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ABSTRACT
Background Microsatellite instability in colon cancer 
implies favorable therapeutic outcomes after checkpoint 
blockade immunotherapy. However, the molecular nature 
of microsatellite instability is not well elucidated.
Methods We examined the immune microenvironment of 
colon cancer using assessments of the bulk transcriptome 
and the single- cell transcriptome focusing on molecular 
nature of microsatellite stability (MSS) and microsatellite 
instability (MSI) in colorectal cancer from a public 
database. The association of the mutation pattern and 
microsatellite status was analyzed by a random forest 
algorithm in The Cancer Genome Atlas (TCGA) and 
validated by our in- house dataset (39 tumor mutational 
burden (TMB)- low MSS colon cancer, 10 TMB- high MSS 
colon cancer, 15 MSI colon cancer). A prognostic model 
was constructed to predict the survival potential and 
stratify microsatellite status by a neural network.
Results Despite the hostile CD8+ cytotoxic T lymphocyte 
(CTL)/Th1 microenvironment in MSI colon cancer, a high 
percentage of exhausted CD8+ T cells and upregulated 
expression of immune checkpoints were identified in 
MSI colon cancer at the single- cell level, indicating the 
potential neutralizing effect of cytotoxic T- cell activity 
by exhausted T- cell status. A more homogeneous highly 
expressed pattern of PD1 was observed in CD8+ T cells 
from MSI colon cancer; however, a small subgroup of 
CD8+ T cells with high expression of checkpoint molecules 
was identified in MSS patients. A random forest algorithm 
predicted important mutations that were associated with 
MSI status in the TCGA colon cancer cohort, and our 
in- house cohort validated higher frequencies of BRAF, 
ARID1A, RNF43, and KM2B mutations in MSI colon cancer. 
A robust microsatellite status–related gene signature 
was built to predict the prognosis and differentiate 
between MSI and MSS tumors. A neural network using 
the expression profile of the microsatellite status–related 
gene signature was constructed. A receiver operating 
characteristic curve was used to evaluate the accuracy 
rate of neural network, reaching 100%.
Conclusion Our analysis unraveled the difference in 
the molecular nature and genomic variance in MSI and 
MSS colon cancer. The microsatellite status–related gene 
signature is better at predicting the prognosis of patients 
with colon cancer and response to the combination of 

immune checkpoint inhibitor–based immunotherapy and 
anti- VEGF therapy.

BACKGROUND
Colon cancer is a major cause of death world-
wide. Approximately 25% of patients present 
with stage 4 tumors, and 25%–50% present 
with early- stage disease but develop meta-
static disease.1 2 The prognosis has improved 
by early detection technologies, but the 
survival of patients with metastatic colon 
cancer remains poor.1 Thus, identifying an 
efficient therapy is urgently necessary for 
colon cancer. Colon cancer can be classi-
fied into mismatch- repair- deficient (dMMR) 
microsatellite instability (MSI- H) subtypes 
and mismatch- repair- proficient (pMMR) 
microsatellite stability (MSS) subtypes.3 
dMMR- MSI colon tumors are characterized 
by a high tumor mutational burden (TMB) 
and high infiltration of activated CD8+ cyto-
toxic T lymphocytes (CTL) as well as acti-
vated Th1 cells with IFN-γ production.3 These 
features of MSI colon cancer make it a prom-
ising target for immunotherapy. A recent 
phase III study revealed pembrolizumab 
provided a clinically significant improvement 
in progression- free survival versus chemo-
therapy as first- line therapy for patients with 
MSI- H/dMMR metastatic colorectal cancer.4 
Moreover, Keytruda (pembrolizumab) has 
been approved for the treatment of adult 
and pediatric patients with solid tumors with 
tissue TMB- high (≥10 mutations/megabase). 
Significant clinical benefit was obtained 
by anti- PD-1 therapy with pembrolizumab 
among patients with previously treated unre-
sectable or metastatic MSI- H/dMMR non- 
colorectal cancer.5 These studies highlight 
the importance of microsatellite status and 
TMB value in immunotherapy. In contrast, 
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MSS colon cancer has been long considered to have an 
inactive response to immune checkpoint inhibitors. The 
lack of immune infiltration and low TMB decrease the 
potential of obtaining benefits from immunotherapy 
and define MSI colon cancer as an “immune resistant” 
phenotype.6

The biological features and prognostic value of immune 
cell infiltration in tumors have been extensively reported 
in various tumor types.7–10 However, to date, most studies 
of colon cancer have been limited to bulk RNA- seq 
analysis.11 12 Considering the heterogeneous cell types 
in colon cancer, a single- cell transcriptome is urgently 
needed to analyze the difference in the molecular nature 
of immune cells in MSS and MSI colon cancer.

In the present study, we analyzed single- cell RNA- seq 
data, bulk RNA- seq data, and gene mutation data from 
public and in- house datasets. Through several computa-
tional biology methods, we depicted the molecular nature 
of immune cell populations from the bulk and single- cell 
levels in MSS and MSI colon cancer. The most important 
gene mutations associated with MSI tumors were identi-
fied. Then, we generated a differentially expressed gene 
profile from MSS and MSI colon cancer in order to iden-
tify a robust microsatellite status–related gene signature 
and thus predict the prognosis and differentiate between 
MSI and MSS tumors. A microsatellite status–related gene 
signature–based risk score (MSRS) was calculated for each 
patient. The association of the MSRS with immune cell 
populations, immune checkpoint inhibitors, and VEGF 
activities were further analyzed. A neural network using 
the expression profile of the microsatellite status–related 
gene signature was built and evaluated. We demonstrated 
that the microsatellite status–related gene signature is 
better at predicting the prognosis of patients with colon 
cancer and stratifying patients with a high risk of cancer- 
specific death, regardless of microsatellite instability.

METHODS
Data source
Single cell- transcriptome files of GSE146771 and 
GSE98638 were downloaded from the Gene Expression 
Omnibus (GEO) database (http://www. ncbi. nlm. nih. 
gov/ geo/). GSE14333 is a colon cancer microarray dataset 
and was downloaded from GEO. The Cancer Genome 
Atlas (TCGA) RNA- seq transcriptome data and clinical 
information regarding colon cancer were downloaded 
via the UCSC Xena browser (https:// xenabrowser. net/). 
The patient information is provided in online supple-
mental table 1 (online supplemental file 1). R software 
(V.3.5.3) and Python (V.3.6) were used for all the analyses 
in the manuscript. All bioinformatic methods are listed 
in online supplemental table 2 (Online supplemental file 
1).

Immune cell abundance estimation
CIBERSORT R script was used to estimate the abundance 
of immune cell populations in the TCGA colon cancer 

cohorts by the bulk RNA- seq dataset.13 The cytotoxic T 
cell (CYT) score was obtained from cytolytic genes (calcu-
lated as the geometrical mean of PRF1 and GZMA).14 
The observation of the T- cell infiltration score (TIS) was 
defined as the average of the standardized values for the 
subsets of T cells.15

ssGSEA analysis and GO analysis
Single- sample GSEA (ssGSEA) was applied to evaluate the 
enrichment scores for each sample. The “GSVA” package 
was used for ssGSEA analysis.16 The hallmark gene sets 
were downloaded from The Broad Institute. Tcm cell and 
Tem cell gene sets were from Bindea et al.17 The exhausted 
T score gene set was defined by Zheng et al.18 The correla-
tion between the risk score and the enrichment scores 
was performed with Spearman’s coefficient. GO analysis 
was performed with the “clusterProfiler” package.19

Single-cell RNA-seq analysis
The single- cell transcriptome analysis for GSE146771 
and GSE98638 was performed with “scanpy” in Python.20 
The batch effect was removed by the BBKNN method. 
Nonlinear dimensional reduction was performed with 
the UMAP method. The gene features in each cluster 
were found by “scanpy”. The cell–cell interactions (CCIs) 
were calculated with the “SingleCellSignalR” package in 
R.21

Random forest algorithm for feature importance ranking
A random forest algorithm was applied on TCGA colon 
cancer NGS data to find the most important mutations 
associated with the microsatellite status in colon cancer. 
Briefly, the gene mutation dataset and microsatellite 
status were applied to find the most important gene muta-
tions associated with microsatellite status in colon cancer. 
The “ranger” package was used to find the best hyperpa-
rameter in the regression process and build the model.22

DNA extraction, library preparation and targeted enrichment
NGS analyses were performed in a centralized clinical 
testing center (Nanjing Geneseeq Technology) according 
to protocols reviewed and approved by the Ethics 
Committee of the First Affiliated Hospital of Zhejiang 
University. DNA extraction, library preparation, and 
targeted capture enrichment were performed with previ-
ously described methods with minor modifications.23 
Briefly, genomic DNA from the white blood cells was 
extracted using the DNeasy Blood & Tissue Kit (Qiagen) 
and was used as the normal control to remove germ-
line variations. After deparaffinizing of Formalin- fixed 
paraffin- embedded (FFPE) samples with xylene, genomic 
DNA was extracted using the QIAamp DNA FFPE Tissue 
Kit (Qiagen). After quantification of DNA with Qubit 
3.0 using the dsDNA HS Assay Kit (Life Technologies), 
a Nanodrop 2000 (Thermo Fisher) was used to evaluate 
DNA quality.

The KAPA Hyper Prep kit (KAPA Biosystems) was used 
to prepare libraries according to previously described 
methods.24 Briefly, a Covaris M220 instrument was used 
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to shear 1–2 µg of genomic DNA into ~350 bp fragments. 
The KAPA Hyper DNA Library Prep kit (Roche Diag-
nostics) was used for end repair, A- tailing, and adaptor 
ligation of fragmented DNA, and Agencourt AMPure 
XP beads (Beckman Coulter) were used to perform size 
selection. PCR was performed to amplify DNA Libraries 
followed by purification using Agencourt AMPure XP 
beads.

Selective enrichment of 425 predefined cancer- related 
genes (Geneseeq Prime panel) was performed with a 
customized xGen lockdown probes panel (Integrated 
DNA Technologies). Blocking reagents were defined 
by Human cot-1 DNA (Life Technologies) and xGen 
Universal Blocking Oligos (Integrated DNA Technol-
ogies). Dynabeads M-270 (Life Technologies) and the 
xGen Lockdown Hybridization and Wash kit (Integrated 
DNA Technologies) were used to perform the capture 
reaction. PCR amplification was performed on captured 
libraries with KAPA HiFi HotStart ReadyMix (KAPA 
Biosystems). The KAPA Library Quantification kit (KAPA 
Biosystems) was used to quantify the purified library. 
Bioanalyzer 2100 was used to calculate the fragment size 
distribution.

Sequencing and bioinformatics analysis
Sequencing of the target enriched libraries was 
performed on the HiSeq4000 platform (Illumina) with 
2×150 bp pair- end reads. bcl2fastq (v2.19) was used to 
demultiplex the sequencing data followed by analysis with 
Trimmomatic25 to remove low- quality (quality <15) or N 
bases. Then, alignment of the data to the hg19 reference 
human genome was performed with the Burrows- Wheeler 
Aligner (bwa- mem)26 followed by processing using the 
Picard suite (available at: https:// broadinstitute. github. 
io/ picard/) and the Genome Analysis Toolkit (GATK).27 
VarScan228 and HaplotypeCaller/UnifiedGenotyper were 
used to call SNPs and indels in GATK, with the mutant 
allele frequency cut- off set as 0.5%. dbSNP and the 1000 
Genome project were used to remove common variants. 
Germline mutations were filtered out by comparing with 
patient’s whole blood controls.

FACTERA29 and ADTEx30 were used to identify gene 
fusions and copy number variations, respectively. The 
log2 ratio cut- off for copy number gain and copy number 
loss was defined as 2.0 and 0.6, respectively, for tissue 
samples. TMB was defined as the number of somatic, 
coding, base substitution, and indel mutations per mega-
base of genome examined and was calculated as previ-
ously described.31 Briefly, all base substitutions, including 
nonsynonymous and synonymous alterations and indels 
in the coding region of targeted genes, were considered 
with the exception of known hotspot mutations in onco-
genic driver genes and truncations in tumor suppressors.

A customized analysis algorithm was used to perform 
MSI testing. Briefly, the MSI sites within the panel 
(425- gene panel) coverage were defined with a sum of 
52 mononucleotide repeats with a minimum of 15 bp 
repeats. The number of sequencing reads supporting 

each mononucleotide repeat length was tailed for each 
MSI site. The distribution of the length species within 
the tumor sample at the MSI site was compared with that 
summarized from a pool of normal samples. A signifi-
cantly altered distribution of the length species in a site 
was considered unstable. A sample was defined as MSI if 
more than 40% of the evaluated site display instability.

Differentially expressed gene (DEG) analysis
The DEG analysis was applied with the “Limma” package 
on TCGA colon cancer transcriptome file.32 An empir-
ical Bayesian method was applied to estimate the fold 
change between MSI- L and MSI- H or MSS and MSI- H 
using moderated t- tests. The adjusted p value for multiple 
testing was calculated using the Benjamini- Hochberg 
correction. The genes with an absolute log2 fold change 
greater than 1 and adjusted p value less than 0.05 were 
identified as DEGs.

Gene signature construction
The least absolute shrinkage and selection operator 
(LASSO) was applied to construct the microsatellite- 
related gene signature by TCGA colon cancer tran-
scriptome data. L1- norm was used to penalize the 
weight of the features.33 A microsatellite- related gene 
signature–based risk score (MSRS) formula was estab-
lished by including individual normalized gene expres-
sion values weighted by their LASSO Cox coefficients: 

 
∑

i Coefficient
(
mRNAi

)
× Expression

(
mRNAi

)
  .

Weighted correlation network analysis (WGCNA)
WGCNA was performed with the “WGCNA” package.34 
A power of β=3 and a scale- free R2=0.95 were selected 
as soft- threshold parameters to ensure a signed scale- 
free co- expression gene network. A total of 12 non- gray 
modules were generated.

Survival analysis
Survival analysis was performed with the “survival” 
package.35 The HR was determined with univariate Cox 
regression analysis. The tROC analysis was performed for 
the evaluation of the AUC value in the follow- up period 
with the “survivalROC” package.36

RESULTS
Tumor immune microenvironment in colon cancer with MSS 
or MSI status
The tumor immune microenvironment of colon cancer 
is depicted with the 22 immune cell populations by the 
TCGA cohort (see online supplemental table S1 for 
detailed information). A higher abundance of CD8 T cells, 
activated NK cells, and M1 macrophages was identified in 
MSI colon cancer than in MSS colon cancer. Then, we 
estimated the CYT activity, CD8:Treg ratio, IFN-γ expres-
sion signature, and T- cell infiltration score (TIS) in MSI 
and MSS colon cancer. As expected, a higher CYT activity 
(figure 1B), IFN-γ expression signature (figure 1C), TIS 
(figure 1D), and CD8:Treg ratio (figure 1E) were found 
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in MSI colon cancer. CTLA4, PD- L1 (CD274), and PD1 
(PDCD1) are three important biomarkers for immune 
checkpoint inhibitor (ICI)–based immunotherapy. The 
expression levels of these three checkpoint molecules 
were greater in MSI- H colon than in MSS and MSI- L 
colon cancer (figure 1F–1H). Hence, we also evaluated 
the exhausted T- cell score with the ssGSEA algorithm. 
Despite greater CYT activity in MSI- H colon cancer, a 
higher exhausted T- cell score was observed in MSI- H 
colon cancer (figure 1I).

Single-cell RNA-seq analysis unravels the heterogeneous cell 
populations with differentially expressed genes in MSI and 
MSS colon cancer
The tumor tissues of colon cancer contain several cell 
populations such as malignant cells, immune cells (eg, 
CD8+ T cells, CD4+ T cells, B cells, and myeloid cells), 

and fibroblasts. To identify the molecular features in 
MSI and MSS colon cancer at the single- cell level, we 
analyzed the single- cell RNA- seq transcriptome data from 
GSE146771. The UMAP method was used to perform 
nonlinear dimensional reduction. The cells were clus-
tered by their cell types rather than by the patients 
(figure 1J and online supplemental figure S1A). The 
microsatellite status was also shown by a UMAP plot 
(figure 1K). The Leiden method was applied to identify 
the clusters. The results revealed that the malignant cells, 
fibroblasts, CD8+ T cells, and CD4+ T cells from MSI and 
MSS colon cancer tissues were identified into different 
clusters (online supplemental figure S1B), indicating the 
molecular difference between colon cancer with MSS and 
MSI. Several important tumor microenvironment (TME) 
genes were selected to analyze the heterogeneity in colon 
cancer tissues (online supplemental figure S1C). MS4A1 
was enriched in a subpopulation of B cells whereas FOXP3 
was expressed in a subgroup of CD4+ T cells. MS4A6A, 
PLAUR, and PECAM1 are known to be featured genes 
expressed in macrophages. High expression of these 
genes was found in myeloid cells. EPCAM is overexpressed 
in epithelial cancers associated with enhanced malignant 
potential. EPCAM was nearly expressed in all epithelial 
cells and malignant cells in colon cancer.

To further analyze the difference between MSS and 
MSI colon cancer at the single- cell level, CD8+ T cells, 
CD4+ T cells, B cells and malignant cells were extracted 
from the whole dataset. The UMAP method revealed the 
distribution of these cells and the microsatellite status in 
a two- dimensional plot (figure 2A and B). Several stem 
cell markers were selected to explore the heterogeneity 
in MSI and MSS tumors. ALDH1A1 was highly expressed 
in MSS tumors and lowly expressed in MSI tumors, and 
ICAM1 was highly expressed in MSI tumors and lowly 
expressed in MSS tumors (figure 2C). The featured gene 
expression in CD8+ T cells, CD4+ T cells, B cells and 
malignant cells from MSI and MSS colon cancer is shown 
in figure 2D. The CD8+ T cells and CD4+ T cells from MSI 
and MSS colon cancer had a significant difference in the 
most featured three genes. The CD8+ T cells from MSI 
colon cancer showed high KLRK1, PTPRCAP, and HLA- 
DRB5 expression (figure 2E); however, their counter-
parts from MSS colon cancer exhibited high expression 
of CCL5, NKG7, and GZMA (figure 2F). CD4, PTPRCAP, 
and PIGN were highly expressed in CD4+ T cells from MSI 
colon cancer (figure 2G), and LTB, CD2, and CD3D were 
highly expressed in CD4+ T cells from MSS colon cancer 
(figure 2H). The expression of three immune check-
points (PD- L1, CTLA4, and PD1) are shown in online 
supplemental figure S2A–C. PD1 expression of single 
cells in MSI colon cancer was more homogeneous than 
its expression in MSS colon cancer. Most CD8+ T cells 
in MSI colon cancer had a high level of PD1 expression 
(indicated by the shape of the violin plot) whereas only 
a subgroup of CD8+ T cells in MSS colon cancer showed 
a high expression level of PD1. Using a reference with 
annotated T- cell status (exhausted and non- exhausted), 

Figure 1 Estimation of immune cell populations and 
immune signatures in TCGA- colon cancer. (A) Heatmap 
showing the estimation of immune cell populations in the 
TCGA- colon cancer cohort. (B) The ratio of immune cell 
populations and microsatellite status. The CYT activity (C), 
IFNG expression (D), TIS score (E), and CD8:Treg ratio (F) in 
colon cancer with MSS, MSI- L, and MSI- H. The CD274 (G), 
PDCD1 (H), and CTLA4 (I) expression and exhausted score 
(J) in colon cancer with MSS, MSI- L, and MSI- H. (K) UMAP 
clustering of tumor microenvironment cell populations with 
information regarding cell types from GSE146771. (L) UMAP 
clustering of tumor microenvironment cell populations with 
information regarding microsatellite status from GSE146771.
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we further analyzed the CD8+ T- cell status in MSS and 
MSS colon cancer. The results revealed a significantly 
higher percentage of exhausted CD8+ T cells in MSI colon 
cancer (69%) than in MSS colon cancer (36%) (p<0.001) 
(figure 2I).

The CCIs in MSI and MSS tumors were explored with 
the single- cell transcriptome data. The directions and 
the number of ligand–receptor interactions are shown 
in figure 3A,B. The intracellular interactions of PD1 on 
CD8+ T cells from MSI and MSS tumors were therefore 
identified by the CCIs (figure 3C,D). A more complicated 
network with involvement of HLAs corresponding to 
MHC class II (DP, DQ, and DR) was found in MSI tumors. 

Greater expression of MHC class II molecules was found 
in MSI tumors than in MSS tumors, and ubiquitous expres-
sion of MHC class I molecules was observed between MSI 
and MSS tumors (figure 3E and online supplemental 
figure S3). ssGSEA suggested that MSI tumors harbored 
expression signatures of “PD-1 signaling”, “T- cell receptor 
signaling”, “graft- versus- host disease”, and “allograft rejec-
tion” (figure 3F). These findings indicated that there was 
high MHC- II expression consistent with a pro- immune/
antitumor response in MSI tumors.

Association between microsatellite status and gene mutations 
in colon cancer
The random forest algorithm was applied to deter-
mine the importance of gene mutations associated with 
microsatellite status in colon cancer. Thirty of the most 
important gene mutations were identified in the TCGA 
cohort (figure 4). The results indicated that BMPR2, 

Figure 2 Molecular nature of colon cancer with MSS and 
MSI. (A) UMAP clustering of B cells, CD4+ T cells, CD8+ 
T cells, and malignant cells with information regarding 
cell types from GSE146771. (B) UMAP clustering of B 
cells, CD4+ T cells, CD8+ T cells, and malignant cells with 
information regarding microsatellite status and cell types 
from GSE146771. (C) The expression of stemness- related 
genes in each subgroup of cells. (D) The gene features in 
each subgroup of cells. (E) The expression of featured genes 
in CD8+ T cells from MSI colon cancer. (F) The expression of 
featured genes in CD8+ T cells from MSS colon cancer. (G) 
The expression of featured genes in CD4+ T cells from MSI 
colon cancer. (H) The expression of featured genes in CD4+ T 
cells from MSS colon cancer. (I) The ratio of exhausted CD8+ 
T cells and non- exhausted CD8+ T cells in colon cancer with 
MSS and MSI.

Figure 3 CCIs in colon cancer with MSS and MSI. The 
directions and number of ligand–receptor interactions in 
MSS (A) and MSI (B) tumors in GSE146771. The intracellular 
network of PD1 in CD8+ T cells in MSS (C) and MSI (D) 
tumors. (E) The expression level of MHC- I molecules and 
MHC- II molecules (HLA- DRA) in MSI and MSS colon cancer 
in the TCGA colon cancer cohort. (F) The TCGA colon 
cancer transcriptome data were analyzed using the curated 
Molecular Signatures Database.
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RNF43, and ANK3 were the most important gene muta-
tions associated with the microsatellite status. MSI- H 
colon cancer tissues had a higher percentage of BMPR2 
RNF43 and ANK3 mutations than MSI- L and MSS colon 
cancer tissues in the TCGA colon cancer cohort. To 
further validate the model mentioned previously, the 
mutation information of 39 TMB- low MSS colon cancer, 
10 TMB- high MSS colon cancer, and 15 MSI colon cancer 
tissues were collected with the 425- panel as our in- house 
cohort (figure 5A). BRAF, ARID1A, RNF43, and KM2B 
were involved in the 425- panel. Our data revealed a 
significantly high frequency of BRAF, ARID1A, RNF43, and 
KM2B mutations in MSI colon cancer, which confirmed 
the random forest model. Moreover, the detailed muta-
tion types of BRAF, ARID1A, RNF43, and KM2B are shown 
in figure 5B.

Microsatellite status–related gene signature predicts the 
prognosis and clinical outcome of patients with colon cancer
DEG analysis was performed for MSS and MSI colon 
cancer in the TCGA cohort. The volcano plot in 
figure 6A,B shows the DEGs among MSS and MSI- H, 
MSI- L, and MSI- H colon cancer. The Venn diagram in 
figure 6C shows that a total of 1202 genes were involved 
in the microsatellite status–related DEGs (online supple-
mental file 1). GO analysis revealed that the response 
to INF-γ, leukocyte chemotaxis, pattern specification 
process, organic anion transport, and other biological 
processes were enriched with the microsatellite status–
related DEGs (figure 6D). The 1202 microsatellite status–
related DEGs were used to build a prognostic model to 
predict the cancer- specific survival (CSS) of patients with 
colon cancer. LASSO Cox regression penalized the unim-
portant features in the regularization process, and 17 
features (LOC100272228, HOXC8, TMEM195, TNFAIP2, 
TRIM58, PLAG1, MTERF, APOD, SYT12, HOXC11, 
ENO2, HBA1, HOXC4, TNFRSF19, SULT1B1, B3GNT8, 
and ATOH1) were finally selected as the microsatellite 
status–related gene signature (figure 6E, online supple-
mental table S3). The expression levels of the 17 genes 
in MSS and MSI colon cancer of different TNM stages 
are shown in (online supplemental figure 4-5). The MSRS 
for each patient was calculated based on the expres-
sion levels of the 17 genes with the coefficient in the 
model. The risk score formula was established as follows: 

 
∑

i Coefficient
(
mRNAi

)
× Expression

(
mRNAi

)
  . The patients 

with a higher MSRS had a worse CSS than patients with 
a lower MSRS (HR 16.5, p<0.001, best cut- off method 
with cut- off value 2.93) (figure 6F). Time- dependent 
ROC analysis further confirmed the higher accuracy of 
the MSRS (mean AUC values higher than 0.8 during the 
follow- up period) than other clinicopathological traits.

The relationship of treatment outcome and the MSRS 
indicated that patients with a lower MSRS had a higher frac-
tion of complete remission (CR) (93% vs 70%) and a lower 
percentage of progressive disease (PD) (3% vs 22%) status 
(figure 7A). The association of the microsatellite status–
related signature- based RS with the immune populations 

Figure 4 Random forest algorithm on the TCGA colon 
cancer dataset identifying the most important genes 
associated with MSI status. The importance ranking of gene 
mutations and a heatmap showing the association of gene 
mutations and microsatellite status.

Figure 5 In- house validation of the random forest model. 
(A) BRAF, ARID1A, RNF43, and KM2B mutation frequency in 
TMB- low MSS colon cancer, TMB- high MSS colon cancer, 
and MSI colon cancer. (B) BRAF, ARID1A, RNF43, and KM2B 
mutation types in TMB- low MSS colon cancer, TMB- high 
MSS colon cancer, and MSI colon cancer.

https://dx.doi.org/10.1136/jitc-2020-001437
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were calculated with Pearson’s coefficient (figure 7B), indi-
cating a significant correlation with CD4+ T cells (negative) 
and memory B cells (positive). Next, we extended the anal-
ysis to include the immune checkpoint molecules, including 
the B7- CD28 family (CD274, CD276, CTLA4, HHLA2, ICOS, 
ICOSLG, PDCD1, PDCD1LG2, TMIGD2, VTCN1), TNF super-
family (BTLA, CD27, CD40, CD40LG, TNFRSF18, TNFRSF4, 
TNFRSF9, TNFSF4, TNFSF9) and others (ENTPD1, FGL1 
HAVCR2, IDO1, LAG3, NCR3, NT5E, SIGLEC15) (figure 7C). 
In total, seven immune checkpoint molecules, including 
ENTPD1, SIGLEC15, TNFRSF4, TNFSF4, TNFSF14, PDCD1LG2, 
and HAVCR2, were upregulated in the high MSRS group 
(Cor >0.25). An external cohort (GSE14333) was used to 
confirm the results. The patients with a low MSRS had a 
more favorable survival outcome than patients with a high 
MSRS (online supplemental figure S6A). The association 
between the MSRS and expression pattern of immune check-
point molecules in the GSE14333 showed the same tendency 
as it did in the TCGA cohort (online supplemental figure 
6SB). For instance, the association of TNFSF4, HAVCR2, and 

ENTPD1 with the MSRS are shown in (online supplemental 
figure 6C–E). The counterparts in the TCGA cohort are 
shown in (online supplemental figure 6SF–H). As recently 
the combination of regorafenib plus nivolumab has shown 
a manageable safety profile and encouraging antitumor 
activity in colon cancer,37 we further investigated the associ-
ation of the MSRS and VEGF activities in MSS, MSI- L, and 
MSI- H tumors. The results indicated a strikingly higher asso-
ciation of the MSRS and VEGF in MSI- H tumors (0.53) than 
in MSI- L tumors (0.34) and MSS tumors (0.14) (figure 7D). 
Several studies have discovered that PD-1 blockade therapy 
reactivates effector T cells and also promotes the prolifera-
tion of Tcm cells, improving antitumor immunity.38 39 Thus, 
the association between Tcm activity/Tem activity/Tscm activity 
and exhausted T- cell score/MSRS was analyzed. The results 
indicated more significant association between Tcm activity/

Figure 6 Construction of a microsatellite status–related 
gene signature by TCGA colon cancer dataset. (A) The 
volcano plot shows the DEGs between MSS and MSI- H. 
(B) The volcano plot shows the DEGs between MSI- L 
and MSI- H. (C) The Venn plot shows the total genes and 
overlapping genes from the volcano plots. (D) Gene ontology 
analysis by the total genes from the Venn plot. (E) The 
coefficient calculated by LASSO Cox regression. (F) Kaplan- 
Meier analysis showed that patients with colon cancer with 
a higher MSRS exhibited an unfavorable CSS in the TCGA 
cohort. (G) tROC analysis indicated a higher prediction 
efficacy of the MSRS than other clinicopathological traits.

Figure 7 Microsatellite status–related gene signature serves 
as a predictor for clinical outcome and neural network- 
based machine learning model predicts microsatellite status 
in colon cancer. (A) Patients in the low- MSRS group had a 
higher ratio of complete remission. (B) The ratio of immune 
cell populations and MSRS. (C) The expression profile of 
costimulatory/coinhibitory immune checkpoints landscape 
in the TCGA cohort. (D) The association of MSRS and VEGF 
activities in MSS, MSI- L, and MSI- H tumors. (E) Schematic 
diagram of the neural network. (F) The loss value in the 
testing set decreased during the training process. (G) The 
confusion matrix in the testing cohort.
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Tem activity/Tscm activity and MSRS/exhausted score in MSI 
tumor compared with the association in MSS tumor (online 
supplemental figure S7A–F).

ssGSEA analysis was performed to evaluate the biolog-
ical meaning underlying the MSRS (online supplemental 
figure S8A). Myogenesis, apical junctions, hedgehog 
signaling, TGF-β signaling, and epithelial mesenchymal tran-
sition were the hallmarks with most significantly correlated 
with the MSRS. To further confirm the results from the 
ssGSEA, WGCNA was performed. With a power of β=3 set 
as the optimal soft threshold to construct a scale- free signed 
network (online supplemental figure S8B,C), a total of 12 
nongray modules were identified (online supplemental 
figure S8D,E). Among these nongray modules, two modules 
(turquoise and magenta) with the highest absolute correla-
tion values with the MSRS were selected for further analysis. 
The genes from the two modules were applied to GO anal-
ysis. The results indicated that extracellular matrix reorga-
nization–related enrichments (online supplemental figure 
S8E) and cell division–related enrichments (online supple-
mental figure S8F) were related to the genes involved in 
the turquoise and magenta modules, which confirmed the 
results from the ssGSEA analysis.

Subgroup survival analysis
The MSRS serves as a promising marker to predict DSS in 
different subgroups of patients with colon cancer in the 
TCGA cohort, including TNM stage I–II (HR 6.37, p<0.001) 
(online supplemental figure S9A), TNM stage III–IV (HR 
9.36, p<0.001) (online supplemental figure S9B), age <66 
years (HR 10.19, p<0.001) (online supplemental figure 9C), 
age >66 years (HR 9.76, p<0.001) (online supplemental 
figure 9D), MSI (HR 18.39, p<0.001) (online supplemental 
figure S9E), MSS (HR 6.24, p<0.001) (online supple-
mental figure S9F), female gender (HR 11.15, p<0.001) 
(online supplemental figure S9G), and male gender 
(HR 11.37, p<0.001) (online supplemental figure S9H). 

Neural network construction to identify MSS and MSI colon 
cancer
To further use the microsatellite status–related gene signa-
ture, we built a neural network with the gene expression 
pattern of the microsatellite status–related gene signature to 
stratify MSS and MSI colon cancer. Figure 7E shows a sche-
matic diagram of the neural network. The expression profile 
of the microsatellite status–related gene signature from the 
TCGA colon cancer cohort was split into the training dataset 
(2/3) and testing dataset (1/3). With increasing epochs in 
the training set, the loss value decreased in the testing set 
(figure 7F). The confusion matrix shows that all tumors were 
classified accurately in the testing set (figure 7G).

DISCUSSION
Immunotherapy has achieved long- term durable 
responses for multiple types of previously difficult- to- treat 
solid cancers, such as lung cancer and melanoma.40 MSI- H 
tumors cancer have been approved for the application 

of ICI such as pembrolizumab.3 Nivolumab (anti- PD1) 
plus ipilimumab (anti- CTLA-4) has demonstrated high 
response rates, improving progression- free survival and 
overall survival at 12 months, and is a promising treat-
ment option for patients with dMMR MSI- H metastatic 
colorectal cancer.41 In contrast, MSS colon cancer seems 
to obtain limited benefits from immunotherapy. Chalabi et 
al42 tested ipilimumab plus nivolumab in early stage dMMR 
and pMMR colon cancers. Major pathological responses 
were observed in 7/7 (100%) dMMR tumors, with 4/7 
(57%) complete responses, and no major pathological 
responses were found in pMMR tumors. Interestingly, 
significant increases in T- cell infiltration, particularly in 
CD8+ T cells, were seen post- treatment in both pMMR and 
dMMR tumors, indicating the partial activation of CD8+ 
T cell–mediated immunity in pMMR tumors after immu-
notherapy without successful pathological responses.42 In 
our analysis on public single- cell transcriptome data from 
GEO database, we found a small subset of CD8+ T cells 
with high expression of ICI (eg, CTLA4 and PD1) in MSS 
tumors and generously high PD1- expressing CD8+ T cells 
in MSI tumors, which may explain the increased T- cell 
infiltration after ipilimumab plus nivolumab treatment in 
both MSI and MSS tumors. dMMR- MSI colon cancer is 
characterized by the abundant infiltration of CD8+ tumor- 
infiltrating lymphocytes, CD4+ T helper cells and activa-
tion of type I interferon signaling.43 In our analysis, we 
confirmed the enrichment of CD8+ T cells, CD4+ T cells, 
and M1- macrophages in MSI- H colon cancer. A high CYT 
activity, ratio of CD8+:Treg, IFNG expression, and TIS 
were observed in MSI- H colon cancer. CD8+ T- cell infil-
tration into the tumor microenvironment has been long 
considered as a favorable factor for clinical outcomes due 
to its role in tumor- killing ability. Thus, we analyzed the 
T- cell status in MSI colon cancer. T- cell receptors (TCRs) 
on the surface of T cells can bind with complexes of 
peptides with major histocompatibility complex (MHC) 
class I molecules presented on the surface of all cells.44 
Nevertheless, the activation of T cells does not rely on 
recognition of peptide–MHC class I complexes by the 
TCR alone. A range of coinhibitory or costimulatory 
signals tune the response of T cell, which tumor cells 
exploit to escape destruction.45 Thus, coinhibitory recep-
tors such as CTLA4 and PD1 on T cells and the ligand 
of PD1 (PD- L1) on tumor cells are the normal targets of 
ICI.46 We found that in MSI colon cancer, CTL4, CD274, 
and PD- L1 were all highly expressed, which neutralized 
the high CYT activity in MSI colon cancer. ssGSEA anal-
ysis with exhausted T- cell hallmarks further confirmed 
the conclusion.

Then, we analyzed the molecular signature of MSI and 
MSS colon cancer at the single- cell level. The most signif-
icant featured genes were distinct in different immune 
cells and malignant cells from MSS and MSI colon cancer, 
which indicated the influence of microsatellite status 
on the tumor microenvironment. With single- cell tran-
scriptome data with CD8+ T- cell annotation information 
(exhausted vs non- exhausted) as a reference, we further 
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annotated the CD8+ T cells in MSI and MSS colon cancer. 
As a significantly higher percentage of exhausted CD8+ 
T cells were identified in MSI colon cancer than in MSS 
colon cancer, MSI tumors obtain a promising effect from 
ICI targeting PD1 (pembrolizumab and nivolumab), 
PDL1 (atezolizumab and durvalumab), and CTLA4 
(ipilimumab). Characterizing cell–cell communication 
by analysis of ligand–receptor interactions in the tumor 
microenvironment can be performed by single- cell RNA- 
seq technology, which provides single- cell transcriptomes 
to define cell heterogeneity and also identifies profiles 
of ligand–receptor interactions and cell–cell signaling 
networks. In our single- cell transcriptome analysis on 
public single- cell transcriptome data, a complicated intra-
cellular regulatory network that involved MHC- II mole-
cules was identified in MSI tumors. As MHC- II expression 
is a functional antigen- presenting molecule that can 
promote CD4+ T- helper cell aid to the antitumor milieu,47 
the MHC- II involvement in the PD1 network implies the 
importance of CD4+ T cells in antitumor immunity and 
ICI- based immunotherapy for MSI tumors.

Impaired DNA MMR facilitates the occurrence of 
frameshift mutations by insertions or deletions as well 
as single- base mismatches that can be point mutations 
in coding regions.10 Thus, dMMR MSI- H colon cancer 
is characterized by a high tumor mutation burden. The 
high mutational burden in MSI colon tumor creates 
many tumor- specific neoantigens, typically 10 to 50 times 
those of MSS colon cancer.43 The neoantigens may be 
processed and presented on MHC and recognized by 
T cells. This may be one potential reason for the high 
TIL infiltration in MSI colon cancer. Thus, it would be 
important to identify the important gene mutations that 
are associated with MSI tumors. BMPR2, RNF43, ANK3, 
and several other gene mutations were identified by a 
random forest algorithm in our analysis from the TCGA 
colon cancer dataset. One study revealed that a frame-
shift mutation of BMPR2 gene occurs in colon cancer 
with MSI- H.48 BMP signaling acts as a tumor suppressor 
in gastrointestinal tumorigenesis. This mutation of 
BMPR2 leads to the loss of BMPR2 expression and down-
regulation of BMP signaling in colon cancer.49 Another 
study demonstrated that truncating mutations of RNF43 
were linked to the MSI- H phenotype in colon cancer.50 
RNF43 acts as an E3 ubiquitin- protein ligase and can 
negatively regulate the Wnt signaling pathway.51 RNF43 
mutation has been related to the sensitivity to small- 
molecule Wnt- specific acyltransferase porcupine inhib-
itors.52 Both our in- house dataset and the results from 
Giannakis et al50 confirmed the high frequency of RNF43 
in MSI colon cancer. A BRAF mutation is involved in 
impaired mismatch repair, and the mutation frequency, 
as expected, is higher in TMB- high MSS colon cancer 
and MSI- H colon cancer than in TMB- low MSS colon 
cancer. ARID1A is a tumor suppressor that is involved in 
transcriptional regulation, proliferation, and chromatin 
remodeling.53 The high frequency of ARID1A in MSI 
colon cancer from our in- house cohort and the study 

by Cajuso et al53 further confirmed the accuracy of our 
random forest model.

In the next step, we analyzed the gene expression 
patterns in MSI tumors and MSS tumors from TCGA 
colon cancer dataset. A total of 1202 DEGs were found. 
The GO analysis by DEGs indicated enrichments in the 
IFN-γ response, which confirmed the previous results. 
As microsatellite status is not a good indicator of prog-
nosis, we developed a gene signature–based risk score, 
the MSRS, to predict the cancer- specific survival of 
patients with colon cancer. The MSRS serves as an indi-
cator of tumor- specific survival beyond MSI staging and 
TNM staging in total cohorts and subgroup analyses (eg, 
microsatellite status, TNM stage, age, and gender). Thus, 
we demonstrated that the MSRS is better at defining the 
prognosis of patients with colon cancer and identifying 
patients at a high risk of tumor recurrence, regardless 
of microsatellite instability. Furthermore, the MSRS 
also gives an indicator of tumor outcome and immuno-
therapy response. Patients with a lower MSRS have high 
probability of complete remission and active immu-
notherapy response. Pearson’s coefficients indicated a 
greater correlation between the MSRS and CD4+ T cells 
than between the MSRS and CD8+ T cells. One potential 
explanation is the “exhausted” status of CD8+ cytotoxic 
T cells in colon cancer. As we discussed previously, MSI 
colon cancer cells and a small subgroup of MSS colon 
cancer cells have a high expression level of coinhibitory 
factors such as CTLA4, PD1, and PD- L1, which impair the 
immune- killing activity of CD8+ T cells. The molecular 
feature underlying the MSRS implies the difference in 
the molecular nature in MSS and MSI colon cancer.

The benefits of CD8+ T cell–mediated antitumor 
responses might be blocked by high activity of the VEGF 
pathway, which mediates immune tolerance and also 
restricts T- cell infiltration into the tumor.54 In addition, 
one study revealed that VEGF- A induces the expression 
of the transcription factor TOX in T cells to drive an 
exhaustion- specific transcription program in T cells.55 
Hence, it is logical to consider that combined blockade of 
PD-1 and VEGF- A may restore the antitumor functions of 
T cells and aid in better control of tumors. In our analysis, 
the MSRS showed a significantly higher correlation with 
VEGF pathway activity in MSI- H patients than in MSI- L 
patients and MSS patients. Thus, we conferred that the 
combination of a VEGF inhibitor (bevacizumab) and 
atezolizumab may be promising for patients with MSI- H 
tumors rather than for patients with MSS tumors, espe-
cially for patients with a high MSRS. Moreover, more 
significant association was found between Tcm activity/Tem 
activity/Tscm activity and MSRS/exhausted score in MSI 
tumor compared with the association in MSS tumor. Tcm/
Tem presence in the tissue suggests that there is tumor 
antigen recognition. High tumor antigen recognition can 
lead to T- cell exhaustion. Therefore, a positive association 
between Tcm/Tem and exhaustion is plausible. Currently, 
Tscm is discussed as being those T cells that are precursor 
to exhausted T cells.56 57 They are thought to be the T cells 
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that respond to checkpoint blockade. In our analysis, Tscm 
activity also significantly correlated with exhausted score 
as expected, especially in MSI- H tumors. The difference 
of association of the exhausted score and Tcm activity/
Tem activity/Tscm activity in MSI and MSS tumor indicates 
the discrepancy of molecular pathways involved in the 
response to ICI- based immunotherapy. Furthermore, Tcm 
activity/Tem activity/Tscm activity showed a significant asso-
ciation with MSRS in MSI patients, implying the poten-
tial benefits of ICI- based immunotherapy on MSI tumor 
patients with high MSRS.

In summary, the featured gene expression in CD8+ 
T cells, CD4+ T cells, B cells, and malignant cells from 
MSI and MSS colon cancer showed a clear difference 
of the molecular nature and immune cell activities. A 
more homogeneous highly expressed pattern of PD1 was 
observed in CD8+ T cells from MSI colon cancer; however, 
a small subgroup of CD8+ T cells with high expression 
of checkpoint molecules was identified in MSS patients. 
BMPR2, RNF43, and ANK3 were the most important gene 
mutations associated with the microsatellite status in 
colon cancer. We also built a microsatellite status–related 
gene signature with which we can predict the microsatel-
lite status with our neural network framework. The MSRS 
was calculated, which serves as an indicator of prognosis 
beyond MSI staging and the response to the combination 
of immunotherapy and anti- VEGF therapy.
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