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Abstract: We report the facile and economic preparation of two-dimensional (2D) and 0D MoSe2

nanostructures based on systematic and non-toxic top-down strategies. We demonstrate the intrinsic
peroxidase-like activity of these MoSe2 nanostructures. The catalytic processes begin with facilitated
decomposition of H2O2 by using MoSe2 nanostructures as peroxidase mimetics. In turn, a large
amount of generated radicals oxidizes 3,3,5,5-tetramethylbenzidine (TMB) to produce a visible color
reaction. The enzymatic kinetics of our MoSe2 nanostructures complies with typical Michaelis–Menten
theory. Catalytic kinetics study reveals a ping–pong mechanism. Moreover, the primary radical
responsible for the oxidation of TMB was identified to be Ȯ2

− by active species-trapping experiments.
Based on the peroxidase mimicking property, we developed a new colorimetric method for H2O2

detection by using 2D and 0D MoSe2 nanostructures. It is shown that the colorimetric sensing
capability of our MoSe2 catalysts is comparable to other 2D materials-based colorimetric platforms.
For instance, the linear range of H2O2 detection is between 10 and 250 µM by using 2D functionalized
MoSe2 nanosheets as an artificial enzyme. Our work develops a systematic approach to use 2D
materials to construct novel enzyme-free mimetic for a visual assay of H2O2, which has promising
prospects in medical diagnosis and food security monitoring.

Keywords: MoSe2 quantum dots; peroxidase-like activity; hydrogen peroxide; few-layer MoSe2

nanosheets; colorimetric detection

1. Introduction

The development of convenient and sensitive detection of hydrogen peroxide (H2O2) is in
high demand in the fields of food security, environmental monitoring and biochemical analysis.
H2O2, produced from the incomplete reduction of O2, can be found as a byproduct in diverse
biological processes. Higher amounts than normal of cellular H2O2 have been linked to the risk of
a few diseases including Parkinson’s disease and cancer development [1,2]. Thus, it is of practical
importance to analyze and detect H2O2 by a simple, sensitive and economic method. So far, various
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techniques for H2O2 determination have been explored, such as fluorometry [3,4], cellular imaging [5],
electrochemistry [6,7], and the colorimetric method [8,9]. Among these approaches, the colorimetric
method has drawn a lot of attention due to its convenient operation, visibility, facile miniaturization,
and low cost [10,11]. In this respect, natural enzymes were extensively used for the detection
of H2O2 due to its catalysis capability under mild conditions. Nevertheless, these conventional
enzymes usually suffer from the disadvantages of low stability against harsh conditions and high
expenditures for preparation and purification. Consequently, researchers actively sought artificial
enzyme-mimic materials without these shortcomings. Nanomaterials are currently regarded as a rich
source to synthesize desired alternative mimic enzymes with the benefits of low cost, plentiful raw
materials, and ease in purification and storage. Many nanomaterials with intrinsic enzyme-mimetic
activity analogous to that of natural enzymes were fabricated, such as metal organic frameworks [12],
Pt nanoclusters [13], silver nanoparticles [14], and gold nanoparticles [15]. Although enormous
progress has been made, the discovery and development of novel promising artificial peroxidase
mimics is still in urgent need.

With the persistent advancement of nanotechnology and materials science, two-dimensional (2D)
nanomaterials beyond graphene have received much attention because of many fascinating chemical
and physical properties. The transition metal dichalcogenides (TMDs), a family of layered compound
materials consisting of 2D sheets weakly bound by van der Waals interactions, is the most renowned
group of emerging 2D materials. They have shown huge promise in a wide range of applications.
In particular, TMD nanostructures have shown good potential in biomedical applications due to
their large surface area, low cytotoxicity, and higher structural rigidity than other 2D nanomaterials.
For instance, it was found that TMDs exhibited lower cytotoxicity than typical graphene and its
analogues [16]. As for structural rigidity, commonly used graphene and hexagonal boron-nitride have
relatively low flexural rigidity around 3.5 eV Å2/atom. On the other hand, these values for MoS2 and
WS2 are 27 eV Å2/atom and 30 eV Å2/atom, respectively [17]. These properties should make 2D TMDs
appropriate for biomedical applications. Finally, TMDs can remain stable in liquid due to the lack of
dangling bonds on the surface, which supports their use in biomedical applications.

Molybdenum disulfide (MoS2), the most prominent member of the TMD family, possesses
distinctive properties and has found diverse successful applications in electronics [18],
energy devices [19], photocatalysis [20], and sensors [21,22]. In particular, the peroxidase-like
catalytic ability of a few MoS2 nanostructures has been shown by researchers [23,24]. While a
large amount of investigations is devoted to MoS2, considerably less attention has been devoted to
molybdenum diselenide (MoSe2) [25]. 2H-MoSe2, also with a graphene-like lamellar structure, is a
semiconductor whose bandgap energy increases from ~1.1 eV in bulk to ~1.55 eV in ultrathin form
with atomic thickness. In a previous comparative study, Gholamvand and coworkers concluded
that MoSe2 is the most effective electrocatalyst among TMDs [26]. Recent studies also showed that
few-layered MoSe2 nanosheets (NSs) could be a promising candidate with peroxidase-like activity and
good biocompatibility [27,28]. Moreover, inspired by the fact that selenium-containing enzymes are
generally prevalent in the biosphere and their active sites usually involve selenium, we thus turned
our attention to the investigation of nanoscale MoSe2 in this respect. Even though MoSe2 is expected
to function as efficient peroxidase mimetics for colorimetric detection, so far little progress has been
made in this respect. Its extended topics, such as surface modification and variation in dimensionality,
were rarely studied for use in colorimetric detection. Here, we intend to fill the gap along this
exploration. For instance, TMD in quantum dot (QD) form deserves more investigation because their
pronounced quantum confinement effects (QCE) and edge effects further aid applications in catalysts
and sensing [29,30]. Significant enhancement in photoluminescence (PL) quantum efficiency by QCE is
favorable to develop a sensor by optical means [31,32]. Moreover, a few optical properties in the strong
coupling regime for semiconductor QDs and nanostructures could be implemented to strengthen the
functionality of biosensors [33–35].
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Liquid-phase synthesis routes are suitable to produce TMD nanostructures in large quantity at low
cost. In general, solution-based synthesis approaches can be divided into “top-down” methods and
“bottom-up” methods. For bottom-up wet-chemical synthesis methods, specific precursors are needed
and a high-temperature and high-pressure environment is required. Among top-down approaches,
liquid phase exfoliation (LPE) is a powerful technique to efficiently exfoliate various types of layered
crystals into few-layer nanosheets or even QDs [36,37]. The basic protocol of LPE technique is very
general and only parent crystal is needed instead of the need for specific precursors in bottom-up
chemical methods.

In this paper, we prepared two types of low-dimensional MoSe2 nanostructures based on top-down
techniques. In the first case, LPE-derived 2D MoSe2 nanosheets were functionalized with cetyltrimethyl
ammonium bromide (CTAB). It is expected that the CTAB surfactant could aid exfoliation efficiency
and prevent 2D nanosheets from restacking or agglomeration [38]. Secondly, 0D MoSe2 QDs were
obtained based on top-down exfoliation approaches. For usual 0D TMD QDs derived from LPE,
longer ultrasonication time and higher power were typically adopted, which could easily deform
the microstructure and result in higher density of surface traps states. As surface-to-volume ratio is
rather large for QDs, these deep trap states pose negative impact to many applications. In our work,
a novel and efficient ultrasonication-assisted solvothermal exfoliation technique is firstly introduced
for preparing small size and high-quality MoSe2 QDs. In the initial probe-assistant ultrasonication
exfoliation phase, MoSe2 bulk is broken into nanosheets or nanoparticles by the acoustic cavitation
effect. The sonication time is kept short in this stage. Next, the solvothermal treatment with a polar
solvent continuously weakens the van der Waals forces of thinned MoSe2 and break it up into small
0D QDs. We show that our CTAB-modified MoSe2 NSs and 0D MoSe2 QDs are able to efficiently
catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a
colored product. On this basis, we have successfully demonstrated novel platforms for colorimetric
detection of H2O2. It is found that the sensing capability of our MoSe2 systems is comparable to
those of published 2D materials-based platforms. As far as we know, it is the first time the potential
of CTAB-functionalized MoSe2 nanosheets and 0D MoSe2 QDs have been explored for colorimetric
detection of H2O2. Toxic and high boiling point solvents were not used in our synthesis methods
thus our protocols also provide a non-toxic and systematic way to fabricate new 2D nanomaterials for
construction of novel colorimetric sensors and for use in extended applications.

2. Materials and Methods

2.1. Materials and Reagents

MoSe2 powder (99.9%), 3,3,5,5-tetramethylbenzidine (TMB), and isopropanol were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Cetyltrimethyl ammonium bromide (CTAB) was purchased
from Millipore (Burlington, MA, USA). Acetic acid, sodium acetate anhydrous, hydrochloric acid,
and hydrogen peroxide (35%) were obtained from Alfa Aesar (Tewksbury, MA, USA). These chemicals
were of analytical purity and were used as received. Deionized water (DI water) was used as a
solvent throughout.

2.2. Methods

2.2.1. Preparation of Surfactant Modified Two-Dimensional (2D) MoSe2 Nanosheets (NSs)

The few-layer CTAB-MoSe2 NSs synthesis protocol is based on the grinding-assisted liquid phase
exfoliation approach [37]. The synthesis protocol of 2D CTAB-MoSe2 NSs is illustrated in Figure 1a.
First, 100 mg of MoSe2 powder and 50 mg of CTAB were ground for 30 min. The mixture was
subsequently dispersed in 20 mL of DI water and stirred for 1 h at 90 ◦C in a beaker. The solution
was probe sonicated for 3 h with a horn sonic tip (Qsonica CL-334) at a power output of 125 W in a
water-cooled bath at 20 ◦C. Residual sediment and thick flakes were further removed by centrifugation
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at 4000 rpm for 20 min. The upper portion of the supernatant was taken for the next centrifugation for
20 min at the speed of 9000 rpm. The upper portion of the resultant supernatant was transferred to
a refrigerator at 4 ◦C for storage. Finally, the 2D CTAB-MoSe2 NS product was collected by another
centrifugation at the speed of 9000 rpm.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 19 
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Figure 1. The schematic illustrations for the preparations of (a) two-dimensional (2D) cetyltrimethyl
ammonium bromide (CTAB)-MoSe2 nanosheets and (b) 0D MoSe2 quantum dots (QDs).

2.2.2. Preparation of 0D MoSe2 QDs

The 0D MoSe2 QDs were obtained according to the ultrasonication-assisted solvothermal
exfoliation technique. Figure 1b depicts the synthesis procedure of 0D MoSe2 QDs. Typically,
100 mg of MoSe2 powder was dispersed in 60 mL of 50 vol% Isopropyl alcohol (IPA)/DI water mixture
in a beaker. Then, the solution was probe sonicated for 1 h with a horn sonic tip (Qsonica CL-334) at
a power output of 150 W in a water-cooled bath at 20 ◦C. Afterward, the resultant dispersions was
further transferred to a 60 mL Teflon-lined autoclave and reacted at 200 ◦C for 24 h. After the autoclave
cooled naturally, the supernatant containing MoSe2 QDs was centrifuged for 30 min at the speed of
9000 rpm. After that, the upper portion of the supernatant was collected for second centrifugation for
15 min with the same rotation speed. Finally, the MoSe2 QD product was collected and then stored in a
refrigerator at 4 ◦C for use.

2.3. Characterization

Transmission electron microscopy (TEM) images and high-resolution TEM (HRTEM) images were
taken by using a JEOL-3010 transmission electron microscope at an accelerating voltage of 200 kV
(Tokyo, Japan). The elemental composition and bonding configuration analysis were carried out
by an ultrahigh vacuum JEOL JPS-9010 X-ray photoelectron spectrometer (XPS) equipped with a
multi-channel detector. The detected binding energies were calibrated to the C1 s peak at 284.8 eV of
the surface adventitious carbon. The ultraviolet–visible (UV–vis) spectra were recorded with a Jasco
V-730 spectrophotometer (USA) with a standard 10-mm path length quartz cuvette (Easton, MD, USA).
The photoluminescence spectra were measured using a Hitachi F-4500 florescence spectrophotometer
connected to a 150 W Xenon lamp as the excitation source. The Raman spectra were recorded in
ambient conditions using a confocal microscope linked to a Horiba iHR320 spectrometer (Piscataway,
NJ, USA) [39].
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2.4. Peroxidase-Mimetic Activity of MoSe2 Quantum Dots (QDs) and 2D Cetyltrimethyl Ammonium Bromide
(CTAB)-MoSe2 NSs

To evaluate the catalytic peroxidase-like properties, a blue product was generated by the peroxidase
substrate TMB in the presence of H2O2. In a typical experiment, 600 µL 0.1 mg/mL MoSe2 catalyst
was incubated with 500 µL acetate buffer solution (0.1 M, pH 3.6), 200 µL H2O2 (10 mM), 200 µL TMB
(5 mM) and 60 µL H2O at room temperature for 15 min. Then, the absorbance of the mixture was
measured by a Jasco V-730 UV-visible spectrophotometer (Easton, MD, USA). For H2O2 detection,
different contents of H2O2 were incubated with 600 µL 0.1 mg/mL MoSe2 catalyst, 500 µL acetate
buffer solution (0.1 M, pH 3.6) and 200 µL TMB (5 mM) at room temperature for 15 min, and then the
absorbance at 652 nm was recorded.

3. Results and Discussion

3.1. Structural Studies

The microstructure of the resultant MoSe2 nanomaterials is characterized by transmission electron
microscopy (TEM). As shown in Figure 2a, the as-obtained MoSe2 QDs reveal a spherical shape without
noticeable aggregation, indicating the successful formation of highly dispersive QDs. The statistical
analysis of particle size distribution was conducted by counting 700 QD profiles measured by TEM.
The outcome is displayed by the histogram in Figure 2b along with its calculated Gaussian fitting
curve. The average size of the 0D QDs was determined to be 4.5 nm and up to 80% QDs have their
diameters in the narrow range from 3 to 6 nm. A high-resolution TEM (HRTEM) image of a single
MoSe2 QD in the inset of Figure 2a reveals that the lattice spacing of the synthesized QD was 0.23 nm,
which coincides with the (103) plane of hexagonal MoSe2 [40].
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Figure 2. (a) Transmission electron microscope (TEM) image of synthesized MoSe2 QDs. The inset
shows representative high-resolution TEM (HRTEM) image of the MoSe2 QD. (b) Statistical analysis of
the size of MoSe2 QDs measured by TEM and its Gaussian fitting curve.

Next, Figure 3a shows the representative TEM image of the as-prepared 2D CTAB-MoSe2

nanosheet, in which a sheet-like structure can be found. The HRTEM image in the inset of Figure 3a
resolves lattice fringes with lattice spacing of 0.28 nm, which is in agreement with the (100) plane
of 2H-MoSe2. As shown in Figure 3b, the selected-area electron diffraction (SAED) pattern again
verifies the diffraction pattern from the 2H-MoSe2 crystal and demonstrates the good crystallinity
of the exfoliated nanosheets. Atomic force microscopy (AFM) measurement was adopted to further
confirm the 2D nature of CTAB-MoSe2 nanosheets. A representative AFM image is shown in Figure 3c
and the height profile along the black line was measured. It was found that the nanosheet thickness
ranges from 4.2 to 4.7 nm, which confirms the 2D few-layered structure.
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line in the image.

3.2. Surface Elemental and Valence State Analysis

To further shed light on the surface chemical components and oxidation states of our
solvothermal-treated MoSe2 QDs, XPS was performed on both pristine bulk MoSe2 powder and
MoSe2 QDs. Figure 4a,b show the high-resolution Mo 3d and Se 3d XPS spectra of pristine MoSe2

powder, respectively. The two peaks located at 228.1 eV and 231.2 eV correspond to the Mo 3d5/2

and Mo 3d3/2 peaks of the Mo4+ state in MoSe2, which is in agreement with previous reports [19,41].
Meanwhile, the peak of Se 3d spectrum can be deconvoluted into two components: the binding energy
peaks at 53.4 eV and 54.2 eV are characteristic signals of Se2− 3d5/2 and Se2− 3d3/2, respectively [42].
In this case, a signal from the Mo6+ state was not observed, indicating that there is no noticeable
oxidation in our pristine material. Next, the high-resolution Mo 3d and Se 3d spectra of MoSe2 QDs
are presented in Figure 4c,d, respectively. The deconvolution of Mo 3d spectral region reveals four
contributions. The two intense peaks at 227.9 and 231.1 eV belong to the characteristic signals from
Mo4+ 3d5/2 and Mo4+ 3d3/2, respectively. Furthermore, the other two minor peaks at binding energies
of 232.2 and 235.5 eV are ascribed to the Mo(VI) state [37]. This suggests that a small portion of surface
Mo4+ was oxidized into Mo6+ during the imposed reaction [43,44]. As shown in Figure 4d, the two
deconvoluted components of the Se 3d doublet appear at 53.5 eV and 54.3 eV, which can be assigned
to the Se 3d5/2 and Se 3d3/2 orbitals of divalent selenide ions (Se2−), respectively. It can be confirmed
that the binding energies of Mo4+ and Se2- orbitals of our prepared QDs do not deviate noticeably
from those of the starting material. It is reasonable as no heterostructure formation or other interaction
is involved.
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Figure 4. High-resolution X-ray photoelectron spectrometer (XPS) spectra showing the binding energy
of (a) Mo 3d and (b) Se 3d electrons recorded on bulk MoSe2 powder. High-resolution core level spectra
corresponding to (c) Mo 3d and (d) Se 3d electrons for MoSe2 QDs.

3.3. Optical Property Studies

It is known that the dimensionality strongly affects the optical properties of nanoscale
semiconductors. The optical absorption spectrum of the resultant CTAB-MoSe2 nanosheets in dispersion
is displayed in Figure 5a. The evident absorption peaks at 805 and 695 nm can be easily identified
and they are attributed to the characteristic resonances of A and B excitons, respectively [45–47].
Their origin is derived from the transitions between the spin-orbit split valence bands and the lowest
conduction band at K and K’ points of the Brillouin zone. Moreover, it is worth of noting that the
determined energy separation of 244 meV between the A and B excitonic states is consistent with
a previous study on the energy splitting of the exciton states in ultrathin MoSe2 nanosheets [48].
Therefore, it provides a quantitative proof of pronounced quantum confinement effect in our exfoliated
2D MoSe2 nanosheets. The facile and conventional way to address the optical band gap is by means of
the Tauc plot. The absorption coefficient α of a direct band-gap semiconductor can be related to photon
energy hυ by (αhυ)2 = A (hυ − Eg), where A is a constant and Eg is the optical band gap. Figure 5b plots
the relationship of (αhυ)2 versus hυ, which demonstrates a linear dependence. The calculated optical
gap for the apparent absorption is 1.54 eV (805 nm), which exactly coincides with the A excitonic states
and highlights the 2D nature of CTAB-MoSe2 nanosheets.
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The optical absorption spectrum of the as-prepared 0D MoSe2 QDs is in sharp contrast with their 2D
counterpart, as shown in Figure 5c. Here, the A and B excitonic features in the absorption completely
disappeared. Instead, the absorption feature comprised two absorption bands. The prominent
band is centered at around 275 nm, which is ascribed to the intrinsic excitonic absorption of the
QDs [49,50]. Such a significant blue-shift of the excitonic features directly reflects the dominating
quantum confinement effect and is in accordance with previous studies on other TMD QDs [32,51].
Furthermore, there exists another mild absorption band at longer wavelengths. It is wide and centered
about 325 nm with a tail extending to ~400 nm, which will be commented upon later.

Photoluminescence (PL) spectroscopy provides a complimentary optical means to probe the
electronic structure of semiconductor materials [52,53]. The distinct optical property of TMD QDs is
well-suited to be further evidenced by the PL technique. It is easily found that our MoSe2 QDs dispersed
in aqueous solution emit strong blue fluorescence under irradiation with a typical UV lamp. It is due
to the weak interlayer coupling and enhanced quantum efficiency of MoSe2 QDs, which is another
signature of TMD QDs [54]. To gain a comprehensive view of the emission property, the PL spectra of
resultant MoSe2 QD dispersion were further taken with different excitation wavelengths, as shown in
Figure 6a. It is observed that when the excitation wavelength was increased from 290 to 400 nm, the PL
peak position monotonically increased from 390 to 470 nm. Similar excitation-dependent PL behavior
has been reported in a few TMD QD reports [32]. In a strong quantum confinement regime, photons
with higher energies resonantly excites smaller QDs with wider band gaps, pushing the emission peak
to shorter wavelengths. Accordingly, the characteristic excitation-dependent PL behavior derives from
the polydispersity of the synthesized QDs. This idiosyncratic variation of PL intensity in response to
varying excitation wavelengths can be clearly presented by the 2D color-converted PL contour map
as depicted in Figure 6b. We found the strongest emission peaked at 418 nm under an excitation
wavelength of 340 nm. This specific wavelength falls coincidentally within the observed absorption
band around 325 nm. Thus the close correspondence between the absorption and the emission of the
synthesized QDs can be revealed by our optical characterizations.
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Figure 6. (a) Excitation-wavelength dependent photoluminescence (PL) spectra of colloidal MoSe2

QDs at room temperature. (b) The 2D contour map acquired from the PL spectra. The characteristic
contour is due to the pronounced quantum confinement effect.

Raman spectroscopy was adopted to acquire additional insight into the optical characteristics
of 2D CTAB-MoSe2 nanosheets. In general, group theory analysis permits bulk TMDs to have four
Raman-active modes. However, only two modes are accessible in typical experimental configuration,
namely, out-of-plane A1g and in-plane E1

2g modes. The inset sketch in Figure 7 depicts these two
principal Raman-active vibration modes of MoSe2. Figure 7 compares the Raman spectra of both MoSe2

bulk and 2D CTAB-MoSe2 nanosheets. For MoSe2 bulk, the A1g mode is located at 239.4 cm−1 while
the in-plane E1

2g mode appears at ≈285.5 cm−1, which match nicely with literature values [55]. The A1g

mode for CTAB-MoSe2 nanosheets is red-shifted to 237 cm−1, which is attributed to the softening
of the vibrational mode [56]. The reduced inter-planar restoring force is another proof for the 2D
few-layer structure. In addition, a new peak emerges on the lower-frequency side of the A1g peak.
It is ascribed to Davydov splitting of the A1g mode that is accompanied by the suppressed interlayer
interaction as reported in TMD nanosheets [57,58]. In contrast, the E1

2g mode for CTAB-MoSe2 shifts
to 302 cm−1. The dielectric screening of the long-range Coulomb interaction and the surface effects of
TMD materials were proposed to be responsible for this blue-shift [59]. The increased energy splitting
between the two allowed Raman peaks is in accord with the 2D nature of our CTAB-MoSe2 [60,61].
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3.4. Peroxidase-Like Activities and Steady-State Kinetic Assay

We evaluated the peroxidase-like activity of MoSe2 QDs by using the catalytic oxidation of TMB
in the presence of H2O2, as shown in Figure 8a. The absorption spectrum of the TMB solution showed
it is colorless. When only H2O2 was incubated with TMB, the TMB–H2O2 systems showed rather
weak absorbance at 652 nm. Yet as TMB coexisted with H2O2 and the MoSe2 QDs, a prominent
absorption peak of the oxidation products of TMB at 652 nm was observed. Moreover, the color
contrast of these system is presented in the inset of Figure 8a. It can be seen that the bare TMB
and the TMB–H2O2 systems are virtually colorless to the naked eye, while TMB–H2O2–MoSe2 QDs
system showed an apparent color variation. Figure 8b display time-dependent absorbance changes at
652 nm of these systems. It clearly shows the absorbance at 652 nm increased as the time increased for
TMB–H2O2–MoSe2 QDs system. This means that the prepared MoSe2 QDs possess the peroxidase-like
catalysis capability, which effectively catalyze the oxidation of TMB by H2O2. On the contrary,
rather insignificant and slow oxidation of TMB by the presence of H2O2 was found for the reference
TMB–H2O2 system. Our results thus demonstrated that the MoSe2 QDs can facilitate the oxidation of
TMB to oxTMB in the presence of H2O2 to generate observable color changes. An identical result was
also found for our 2D CTAB-MoSe2 nanosheets (not shown here).Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 19 
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Figure 8. (a) UV-visible absorption spectra of (1) 3,3,5,5-tetramethylbenzidine (TMB) solution (brown);
(2) TMB–H2O2 system (green); (3) TMB–H2O2–MoSe2 QDs system (blue). Inset: the corresponding
photographs of these reaction systems. (b) The time-dependent absorbance changes at 652 nm of
these systems.

The kinetic parameters of the peroxidase-like reaction were harvested by employing the
steady-state kinetics analysis. With H2O2 and TMB as substrates, the measurements were carried
out by changing the concentration of one substrate while keeping the other substrate concentration
constant. This generates the typical Michaelis–Menten curves, as shown in Figure 9a,b for our MoSe2

QDs. For 2D CTAB-MoSe2 nanosheets, these curves are plotted in Figure 10a,b. The relevant kinetic
parameters like the Michaelis–Menten constant (Km) and the maximal reaction velocity (Vmax) can
be extracted from the Lineweaver–Burk plot according to the relation: 1/v = (Km/Vmax) × (1/[S]) +

1/Vmax, where v stands for the initial velocity and [S] signifies the concentration of the substrate [62,63].
Figure 9c,d display the L-B plot for our 0D MoSe2 QDs while Figure 10c,d illustrate the L-B plot for 2D
CTAB-MoSe2 nanosheets. The calculated results are listed in Table S1. The Km value is regarded as
an important index that measures the binding affinity of enzyme to the substrates. A smaller value
of Km usually indicates a higher affinity between the enzyme and the substrate. It is found that the
Km value of 2D CTAB-MoSe2 for H2O2 is lower than that of MoSe2 QDs, suggesting a higher affinity
of 2D CTAB-MoSe2 to H2O2 than MoSe2 QDs. Meanwhile, the lower Km value of MoSe2 QDs to
TMB represents its higher affinity in this respect. In addition, the parallel slope of the lines in the
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double-reciprocal plots of initial velocity versus different concentrations of one substrate reveals a
ping-pong mechanism in the catalytic reaction [64–66]. This indicates that both of our MoSe2–based
enzymes bound and reacted with the first substrate and the first product was subsequently released
before the reaction with the second substrate.Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 19 
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involving hydrogen peroxide usually abound with reactive radicals such as ȮH and Ȯ2−. Then IPA 

Figure 9. Steady-state kinetic analysis for MoSe2 QDs. The reaction velocity (v) was measured
when (a) the H2O2 concentration was varied while the concentration of TMB was 5 mM and (b) the
TMB concentration was varied while the concentration of H2O2 was 0.75 mM. The corresponding
double-reciprocal plots with a fixed concentration of one substrate relative to varying the concentration
of the other substrate are displayed in (c,d).
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Figure 10. Steady-state kinetic assay of 2D CTAB-MoSe2 nanosheets. (a) Varying the concentrations of
H2O2 while the concentration of TMB was 5 mM. (b) Varying the concentrations of TMB while the
concentration of H2O2 was 0.75 mM. The double-reciprocal plots for the concentration of (c) H2O2 and
(d) TMB.

3.5. Actives Species Trapping Tests and Peroxidase-Like Catalytic Mechanism

To confirm the prime species responsible for the peroxidase-mimetic catalytic activities of our
artificial MoSe2–based enzymes, scavenger tests were employed. It is known that reaction systems
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involving hydrogen peroxide usually abound with reactive radicals such as ȮH and Ȯ2
−. Then IPA

and benzoquinone (BQ) were taken to be the scavengers in the reaction system for ȮH and Ȯ2
−

radicals, respectively. Figure 11 shows the results of active species trapping tests of our reaction system.
We found that the suppression of characteristic absorption and color fading were not evident with the
addition of IPA. On the other hand, significant decrease in absorption and color contrast can be seen
when BQ was added. This indicates that Ȯ2

− radical plays the major role to oxidize TMB to produce a
TMB oxide and generate color contrast. Based on our finding and several previous reports [67,68], we
propose the peroxidase-like catalytic mechanism of our MoSe2–based enzymes, which is illustrated
in Figure 12. In the reaction process, TMB molecules are absorbed on the surface of MoSe2–based
nanomaterials and act as the chromogenic electron donors. These molecules transfer their lone-pair
electrons to MoSe2 from the amino groups, leading to the enhancement of electron density and mobility
on the surface of MoSe2-based catalyst. In turn, it accelerates the electron migration from MoSe2–based
catalyst to hydrogen peroxide. The one-electron transfer reaction generate a large amount of Ȯ2

−

radicals that oxidize TMB and form blue-green product. Briefly, the MoSe2-based catalyst promote the
electron transfer from TMB to H2O2, resulting in the oxidation of TMB and reduction of hydrogen
peroxide. The production of colored oxTMB and water in this system can be expressed by the equation
H2O2 + TMB→ 2H2O + O2 + oxTMB.
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different reaction systems.
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Figure 12. The schematic diagram depicts the mechanism for colorimetric detection of H2O2 by using
2D CTAB-MoSe2 NSs and MoSe2 QDs as peroxidase mimetics.

3.6. Colorimetric Detection of H2O2 by MoSe2-Based Assay System

In view of the intrinsic peroxidase-like property of as-prepared MoSe2–based catalysts, a colorimetric
strategy for the detection of H2O2 was established. The absorption spectra of TMB–H2O2–MoSe2 QDs
system with different H2O2 concentration is presented in Figure S1. It can be seen that the characteristic
absorption of TMB at 652 nm is dependent on the concentration of H2O2 varied from 10 µM to 4 M.
Analogous results can be found with our TMB–H2O2–2D CTAB-MoSe2 system, as shown in Figure S2.
Figures 13a and 14a display the absorbance variations at 652 nm of the oxidized TMB in the presence
of H2O2 with different concentrations for the TMB–H2O2–MoSe2 QDs system and TMB–H2O2–2D
CTAB-MoSe2 system, respectively. Besides, the corresponding image in response to the change of
H2O2 is shown in the insets of Figures 13a and 14a, which shows the color variation could be seen
by the naked eye. For TMB–H2O2–MoSe2 QDs system, the H2O2 concentration-response curve has
a linear relationship in the range of 10 µM to 100 µM with a detection limit of 4 µM, as illustrated
in Figure 13b. Figure 14b draws the calibration curve for H2O2 with a linear range from 10 to
250 µM for the TMB–H2O2–2D CTAB-MoSe2 system. The detection limit was also reckoned to be
around 4 µM. It shows that the TMB–H2O2–2D CTAB-MoSe2 system could have a wider linear range
compared with that of the TMB–H2O2–MoSe2 QDs system. Finally, we compare some representative
colorimetric detections of H2O2 by using novel 2D materials in Table 1 [69–72]. It can be seen that the
colorimetric sensing ability of H2O2 based on the peroxidase-like property of our MoSe2-based catalyst
is comparable to other reported 2D materials-based colorimetric platforms. Therefore, our work
provides a facile, simple, cost-effective, and alternative 2D materials-based colorimetric sensing
platform for sensitive detection of H2O2. In principle, this sensing platform can be applied to a few
diverse applications, yet proper selectivity tests should then be imposed to understand the specific
accuracy in the measurement [31,73–75].
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Table 1. Comparison of colorimetric detections of H2O2 in the linear range and detection limit between
our MoSe2 nanostructures and other peroxidase mimics based on nanoscale 2D materials.

Catalyst Linear Range (µM) Detection Limit (µM) Ref.

Positively-charged Au nanoparticles
(NPs)h-BN/N-MoS2

2–200 0.5 [15]

h-BN/N-MoS2 1–1000 0.4 [69]
Few-layered MoSe2 nanosheets (NSs) 10–160 0.4 [27]

MoS2 NPs 3–120 1.25 [23]
SDS–MoS2 NPs 2–100 0.32 [24]

g-C3N4 5–100 1 [70]
MoS2 QDs/g-C3N4 NSs 2–50 0.155 [71]

WS2 Nanosheets 5–200 1.5 [72]
2D CTAB-MoSe2 10–250 4 This work

0D MoSe2 QDs quantum dots (QDs) 10–100 4 This work
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4. Conclusions

In summary, we prepared 2D and 0D MoSe2 nanostructures based on systematic and non-toxic
top-down strategies. The characteristic excitation-dependent PL of the MoSe2 QDs can be attributed to
the polydispersity of the synthesized QDs. The Raman shift of ultrathin MoSe2 nanosheets manifests
the 2D nature of its structure. We demonstrated that these MoSe2 nanostructures possess intrinsic
peroxidase-like activity in that they can facilitate the oxidation of TMB in the presence of H2O2,
generating a visible color reaction. For the catalysis mechanism, kinetic analysis indicates that the
catalytic reaction follows the typical Michaelis–Menten theory and a ping–pong mechanism. Moreover,
active species study shows that Ȯ2

− plays a pivotal role in the peroxidase-like catalytic reaction.
Based on the color reaction of TMB catalyzed by our MoSe2 nanomaterials, we have developed a new
colorimetric method for H2O2 detection by using 2D and 0D MoSe2 nanostructures as peroxidase
mimetics. It is shown that the colorimetric sensing capability of our MoSe2 catalysts is comparable
to other 2D materials-based colorimetric platforms. Overall, the synthesis strategy we proposed is
environmentally friendly and economic, and it can easily be adapted to construct novel inorganic
low-dimensional enzyme-free mimetic with intrinsic catalytic activity. The potential of the presented
2D and 0D MoSe2 nanostructures for use as a catalyst in other oxidation reactions could be explored
in the extended study and this could create a new opportunity for this enzyme-mimicking MoSe2

nanostructures in many significant fields, such as environmental protection, food monitoring, medical
diagnostics, and photocatalysis.
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