. At this age, mTORmKO and
mTORmKOKI mice were respectively 93% and 59% the weight
of Control littermates (Figure 2A). The weights of SOL and TA
muscles from mTORmKOKI mice were respectively 42% and
50% those of Controls, while in mTORmKO mice, they were
respectively not significantly different to and 80% those of
Controls. Muscle fibre size was next determined in SOL and
TA muscles from Controls and mTOR mutant mice (Figure 2B).
Mean fibre size was similar in Control and mTORmKO SOL
muscles (1396 ± 66 μm2 vs. 1357 ± 29 μm2) consistently with
our previous findings,9 whereas it was severely reduced in
mTORmKOKI SOL fibres (808 ± 24 μm2). In mTORmKOKI TA
muscle, mean fibre size was significantly smaller
(1296 ± 13 μm2) than in mTORmKO TA (1625 ± 34 μm2)
and Control TA muscle (2066 ± 35 μm2). Accordingly, both
mTORmKOKI TA and SOL muscles displayed a downshift of
myofibre size distribution relative to mTORmKO muscles
(Supporting Information, Figure S1A and S1B). Noteworthy,
the total number of muscle fibres did not significantly
changed between the three genotypes (data not shown), in-
dicating that mTORmKOKI muscles were lighter than
mTORmKO muscles due to reduced fibre size. Early postnatal
muscle fibre hypertrophy in mice is achieved by accretion of
myonuclei provided by SC, whose number is established
3 weeks after birth.13 We therefore investigated the number
of peripheral myonuclei in mTORmKOKI muscle fibres. How-
ever, TA muscle fibres from all three genotypes contained
comparable amount of peripheral myonuclei (Supporting In-
formation, Figure S2A) indicating that the mTORmKOKI phe-
notype is not due to a deficit in postnatal SC nuclei
accretion. At 6 weeks of age, both mTOR mutant lines
displayed dystrophic alterations prominently in SOL muscle
(Figure 2C and Supporting Information, Figure S2B). However,
they were exacerbated in mTORmKOKI as compared with
mTORmKO mice and dominated by small fibres with recur-
rent nuclear centralization indicative of regenerating fibres.

In agreement with these observations, the percentage of fi-
bres with centrally located nuclei was much higher in
mTORmKOKI than mTORmKO muscles (Figure 2D). Further
evidence of higher regeneration rates in mTORmKOKI mice
was demonstrated at the molecular level by the greater in-
duction of perinatal muscle myosin heavy chain MyH8,
IGF2, and myogenin in the slow-twitch SOL muscle (Figure 2E)
as well as in the fast-twitch TA (Supporting Information,
Figure S2C) and extensor digitorum longus (Supporting Infor-
mation, Figure S2D) muscles. These observations confirm
previous findings showing that mTOR kinase activity is dis-
pensable for nascent myofibre formation during regenera-
tion.12 In addition, hematoxylin eosin saffron staining
showed a significant increase in inter-fibre spacing and fibro-
sis in mTORmKOKI SOL muscle (Figure 2C). Gomori trichrome
and Sudan black staining revealed excessive accumulation of
mitochondria (red dots) and lipid droplets (blue dots) in
mTORmKOKI as compared with mTORmKO SOL muscle fibres,
indicative of a mitochondrial disorder. Finally, SOL muscle
from mTORmKOKI but not from mTORmKO mice displayed
adipose infiltration (Supporting Information, Figure S2E).
Therefore, muscle pathological changes were early and more
severe in mTORmKOKI as compared with mTORmKO mice.
These data further reveal that inhibition of muscle mTOR cat-
alytic activity is highly detrimental to muscle integrity.

Muscle mTOR kinase activity is essential for the
regulation of dystrophin as well as for
PPARs/PGC-1α-mediated mitochondrial oxidative
capacity and lipid utilization in vivo

Down-regulation of dystrophin and peroxisome proliferator-
activated receptor-γ coactivator α (PGC-1α) transcripts in
muscles from mTORmKO mice has been shown to contribute
to the pathogenesis of their myopathy.9 While initial studies
support mTOR catalytic-independent and -dependent mecha-
nisms as means by which mTOR respectively controls dystro-
phin and PGC-1α transcription,9,23 mTOR activation in
TSCmKO mice was also shown to decrease muscle PGC-1α
transcripts.25 The mTORki mutation in mTORmKOKI mice
allowed us to determine whether muscle mTOR catalytic ac-
tivity was directly involved in the regulation of the expression
of these genes. Both dystrophin and PGC-1α mRNA tran-
scripts were strongly down-regulated in SOL muscle from
mTORmKOKI mice at 4 and 6 weeks of age (Figure 3A and
3B). Similarly, expression of myoglobin, a PGC-1α target gene,
as well as that of the mitochondrial-encoded cytochrome c
oxidase subunit 1 (complex IV) was markedly decreased at
both ages (Figure 3C and Supporting Information, Table S2).
These results contrasted with the mild changes observed in
SOL muscle from 4-week-old (4-w) mTORmKO mice. Con-
versely, the deficit in expression of these markers was clear
in SOL muscle from 6-w mTORmKO mice (Figure 3A–C and
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Figure 2 mTORmKOKI mice exhibit exacerbated dystrophic features. (A) Body weight as well as SOL and TA mass from 6-w mTORmKO (n = 7) and
mTORmKOKI (n = 8) mice relative to Controls (n = 7). (B) SOL and TA muscle mean fibre cross-sectional area (CSA) in 6-w Control, mTORmKO, and
mTORmKOKI male mice. Fibre CSA was determined on TRITC-labelled WGA-stained sections as described in the methods section. This analysis includes
a minimum of 400 myofibres per SOL muscle and 1200 myofibres per TA muscle from three mice per genotype. (C) Representative Hematoxylin &
Eosin & Saffron (upper panel), Gomori trichrome (middle panel), and Sudan black (lower panel) staining of soleus muscle sections from 6-w Control,
mTORmKO, and mTORmKOKI mice. Black thick arrows indicate regenerated muscle fibres with centrally placed nuclei. Thin arrow indicates fibrosis.
Images are representative of five sections from three mice per genotype. Bar, 50 μm. (D) Percentage of centrally nucleated fibres (CNF) in SOL and
TA muscles from 6-w Control, mTORmKO, and mTORmKOKI mice. A minimum of 500 myofibres per SOL muscle and 2800 per TA muscle from three
mice per genotype was analysed. (E) Relative mRNA levels of myogenin, IGFII, and MyH8 in SOL muscles from 6-w mTOR mutant mice. Controls (n = 6);
mTORmKO (n = 6); mTORmKOKI (n = 12). Data indicate mean ± SEM. */#P < 0.05; **/##P < 0.01; ***/###P < 0.001, * is mTOR mutant vs. Control, # is
mTORmKOKI vs. mTORmKO.
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Figure 3 Muscle mTOR kinase activity is required for muscle dystrophin expression and mitochondria function. (A, B) Relative mRNA levels of dystro-
phin (A) and PGC-1α (B) in SOL muscles from 4-w Control (n = 7–13), mTORmKOKI (n = 8–12), and mTORmKO (n = 7–11) mice, and in SOL muscles from
6-w Control (n = 6), mTORmKOKI (n = 6–12), and mTORmKO (n = 6) mice.Data indicate mean ± SEM. */#P < 0.05; **/##P < 0.01; ***/###P < 0.001, * is
mTOR mutant vs. Control,

#
is mTORmKOKI vs. mTORmKO. (C) Western blot analysis showing myoglobin and complex IV protein levels in SOL muscle

from 4-w and 6-w Control, mTORmKOKI, and mTORmKO mice (n = 3 mice per age and genotype). α-Tubulin and GAPDH were used as loading control in
muscles from 4-w and 6-w mice, respectively. (D) Succinate dehydrogenase (upper panel) and cytochrome oxidase (lower panel) histochemical staining
demonstrating defects in the mitochondrial respiratory chain in muscles from 4-w mTORmKOKI mice, specifically. Images are representative of five
sections from three mice per genotype. Bar, 300 μm. (E) Relative mRNA levels of PPARα (peroxisome proliferator-activated receptor-α); PPARδ (per-
oxisome proliferator-activated receptor-δ); FABP3 (Fatty-acid-binding protein 3); CPT2 (Carnitine palmitoyltransferase II); MCAD (medium-chain
acyl-CoA dehydrogenase); LCAD (long-chain acyl-CoA dehydrogenase); HADH (Hydroxyacyl-Coenzyme A dehydrogenase) in SOL muscles from 6-w con-
trol (n = 5), mTORmKO (n = 5), and mTORmKOKI (n = 10) mice. Data indicate mean ± SEM. */#P < 0.05; **/##P < 0.01; ***/###P < 0.001, * is mTOR
mutant vs. Control, # is mTORmKOKI vs. mTORmKO.
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Supporting Information, Table S2). In accordance with these
results, the intensities of succinate dehydrogenase and cyto-
chrome oxidase staining, indicative of mitochondrial activity,
were similar between muscles from 4-w mTORmKO mice
and Controls, while strongly reduced in age-matched
mTORmKOKI mice (Figure 3D). Defects in muscle mitochon-
drial energetic activity in mTORmKO mice were consistently
observed at 6 weeks of age (Supporting Information, Figure
S3). In skeletal muscle, PGC-1α co-activates the peroxisome
proliferator-activated receptors (PPARs), a family of transcrip-
tion factors that play a key role in mediating mitochondrial
biogenesis, oxidative metabolism, and lipid usage.33,34 Ex-
pression of both PPAR-α and -δ was previously shown to be
down-regulated at the mRNA level in muscle from mTORmKO
and RAmKO mice.27 To determine whether PPARs expression
required mTOR catalytic activity, we examined PPAR-α and -δ
transcript levels and we found that they were more down-
regulated in mTORmKOKI than mTORmKO muscles (Figure 3E
and Supporting Information, Figure S4). Consistently, the ex-
pression of PPAR target genes involved in fatty acid uptake
and oxidation, such as FABP3, CPT2, MCAD, LCAD, and HADH,
was also reduced (Figure 3E and Supporting Information,
Figure S4), indicating reduced lipid utilization in mTORmKOKI
as compared with mTORmKO skeletal muscle.

Recent studies demonstrated that mitochondrial dysfunc-
tion or altered lipid usage leads to induction of the myokine
FGF21 (fibroblast growth factor 21) in skeletal muscle of mice
and humans as a stress-response to enhance carbohydrate
and lipids metabolism.35–38 In mice, muscle-derived FGF21
has been linked to leanness29,36,38 and smaller body size,
possibly through suppression of the IGFI-GH axis.39,40 The
mitochondrial alterations as well as the phenotype of
mTORmKOKI mice suggested a possible involvement of
FGF21. However, FGF21 was not induced in skeletal muscle
of mTORmKOKI mice (Supporting Information, Figure S5,
see also discussion).

Collectively, these data demonstrate that mTOR catalytic
activity is essential for the regulation of dystrophin as well
as for PPARs/PGC-1α-mediated regulation of mitochondrial
oxidative metabolism and lipid usage in skeletal muscle. In
addition, mTORmKOKI mice show clear postnatal anticipation
in muscle alterations compared with mTORmKO mice.

The severe muscle pathological changes in
mTORmKOKI mice are due to robust suppression of
postnatal mTORC1 signalling

To investigate the mechanisms underlying the exacerbated
phenotype of mTORmKOKI, as compared with mTORmKO
mice, thorough biochemical analysis of mTOR signalling was
performed. mTOR levels in mTORmKO neonates were similar
to those in Controls at postnatal day 2 (P2) and progressively
decreased at later stage (Figure 4A and 4B). As expected from

HSA promoter-driven expression of the mTORki protein, total
mTOR protein level was up-regulated in postnatal
mTORmKOKI muscles. The observation that endogenous mu-
rine mTOR mRNA was down-regulated to the same extent in
mTORmKOKI and mTORmKO muscles from 2-w mice indi-
cated that mTORmKOKI muscles predominantly expressed
the mTORki protein (Supporting Information, Figure S6). Im-
portantly, muscle mTORC1 signalling remained unaltered in
both mutant mouse lines during the first postnatal week
(Figure 4A and Supporting Information, Table S2). Normal
early postnatal levels of muscle mTOR and mTORC1 signalling
in mTOR mutant mice can be attributed to the time needed
to recombine the mTOR locus and degrade endogenous
mTOR provided by SC nuclei recruited for muscle postnatal
growth. Indeed, SC nuclei account for a large proportion of
myonuclei within the growing myofibres at this stage.13,14

The decrease in the phosphorylation of the mTORC1 targets,
S6 ribosomal protein on S240/244, 4E-BP1 on T37/46, and
ULK1 on S757 in mutant muscles occurred after the first post-
natal week. However, this decrease was remarkably steeper
in mTORmKOKI than mTORmKO muscles indicating that sup-
pression of postnatal mTORC1 signalling was robust in
mTORmKOKI mice while more progressive in mTORmKO mice
(Figure 4B and Supporting Information, Table S2). Moreover,
phosphorylation of downstream mTORC1 targets, including
S6 and 4E-BP1, was still detectable in muscles from 6-w
mTORmKO mice and appeared higher in GC than TA muscles.
At this age, this feature can most likely be attributed to
muscle regeneration that is prominent in mutant oxidative
muscles such as GC, as compared with TA. Indeed, muscle
fibre regeneration also involves accretion of SC nuclei and
therefore of not yet recombined mTOR locus to muscle
fibres. Conversely, mTORC1 signalling was similarly and
strongly suppressed in both GC and TA muscles from 6-w
mTORmKOKI mice. Altogether, these data indicate that the
mTORki protein exerts a prominent dominant-negative effect
on residual endogenous mTOR therefore inducing much
more rapid and efficient suppression of mTOR activity in mus-
cle fibres (see discussion).

Finally, the hypophosphorylated 4E-BP1 α isoform was
strongly accumulated in muscles from 6-w mTORmKOKI as
compared with mTORmKO mice (Figure 4B and Supporting
Information, Table S2). Dephosphorylated 4E-BPs have been
shown to mediate the largest translation defects caused
by mTOR catalytic inhibition.41 We therefore examined
the consequences of the differential accumulation of
hypophosphorylated 4E-BPs between mTORmKO and
mTORmKOKI GC muscles on translation efficiency in poly-
some profiling analysis (Figure 4C). In muscle from 4-w and
6-w mTORmKOKI mice, ribosomes were shifted out of poly-
somes and accumulated as 80s monosomes. Conversely, mus-
cles from 4-w mTORmKO mice still displayed significant
amount of active polysomes. The proportion of polysome
was decreased at 6 weeks of age, although without reaching
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the low levels observed in mTORmKOKI muscles. Thus, trans-
lation capacities were partially sustained in muscles from
mTORmKO mice during juvenile development, while sup-
pressed in mTORmKOKI mice due to enhanced 4E-BPs
activity.

Another striking difference between mTORmKOKI and
mTORmKO mice was obtained by western blot analysis,
which revealed that dephosphorylation of ULK1 on the
mTORC1 site S757 was associated with a strong phosphoryla-
tion of the AMPK site S317 as soon as 4 weeks of age in

Figure 4 Biochemical characterization of mTOR mutant muscles. (A, B) Hindlimb, TA, and GC muscle extracts from the specified mice at various ages
were immunoblotted with the indicated antibodies to examine mTOR signalling (n = 3 mice per age and genotype). α-Tubulin was used as loading con-
trol in muscles from P2, 1-w, 2-w, and 4-w mice, and GAPDH was used as loading control in muscles from 6-w mice. (C) Representative polysome pro-
files of GC muscles from 4-w and 6-w Control, mTORmKOKI, and mTORmKO mice fractionated by sucrose density ultracentrifugation as described in
the methods section. The concentration of ribosomes was continuously monitored at 254 nm from top to bottom. The monosome peak is marked as
80S. (D) Analysis of the phosphorylation of mTOR at S2448 and AS160 at S588 in mTOR mutant muscles (n = 3 mice per age and genotype). α-Tubulin
was used as loading control.
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mTORmKOKI muscle. In contrast, ULK1 S317 remained
unphosphorylated in muscles from juvenile mTORmKO mice
(Figure 4B and Supporting Information, Table S2). Because
both the activating phosphorylation of the kinase ULK1 on
S317 and active 4E-BP1 in skeletal muscle have been tightly
linked to autophagy activation,20,42 our observations sug-
gested severely altered autophagy flux in muscles from juve-
nile mTORmKOKI mice. Altogether, these data indicate that
the more severe myopathy of mTORmKOKI as compared with
mTORmKO mice is due to more robust suppression of muscle
mTORC1 signalling associated with stronger alterations in
translation and autophagy during postnatal development.

Finally, we investigated the phosphorylation of mTOR on
S2448, a widely used biomarker in the skeletal muscle biology
field to assess mTOR activation.43 PKB/Akt has been initially
suggested to directly phosphorylate mTOR on this site,44,45

while later studies demonstrated that mTOR S2448 is phos-
phorylated by S6K in a negative feedback loop.46,47 Interest-
ingly, phosphorylation of mTOR at S2448 was not abolished
but rather increased in muscle from mTORmKOKI as com-
pared with control mice at both 4 and 6 weeks of age, despite
inhibition of mTORC1 signalling (Figure 4D and Supporting In-
formation, Table S2). These results demonstrate that inactive
muscle mTOR can be phosphorylated at S2448 in a S6K-
independent manner, most likely via a mechanism involving
PKB/Akt (see below).

mTORmKOKI mice display strong postnatal muscle
feedback-mediated PKBα/Akt1 and PKBβ/Akt2
activation associated with damaging glycogen
accumulation

mTORmKO muscles were previously shown to display in-
creased PKB/Akt activity resulting from (i) alleviation of the
mTORC1/S6K-mediated negative feedback loop on the insulin
signalling pathway via insulin receptor substrate 1 (IRS1) to
PI3K and consequent PDK1-mediated phosphorylation of
PKB/Akt T308,28 and (ii) activation of an mTORC2-
independent kinase that phosphorylates PKB/Akt on S473.9

As expected from more robust mTORC1 signalling suppres-
sion, IRS-1 showed stronger downshifted electrophoretic mo-
bility and accumulation in mTORmKOKI muscle (Figure 4B
and Supporting Information, Table S2), both being respec-
tively hallmarks of reduced IRS-1 S/T phosphorylation and
of decreased proteosomal degradation.48,49 Loss of mTORC2
was previously shown to cause accumulation of inactive
IRS1 and impaired PKB/Akt activation;50 however, phosphory-
lation of PKB/Akt on both T308 and S473 residues was
greater in mTORmKOKI muscles (Figure 4B and Supporting In-
formation, Table S2) indicating enhanced IRS1-PKB/Akt sig-
nalling. Interestingly, up-regulation of muscle PKB/Akt S473
phosphorylation started from 2 weeks of age at the latest in
mTORmKOKI mice, but after 4 weeks of age in mTORmKO

mice. The ability of PKB/Akt to be phosphorylated on S473
in mTORmKOKI muscle indicates that mTORki does not exert
dominant effects on the mTORC2-independent kinase for
PKB/Akt S473. This observation also demonstrates that acti-
vation of the mTORC2-independent kinase in mTOR mutant
muscles is a mechanism compensatory to the loss of muscle
mTOR kinase activity. Of note, greater phosphorylation of
both PKBα/Akt1 S473 and PKBβ/Akt2 S474 hydrophobic mo-
tifs was found in mTOR mutant muscles (Figure 4B) implying
activation of both isoform-specific functions.51,52 Previous
studies established a major role for IRS-1/Akt2 signalling in
insulin-stimulated glucose metabolism in skeletal muscle.51,53

The insulin-regulated Akt substrate Rab GTPase-activating
protein TBC1D4/AS160 mediates GLUT4 translocation to the
membrane and glucose uptake in muscle cells upon
phosphorylation on S588.54–57 Consistently with elevated
PKB/Akt activity in mTORmKOKI muscle, phosphorylation of
S588 on AS160 was greater as compared with mTORmKO
and control muscles (Figure 4D and Supporting Information,
Table S2), confirming enhanced insulin sensitivity and glucose
absorption.

Moreover, analysis of muscle glycogen stores in juvenile
mTORmKOKI mice revealed severe alterations in glycogen
metabolism, with a 22-fold to 24-fold increase in glycogen
content compared with Controls, contrasting with the milder
six-fold to eight-fold increase observed in mTORmKO mice
(Figure 5A). Electron microscopy of mTORmKOKI muscle
showed massive accumulation of densely clustered glycogen
granules co-localized with disorganized myofibrils, a feature
that was not observed in muscle from age-matched
mTORmKO mice (Figure 5B). Thus, it is likely that hyper
accumulation of glycogen in mTORmKOKI muscles damages
myofibril organization and contributes to their higher muscle
regeneration rates, as compared with mTORmKO muscles
(Figure 2 and Supporting Information, Figure S3). The
dramatic accumulation of glycogen in mTORmKOKI muscles
correlated with very low protein level of the glycogenolysis
rate-limiting enzyme, glycogen phosphorylase (GPh), as
compared with that in controls and mTORmKO muscles
(Figure 5C and Supporting Information, Table S2), thereby
demonstrating that mTOR kinase activity is critically required
for GPh expression.

We next investigated how the severity of the mTORmKOKI
phenotype combined with enhanced muscle insulin signalling
affected whole-body glucose homeostasis at 4 weeks of age.
As shown in Figure 5D, fed blood glucose levels did not signif-
icantly differ between each of mTOR mutant groups and Con-
trols, although they were slightly lower in mTORmKOKI as
compared with mTORmKO mice. Serum insulin levels were
also similar among the three genotypes (Figure 5E). Glucose
tolerance and insulin sensitivity were next analysed after
5 h fasting. Both mTOR mutant mouse lines showed little
but significant glucose intolerance as compared with Con-
trols, and this was more pronounced in mTORmKOKI mice
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(Figure 5F). Neither mTOR mutant mouse line significantly
differed from controls for insulin sensitivity, although
mTORmKOKI mice were less sensitive to insulin as compared
with mTORmKO mice (Figure 5G).

Discussion

Using loss-of-function mouse models, we and others previ-
ously demonstrated a critical role of mTORC1 in muscle

Figure 5 mTORmKOKI mice display massive glycogen accumulation but mild alterations of whole-body glucose homeostasis. (A) Quantification of mus-
cle glycogen content in TA and GC muscles from the indicated mice at 6 weeks of age (n = 3 mice per genotype). Results are expressed in μg of gly-
cogen per mg of tissue. (B) Representative electron micrographs of longitudinal section of TA muscles from the indicated mice at 6 weeks of age (n = 3
per genotype). Electron micrographs were taken at higher magnifications in mTORmKOKI muscles to visualize the accumulation of glycogen granules.
(C) Western blot analysis showing GPh protein levels in TA and GC muscles from 6-w Control and mTOR mutant mice (n = 3 mice per genotype). (D) Fed
blood glucose levels (n = 12–17 mice per genotype) and (E) fed serum insulin levels (n = 8–10 mice per genotype) in Control and mTOR mutant mice
from 4 weeks of age. (F) Glucose tolerance (n = 9–11 mice per genotype) and (G) insulin tolerance (n = 6–12 mice per genotype) tests in 4-w mTOR
mutant mice and Controls after 5 h fasting. (F) and (G) Insets show calculated glucose areas under the curve (AUC 0–120 min). Data indicate mean ± SEM.
*/#

P < 0.05;
**/##

P < 0.01;
***/###

P < 0.001,
*
is Control vs. mTOR mutant,

#
is mTORmKOKI vs. mTORmKO.
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physiology.8,9 However, in these studies, the contribution of
non-recombined SC during early postnatal muscle growth
and regeneration precluded complete elimination of mTORC1
activity in muscle fibres. Here, we examined the conse-
quences of sustained inhibition of mTOR catalytic activity in
mouse skeletal muscle. To this aim, we have generated and
characterized the mTORmKOKI mouse model that co-
expresses an mTOR kinase inactive (mTORki) protein and
the Cre recombinase in skeletal muscle fibres carrying an
mTOR floxed allele. We find that mTORmKOKI mice develop
a much more rapidly progressive and severe myopathy than
mTORmKO mice, preventing normal whole-body growth
and causing juvenile death. We provide evidence that the se-
verity of the mTORmKOKI as compared with the mild
mTORmKO phenotype is due to more robust suppression of
muscle mTORC1 signalling.

mTORmKO mice display long lasting postnatal
muscle mTORC1 signalling

Our comparative biochemical analysis of muscle from
mTORmKOKI and mTORmKO mice revealed long lasting
postnatal muscle mTORC1 signalling in mTORmKO mice,
allowing persistent oxidative and translational capacities in
skeletal muscle during early juvenile development. An ex-
planation for this feature is first provided by the normal
muscle mTOR protein content and mTOR signalling in mTOR
mutant mice early postnatally. This can be attributed to the
time needed to recombine SC nuclei that account for a
large proportion of the myonuclei within the growing
myofibres at early postnatal stage.13,14 In accordance with
this, HSA-Cre-mediated targeted gene recombination was
shown to display a maximal efficiency around postnatal
day 15 (P15).32 Second, mTOR protein levels need to be in-
tensely down-regulated to negatively affect downstream ef-
fectors because very low mTOR or raptor levels were shown
to maintain mTORC1 signalling. For example, mTOR has to
be reduced to less than 25% its normal level in cells to ob-
serve any effect on S6K1 phosphorylation.58,59 In addition,
mTOR heterozygous mice display unaltered S6 and 4EBP
phosphorylation levels,60 while mice with a constitutive
75% reduction of mTOR protein levels exhibit a decrease,
but not a suppression, in mTORC1 signalling without
changes in overall protein translation.61 In line with this,
phosphorylated substrates of mTORC1 could be detected
in muscle from 6-w mTORmKO mice despite the low mTOR
content. Moreover, down-regulation of mTORC1 signalling in
mTOR-depleted muscle fibres is further dependent on
mTOR targets turnover as well as the effect of phospha-
tases. Finally, loss of mTORC1-mediated functions in
mTORmKO muscles must await for the dephosphorylation
events to be translated at other molecular and cellular
levels (e.g. gene transcription and translation, and ribosome

content). As stated earlier, muscles from 6-w mTORmKO
mice show residual phosphorylation of mTORC1 targets,
which appeared higher in the oxidative GC muscle as com-
pared with the glycolytic TA muscle. At this age, this can
be explained by the higher levels of regeneration of oxida-
tive mTOR mutant muscle, a process which, similar to the
early postnatal fibre growth phase, involves the accretion
of non-recombined SC nuclei.15 Consequently, we hypothe-
size that mTOR activity provided by SC to mTORmKO muscle
during early postnatal muscle growth and regeneration is
sufficient to support initial muscle growth and function.
The mass preservation of the oxidative slow-twitch SOL in
mTORmKO mice at least until 6 weeks of age is particularly
remarkable. This protection might possibly be conferred by
greater SC nuclei contribution during early postnatal growth
and regeneration. Indeed, SC content is known to be much
higher in slow-twitch than fast-twitch muscles.62

The kinase inactive mTOR mutant protein induces
robust suppression of postnatal muscle mTORC1
signalling in mTORmKO mice

Efficient suppression of mTOR activity in mTORmKOKI mus-
cle implies that the mTORki protein exerts dominant-
negative effects on residual mTOR present in mTORmKO
muscle fibres. Several lines of evidence indicate that the
ability of the mutant mTORki to exert dominant negative
activity depends on the relative abundance of mutant vs.
wildtype mTOR protein. For example, an mTORki/mTORwt
ratio of 2 to 3 in skeletal muscle from mTORmKI transgenic
mice was shown to be insufficient to affect the phosphory-
lation of mTORC1 substrates and did not lead to any obvi-
ous phenotype.12 Likewise, mTOR+/mTORki heterozygous
mice display wildtype mTOR activity in tissues.63 While an
mTORki/mTORwt ratio of 4 to 6 in cardiac muscle from
transgenic mice was sufficient to alter mTORC1 signalling,64

it did not cause the severe phenotype of cardiac muscle-
specific mTOR knockout mice.31 Similarly, transgenic mice
exhibiting an mTORki/mTORwt ratio of 2 to 3 in β-cells
produced a mild down-regulation of mTOR signalling,65

although without affecting the mass of β-cell as observed
in β-cell specific Raptor knockout mice.66 Conversely, our
strategy combining mTORki expression during the course
of postnatal mTOR inactivation in skeletal muscle from
mTORmKOKI mice allowed to achieve a robust suppression
of mTORC1 activity associated with earlier and stronger
alterations in protein synthesis and metabolism as com-
pared with mTORmKO muscles. In addition, the strong
phosphorylation of ULK1 on S317 and accumulation of
unphosphorylated 4EBP are specific to muscles from
juvenile mTORmKOKI mice and indicate impaired autoph-
agy.20,42 This feature may exacerbate the myopathy of
mTORmKOKI mice.67
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mTOR catalytic activity is required for oxidative
metabolism and dystrophin expression

Kinase-dependent and kinase-independent functions of
mTOR have been shown to control skeletal muscle develop-
ment.30 The presence of fibres with nuclear centralization in
mTORmKOKI mice supports previous findings indicating that
muscle regeneration in vivo can be initiated independently
of mTOR kinase activity.12 Several reports show that mTORC1
activity regulates PGC-1α and oxidative metabolism.22–24 The
down-regulation of oxidative metabolism as well as expres-
sion of PPARs and PGC-1α in mTORmKOKI muscles demon-
strates that mTOR catalytic activity is required for these
regulations in vivo. Conversely, dystrophin expression was
previously shown to be independent of mTOR kinase activ-
ity.9 However, mTORmKOKI muscles showed a marked reduc-
tion in dystrophin expression. This discrepancy might result
from differences between acute overexpression of the
mTORki mutant by electroporation9 and sustained HSA-
driven mTORki mutant expression in mTORmKOKI mice (this
study). Moreover, mTORmKOKI muscles are much more atro-
phic and regenerating as compared with the previously
electroporated mTORmKO muscles. Fiorillo et al. recently
published pathological contexts in which muscle atrophy
and regeneration are associated with inflammatory pathways
inducing down-regulation of dystrophin via dystrophin-
targeting miRNA.68 Such mechanisms may therefore mask
dystrophin activation by the mTORki mutant protein.

Juvenile mTORmKOKI mice show features of
glycogenosis and mild alterations of whole-body
glucose homeostasis

PKB/Akt activation in muscles from juvenile mTORmKOKI mice
is associated with a remarkable down-regulation of GPh, the
enzyme catalysing glycogen breakdown, and with overwhelm-
ing accumulation of muscle glycogen. Electronic microscopy
shows complete disorganization of the contractile apparatus
at the glycogen accumulation sites of mTORmKOKI fibres spe-
cifically. Such glycogen accumulation was not reported in mus-
cles from distinct transgenic mouse models expressing
constitutively active PKBα/Akt1.69–71 Feedback-mediated acti-
vation of both Akt1 and Akt2 specific-functions51,52 is thus
likely required to develop the glycogen phenotype of mTOR
mutant muscles. Altogether, our data indicate that early
postnatal inhibition of muscle mTOR activity causes glycogen
storage disease type V (also called McArdle disease)-like phe-
notype. Indeed, the alterations related to glycogen accumula-
tion in juvenile mTORmKOKI mice resemble features of the
murine model of McArdle disease that is deficient in GPh.72

In this model, glycogen accumulation is also associated with
muscle regeneration.73 Moreover, muscle from these mice
shows AMPK activation74 suggesting that AMPK-dependent

phosphorylation of ULK1 S317 in mTORmKOKI muscles might
be a consequence of altered glycogenmetabolism. Despite en-
hanced muscle insulin signalling, as indicated by activation of
Akt/PKB and AS160, young mTORmKOKI mice display mild de-
creased glucose and insulin tolerance. Because skeletal muscle
and adipose tissue accounts for, respectively, about 70% and
10% of insulin-mediated glucose uptake,75 alteredwhole-body
glucose homeostasis in mTORmKOKI mice most likely results
from their pronounced reduction in muscle and fat mass.
These alterations might reflect the onset of myopathy-
associated metabolic complications that were observed in
aged RAmKO mice.76

Catalytic activity of muscle mTOR is required for
whole-body postnatal growth

The small size of organs inmTORmKOKImice demonstrates the
importance of mTOR catalytic activity within skeletal muscle
for whole-body postnatal growth. This period of life is highly
demanding in energy13 and skeletal muscle is known to influ-
ence energy and protein metabolism throughout the body.77

mTORmKOKI muscles are likely unable to provide peripheral
organs with sufficient energy and substrates to allow their
growth,78–80 while simultaneously acting as a glucose sink at
the expense of other tissues as discussed in Albert and Hall.2

In addition, we cannot rule out the possible influence of
muscle-secreted myokines contributing to the lean and small
mTORmKOKI phenotype. In this sense, mTORmKO mice have
been shown to induce the myokine Serpina3.81 Nevertheless,
the FGF21 myokine is not involved despite mTORmKOKI mice
exhibit features known to up-regulate muscle-derived FGF21,
including mitochondria dysfunction,35,36,39,40 impaired lipid
usage,37,38 and activated PKB/Akt.82 It is tempting to speculate
that mTORmKOKI muscles are mechanistically unable to in-
duce FGF21. In support of this notion, FGF21 has been shown
to be under mTORC1 control because its transcriptional induc-
tion is rapamycin-sensitive29,83–85 and is directly mediated by
transcription factors themselves regulated by mTOR, such as
PPARs, ATF4, and ChREBP.86–89

Collectively, our results reveal a heretofore unappreciated
role of muscle mTOR catalytic activity in the regulation of
whole-body homeostasis. Our study provides new evidence
for the dramatic consequences that can be induced by
dysregulation of muscle mTOR signalling and suggests that
skeletal muscle targeting with mTOR catalytic inhibitors may
have detrimental effects.
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Figure S1. Histogram showing distributions of myofiber CSA in
SOL (A) and TA (B) muscles from 6-w control and mTOR mu-
tant mice. This analysis includes a minimum of 400 myofibers
per SOL muscle and 1200 myofibers per TA muscle from three
mice per genotype. Data indicate mean ± SEM.
Figure S2. Examination of the muscle dystrophy from mTOR
mutant mice. (A) Number of peripheral myonuclei per fiber
section in TA muscle from 3-w mice. Cross sections were
immunostained with WGA (green) and Dapi (red). Fiber
myonuclei are defined by having the mass center of the
Dapi stain inside the WGA ring. Examples of peripheral
myonuclei are indicated by an arrow and external nuclei
by an arrowhead. The number of myonuclei per transverse
section is indicated below each panel. Data indicate
mean ± SEM for 3 mice per group, two cross sections each
and 200 fibers per section. Bar, 25 μm. (B) Representative
HE staining of TA muscle sections from 6-w Control,
mTORmKO and mTORmKOKI mice. Black arrows indicate re-
generated muscle fibers with centrally placed nuclei. Bar,
50 μm. (C) Relative mRNA levels of myogenin, IGFII and

MyH8 in TA muscles from 6-w mTOR mutant mice. Controls
(n = 6); mTORmKO (n = 6); mTORmKOKI (n = 6). (D) Rela-
tive mRNA levels of myogenin, IGFII and MyH8 in EDL mus-
cles from 6-w mTOR mutant mice. Controls (n = 6);
mTORmKO (n = 7); mTORmKOKI (n = 5). (E) Hematoxylin
& Eosin & Saffron (left panel) and Sudan black (right panel)
stainings of soleus muscle sections from 6-w mTORmKOKI
mice showing adipose infiltration (Black arrows). Data indi-
cate mean ± SEM. */# P < 0.05; **/## P < 0.01; ***/###

P < 0.001, * is mTOR mutant vs. Control, # is mTORmKOKI
vs. mTORmKO.
Figure S3. Visualization of mitochondrial respiratory func-
tion in muscles from 6-w control and mTOR mutant mice.
(A) Succinate dehydrogenase (SDH) staining; Bar, 200 μm.
(B) Cytochrome oxidase (COX) staining; Bar, 300 μm.
Figure S4. Decreased expression of genes involved in fatty
acid transport and oxidation in skeletal muscle from 6-w
control and mTOR mutant mice. Relative mRNA levels of
PPARα (peroxisome proliferator-activated receptor-α);
PPARδ (peroxisome proliferator-activated receptor-δ);
FABP3 (Fatty-acid-binding protein 3); CPT2 (Carnitine
palmitoyltransferase II); MCAD (medium-chain acyl-CoA de-
hydrogenase); LCAD (long-chain acyl-CoA dehydrogenase);
HADH (Hydroxyacyl-Coenzyme A dehydrogenase) in TA mus-
cles from control (n = 5), mTORmKO (n = 5) and
mTORmKOKI (n = 10) mice. Data indicate mean ± SEM. */
# P < 0.05; **/## P < 0.01; ***/### P < 0.001, * is mTOR
mutant vs. Control, # is mTORmKOKI vs. mTORmKO.
Figure S5. Muscle FGF21 is not induced in mTORmKOKI
mice. (A) FGF21 protein levels in GC muscle from 4-w con-
trol and mTOR mutant mice (n = 3 mice per genotype); (B)
Relative mRNA levels of FGF21 in SOL muscle from 6-w
control (n = 5), mTORmKO (n = 7) and mTORmKOKI
(n = 5) mice. Data indicate mean ± SEM.
Figure S6. Efficient recombination of the mTOR floxed gene
in skeletal muscle from mTOR mutant mice. Relative mouse
mTOR mRNA levels in muscle from control (n = 8),
mTORmKO (n = 6) and mTORmKOKI (n = 6) mice at two
weeks of age. Data indicate mean ± SEM. *** P < 0.001,
* is mTOR mutant vs. Control.
Table S1. Nomenclature and specificities of muscle mTOR
mouse models. This table lists all the mTOR mouse models
used in this study by name and genotype, identifying
knockout of the endogenous mTOR floxed gene and/or
overexpression of either FLAG-mTOR kinase inactive protein
or FLAG-mTOR wildtype protein, and describing the specific-
ity of the models.
Table S2. Quantification of Western-blot analysis for the in-
dicated proteins. Numbers represent mean quantification
values ± SEM after subtraction of the background. Number
of replicates represents the number of animals per
genotype analyzed. A two-tailed Student’s t test was used
for statistical analysis. Abbreviation: N/A, Not Applicable. #

P < 0.05; ## P < 0.01; # is mTORmKOKI vs. mTORmKO.
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