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Abstract 

The underlying molecular mechanisms of adverse drug events (ADEs) associated with cancer therapy drugs may 

overlap with their antineoplastic mechanisms. In a previous study, we developed an ADE-based tumor stratification 

framework (known as ADEStrata) with a case study of breast cancer patients receiving aromatase inhibitors, and 

demonstrated that the prediction of per-patient ADE propensity simultaneously identifies high-risk patients 

experiencing poor outcomes. In this study, we aim to evaluate the ADEStrata framework with a different tumor type 

and chemotherapy class – ovarian cancer treated with platinum chemotherapeutic drugs. We identified a cohort of 

ovarian cancer patients receiving cisplatin (a standard platinum therapy) from The Cancer Genome Atlas (TCGA) 

(n=156). We demonstrated that somatic variant prioritization guided by known ADEs associated with cisplatin 

could be used to stratify patients treated with cisplatin and uncover tumor subtypes with different clinical outcomes.  

1 Introduction 

Ovarian cancer is one of leading causes of cancer death among women in the United States. About 70% of patients 

at diagnosis present with advanced-stage and high-grade serous ovarian cancer (1).  Platinum-based chemotherapy is 

a standard treatment following a cytoreductive surgery, however, approximately 25% of patients develop platinum-

resistance within six months and almost all patients with recurrent disease ultimately develop platinum resistance 

(2). In addition, partly due to the lack of successful treatment strategies, the overall five-year survival rate for high-

grade serous ovarian cancer is only 31%. Although several mechanisms have been revealed to contribute to 

chemotherapy response (3-5), there are no valid clinical or molecular markers that effectively predict the 

chemotherapy response.   

Recently, the cancer research community is actively working on compiling cancer genomic information, and 

investigating new therapeutic options and tailored treatment for individual patient according to personal tumor 

genome. A notable example is The Cancer Genome Atlas (TCGA) research network (6, 7). TCGA has released an 

ovarian cancer dataset containing a large (for genomics) sample size, comprehensive genomic profiles and clinical 

outcome information (1). The dataset has been utilized to analyze chemotherapeutic response in ovarian cancers in 

several previous studies (8, 9).  

Adverse drug events (ADEs) are a critical factor for selecting cancer therapy options in clinical practice. For 

example, cisplatin and carboplatin are two commonly used chemotherapy drugs in the treatment of ovarian cancer 

and are also used to treat other cancer types. In comparison with cisplatin, the greatest benefit of carboplatin is its 

reduced side effects, particularly the elimination of nephrotoxic effects (4). These side effects have been well 

documented in the United States Food and Drug Administration (FDA) Structured Product Labels (SPLs). The 

underlying molecular mechanisms of adverse drug events (ADEs) associated with cancer therapy drugs may also 

overlap with their antineoplastic mechanisms. Specifically, that the antineoplastic mechanism of action, which kills 

tumor cells, may be the same mechanism by which healthy cells are damaged leading to toxicity. In a previous 

study, we developed an ADE-based tumor stratification framework (known as ADEStrata) with a case study of 

breast cancer patients receiving aromatase inhibitors (10), and demonstrated that the prediction of per-patient ADE 

propensity simultaneously identifies high-risk patients experiencing poor outcome.  

In the present study, we aim to evaluate the feasibility of the ADEStrata framework with a different tumor type and 

class of therapy – ovarian cancer treated with platinum chemotherapeutic drugs. We first identified a cohort of 

ovarian cancer patients receiving cisplatin drugs from TCGA, and retrieved somatic mutations for each patient case. 

We then conducted variant prioritization that was guided by known ADEs of cisplatin represented by Human 

Phenotype Ontology (HPO) terms. We performed pathway-enrichment analysis and hierarchical clustering, which 

identified two patient subgroups. We finally conducted a clinical outcome association study to investigate whether 

the patient subgroups are significantly associated with survival outcome in univariate and multivariate analysis. 

 

2 Materials and Methods 
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2.1 Materials 

2.1.1 SIDER: A Side Effect Resource 

    The SIDER (SIDe Effect Resource) is a public, computer-readable side effect resource that contains reported 

adverse drug reactions (11). The information is extracted from public documents and package inserts; in particular, 

from FDASPLs. In the present study, we utilized the latest version SIDER 2 that was released on October 17, 2012. 

2.1.2 HPO: Human Phenotype Ontology 

    The HPO project aims to provide a standardized vocabulary of phenotypic abnormalities encountered in human 

diseases (12). The ontology contains more than 10,000 terms and equivalence mappings to other standard 

vocabularies such as MedDRA and UMLS. In the present study, we used the latest version of HPO-MedDRA 

mapping file that is publicly available from the HPO website (13). 

2.1.3 eXtasy: A Variant Prioritization Tool 

    eXtasy is a variant prioritization pipeline developed at the University of Leuven, for computing the likelihood that 

a given nonsynonymous single nucleotide variants (nSNVs) is related to a given phenotype (14, 15). The eXtasy 

pipeline takes a Variant Call File (VCF) and one or more gene prioritization files. Each prioritization file is pre-

computed for a specific phenotype (HPO term). In the present study, we downloaded and installed the tool on a local 

Ubuntu server. 

2.1.4 TCGA Data Portal 

    TCGA Data Portal provides a platform for researchers to search, download, and analyze data sets generated by 

TCGA consortium (16). As of September 2014, there are 586 cases of ovarian serous cystadenocarcinoma (OV) 

with data. In the present study, we utilized the OV clinical data (including clinical drug data and follow-up data) and 

somatic mutation data through the Open Access data tier. 

2.2 Methods 

2.2.1 Identifying HPO ADE Terms Relevant to Platinum Drugs 

    We first mapped the ADE terms represented in MedDRA UMLS concept unique identifiers (CUIs) from the 

SIDER 2 database file to the HPO terms using an HPO-MedDRA mapping file produced by HPO development 

team. Second, we annotated those HPO terms with a flag using the eXtasy HPO term list to indicate whether a HPO-

based ADE term can be processed by eXtasy or not. Third, we retrieved those entries (with drug-ADE pairs) using 

the drug name “cisplatin” and identified a list of ADEs with their HPO term annotations. 

2.2.2 Identifying Patient Cohorts by Platinum Drugs and Somatic Mutations from TCGA 

    We utilized the clinical drug information file of the OV patients from TCGA data portal through its Open-Access 

HTTP Directory. The spelling corrections were taken for all variants of the three drugs to maximize the sample size 

of the patient cases. We then identified a set of patient cases (represented by patient barcodes) that were prescribed 

for the cisplatin.  

    We also downloaded the somatic mutation file of the OV patients from TCGA data portal in a Mutation 

Annotation Format (MAF). The format is a tab-delimited file containing somatic mutations for each patient. As 

eXtasy requires a VCF file as input, we converted the MAF file into a collection of VCF files. Each VCF file 

contains somatic mutations for a single patient tumor sample. We combined all VCF files for all cisplatin cases into 

a single VCF file using the patient barcodes identified in the step above.  

2.2.3 Variant Prioritization Using HPO ADE Terms 

    As mentioned above, we installed an instance of the eXtasy tool in a local server and ran the tool with a custom 

Ruby script. The input consists of a VCF file and a set of pre-computed gene prioritization files for those phenotypes 

represented by the HPO ADE terms of interest. The output is a file with likelihood scores for input variants of 

impacting an individual HPO term (17). The scores represent the probability that a variant is high-ranking in all 

different phenotypes comparing against a null distribution of random rankings. To shed some lights on how the 

variants could potentially affect protein function, we first classified the input variants into three functional impact 

categories, calling a variant “high” if it is a frameshift, nonsense, nonstop, or splice-site; and “medium” if it is a 

missense; and “silent” if it is a mutation not causing protein coding changes. And then we analyzed the function of 

those variants scored by eXtasy for cisplatin-related HPO terms. 

2.2.4 Tumor Mutation Stratification and Clinical Outcome Association Studies 

    We first selected statistically significant variants based on the eXtasy order statistics (pseudo p-value <0.05). 

Second, we aggregated genes affected by these prioritized variants across 1,320 canonical pathways collected from 

the Molecular Signature Database (MSigDB) (18, 19). In order to reduce false discoveries, multiple criteria were 

applied to further filter out less relevant pathways (binomial distribution p-value >0.05) or pathways containing too 

few genes (<10 genes). We excluded pathways with less than 10 genes, based on the consideration that small 

pathways are often subcomponents of larger pathways, and inclusion of them tends to introduce unnecessary 
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redundancy. Third, we performed hierarchical clustering to highlight pathway-level patterns among cisplatin-treated 

patients.  

    We used overall survival (OS) time (years) as a clinical endpoint to measure the outcome of TCGA patients in the 

identified cohort. We performed both univariate analysis and multivariate cox-regression to assess the association of 

clusters (produced by hierarchical clustering) with survival. In multivariate analysis, patient age and tumor stage 

were adjusted for to evaluate the independent outcome-prediction contribution of found tumor cluster. We also 

analyzed the distribution of patient age and tumor stage in the clusters identified. 

 

3 Results 

    In total, we identified a list of cisplatin-induced ADEs represented in 95 unique HPO Ids. Of them, 73 HPO Ids 

(76.8%) are covered in eXtasy tool. Table 1 shows a list of such ADEs relevant to renal toxicity.  

Table 1. A list of cisplatin-induced ADEs relevant to renal toxicity represented in HPO terms. 

MedDRA 

UMLS CUI MedDRA Label HPO Id HPO Label eXtasy 

C0341697 Renal impairment HP:0000082 Abnormality of renal physiology YES 

C0740394 Hyperuricaemia HP:0002149 Hyperuricemia YES 

C0235416 Blood uric acid increased HP:0002149 Hyperuricemia YES 

C1565489 Insufficiency renal HP:0000083 Renal failure YES 

C0035078 Renal failure HP:0000083 Renal failure YES 

C0020625 Hyponatraemia HP:0002902 Hyponatremia YES 

C0595916 Nephropathy toxic HP:0000112 Nephropathy YES 

C0020598 Hypocalcaemia HP:0002901 Hypocalcemia YES 

C0151723 Hypomagnesaemia HP:0002917 Hypomagnesemia YES 

C0020621 Hypokalaemia HP:0002900 Hypokaliemia YES 

C0151747 Renal tubular disorder HP:0000091 Abnormality of the renal tubule YES 

C1287298 Urine output HP:0011036 Abnormality of renal excretion YES 

C0032617 Polyuria HP:0000103 Polyuria YES 

 

    We were able to identify a cohort of 156 OV patients receiving cisplatin treatment from TCGA OV clinical drug 

data. Of them, 92 OV patients had somatic mutations identified from OV somatic mutation data. 

The eXtasy program ignores silent variants. Of the remaining variants, 12% are of high impact (see section 2.2.3) 

and almost assuredly affect the normal physiologic function of the affected gene. Of the variants scored by eXtasy 

for cisplatin-related HPO terms, 40% are highly conserved among placental mammals. Because of lack of 

conservation at many variant sites, approximately 60% cannot be evaluated with common prioritization tools such as 

SIFT or PolyPhen2. Of those that are evaluable, both SIFT and PolyPhen2 predict 60% of them as deleterious 

(predictions are 76% concordant).  Variants were prioritized for each patient across the ADE phenotypes represented 

by 73 HPO terms, producing aggregate prioritization scores (max and order statistics).     

    By hierarchical clustering, 2 distinct patient clusters, organized by pathways (affected by prioritized variants), 

were identified and are displayed in Figure 1 containing 16 and 76 patients each. Table 2 shows the results of the 

univariate and multivariate cox-regression analysis for the three clusters. We found that Cluster 2 has a relatively 

large number of patients (n=76), and is significantly association with poorer survival time in both univariate and 

multivariate analysis. Table 3 shows the distribution of age and stage in the 2 clusters identified. There is no 

significant association between the 3 clusters and age/stage, although we noticed that Cluster 2 is enriched with 

more Stage IIIC and Grade 3 patient cases. Figure 2 shows a Kaplan-Meier plot of survival time for the 2 clusters, 

derived from our pathway-level analysis, indicating Cluster 2 had the worse survival outcome associated. 

 

4 Discussion 

    While TCGA catalogs a large number of OV samples, sample size for individual chemotherapies may be small. 

Thus, we focus first on the most common chemotherapy regimen so that the subgroup of interest is still reasonably 

large. In our previous study we considered patients receiving aromatase inhibitors (10). Aromatase inhibitors block 

conversion of precursor hormones to estradiol, effectively turning off the growth signal for estrogen-dependent 

tumors. Evidence exists for tumor addiction; that loss of this dependent growth signal leads to apoptosis. The 

healthy tissues most likely to be affected by this treatment are those who routinely use the aromatase enzyme or 

estrogen signaling in their normal physiology. In this study, we consider a platinum-based therapy whose 

mechanism of action is to nonspecifically damage DNA. Any cell could be affected. The tissues most affected are 

those who are quickly growing and have a greater fraction of their DNA accessible. These include the cancer itself, 
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but also hematologic stem cells and those of the digestive tract. The mechanistic link to the studied ADEs is clearer 

– kidneys become compromised due to higher blood protein levels and blood cells cannot be replaced as quickly. 

The therapy’s molecular mechanism is responsible for the ADEs considered. The rationale behind nonspecific 

chemotherapies, such as cisplatin, is to damage tumor cells more than healthy cells, but damage to both is expected. 

 

Figure 1. An ordered heatmap showing pathway-level clustering of 92 patients treated with cisplatin across ADE 

relevant variants. The color of heatmap from white to red indicates low to high percentages (0% to 100%) of genes 

affected by ADE relevant variants. Column color-bar on top of the heatmap indicates two clusters of samples: 

Cluster 1 (green) and Cluster 2 (black). Note that the number of the patients (n=92) with pathway enrichment is less 

than total number of the identified cohort (n=156) is because not all patients have prioritized variants listed. 

Table 2. The univariate and multivariate cox-

regression analysis results of cluster labels. In 

multivariate analysis, patient diagnosis age, 

tumor-grade and tumor-stage were adjusted for 

to determine the independent contribution of 

cluster membership. HR denotes hazard ratio; * 

denotes p<0.05. 

Table 3. The distribution of age tumor-grade, 

and tumor-stage in the two clusters identified. # 

p-value for age vs. cluster association was 

computed using ANOVA test; p-value for 

stage/grade vs. cluster association was 

computed using Fisher’s exact test. 

     A logical extension of our current 

methodology would be to independently predict 

ADEs given germline or somatic variants. High propensity of ADEs from germline alone would predict high 

toxicity, while high ADE propensity from somatic variants would point to high efficacy. In a given patient, the ideal 
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situation would be a prediction of low toxicity and high 

efficacy, while prediction of high toxicity and low efficacy may 

be a contra-indication for the therapy. An important implication 

of our findings in this study is that cisplatin could be more 

toxic than carboplatin but for a subset of patients it could be 

more effective. We will pursue retrospective validation of this 

methodology with the long term goal of aiding clinical decision 

making in personalized cancer treatment.  

5 Conclusion 

    In summary, we evaluated the feasibility of ADEStrata 

framework with a different tumor type and chemotherapy class 

– ovarian cancer treated with platinum chemotherapeutic drugs. 

We demonstrated that somatic variant prioritization guided by 

known ADEs associated with cisplatin could be used to stratify 

patients treated with cisplatin and uncover tumor subtypes with 

different clinical outcomes. In the future, we plan to evaluate 

and validate our approach by incorporating more data types (e.g., germline variants), and investigate the 

generalization of the method in other tumor types. 
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Figure 2. Kaplan-Meier plot of survival time 

for patients in 2 pathway-level clusters. 
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