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Institute of Medical Microbiology, Virology, Hygiene and Bacteriology, Rostock University Medical Center, Rostock, Germany

Streptococci represent a diverse group of Gram-positive bacteria, which colonize a
wide range of hosts among animals and humans. Streptococcal species occur as
commensal as well as pathogenic organisms. Many of the pathogenic species can
cause severe, invasive infections in their hosts leading to a high morbidity and mortality.
The consequence is a tremendous suffering on the part of men and livestock besides the
significant financial burden in the agricultural and healthcare sectors. An environmentally
stimulated and tightly controlled expression of virulence factor genes is of fundamental
importance for streptococcal pathogenicity. Bacterial small non-coding RNAs (sRNAs)
modulate the expression of genes involved in stress response, sugar metabolism,
surface composition, and other properties that are related to bacterial virulence. Even
though the regulatory character is shared by this class of RNAs, variation on the
molecular level results in a high diversity of functional mechanisms. The knowledge
about the role of sRNAs in streptococci is still limited, but in recent years, genome-
wide screens for sRNAs have been conducted in an increasing number of species.
Bioinformatics prediction approaches have been employed as well as expression
analyses by classical array techniques or next generation sequencing. This review will
give an overview of whole genome screens for sRNAs in streptococci with a focus
on describing the different methods and comparing their outcome considering sRNA
conservation among species, functional similarities, and relevance for streptococcal
infection.
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Introduction

Bacterial small non-coding RNAs (sRNAs) play a fundamental role in the regulation of virulence
factor genes in pathogenic bacteria (Papenfort and Vogel, 2010). Overall, there is still a lot more
information available about riboregulators in Gram-negative model organisms, e.g., Escherichia
coli, Salmonella, and Helicobacter pylori, compared to Gram-positive pathogens. The importance
of sRNAs for pathogenesis in streptococci has been already acknowledged, but intensive functional
studies are still missing. As a first step, a number of genome wide screenings for sRNAs have been
performed in streptococci. Before we describe the sRNA analyses efforts in different species, we
would like to introduce the significance of streptococci as causative agent of disease in human and
livestock, focusing on those species, which have been subjected to sRNA screening.

According to Bergey’s Manual of Systematic Bacteriology streptococci are one of 17 genera
belonging to the facultatively anaerobic Gram-positive cocci (Facklam, 2002). The genus
Streptococcus includes a large number of individual species (>100). Typing and differentiation
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historically relied on haemolytic phenotypes during growth of the
species on blood agar plates, designating isolates as β-hemolytic
and non-β-hemolytic. This classification system was introduced
by work of Schottmüller and Brown in the early 1900 [reviewed in
(Facklam, 2002)]. A more refined and sophisticated classification
was introduced by pioneering work of Rebecca Lancefield at
Rockefeller University New York in 1933. She demonstrated
specific carbohydrate “group” antigens to be discriminative in
a serological typing scheme (Lancefield, 1933). The current
classification and revision of the Streptococcus genus is based on
16S rRNA gene sequencing.

Prominent streptococcal species belonging to the ß-hemolytic
group are Streptococcus pyogenes, S. agalactiae, S. dysgalactiae,
S. equi, S. canis and S. iniae. S. pneumonia, S. suis, S. intermedius,
S. mutans, and species of the S. salivarius-, S. anginosus-, and
S. mitis-group are typically non-β-hemolytic (Facklam, 2002;
Krzysciak et al., 2013). Humans and animals are major hosts for
the abovementioned species, which occur mainly as physiological
flora of skin, throat, upper respiratory tract, and intestine of
their hosts. Some of them are rather opportunistic pathogens,
thriving only in the background of ill or immunocompromised
humans and animals. The pathogenic streptococcal species
can be further classified into three distinguishable groups:
common pathogenic streptococci causing infections in humans,
opportunistic commensals, and zoonosis pathogens. The latter
can cause disease in animals and humans or are transmitted
as primarily animal pathogens to humans during farming
and otherwise intensive contacts (Krzysciak et al., 2013).
S. mutans, S. intermedius, S. canis, S. sanguinis, S. salivarius, and
S. gordonii are opportunistic commensals causing caries, spleen,
and brain abscesses, soft tissue and urinary tract infections,
bacteremia, bone infections, pneumonia, meningitis, sepsis,
and endocarditis, respectively. S. suis is currently the most
prominent zoonosis pathogen among the streptococci, causing
severe invasive, and mostly lethal infections in swine and
humans (Fulde and Valentin-Weigand, 2013). The following
part gives brief introductions into those streptococcal species
for which studies and global screens for sRNAs have been
performed.

Streptococcus pneumoniae
This species can be found as commensal and colonizer of
the human nasopharynx, however, under favorable conditions
can cause local infections which can easily progress into
life-threatening invasive diseases (most common: bacteremia
and meningitis). Between 10 and 20% of adults and up to
40% of children are colonized by pneumococci, most likely
building the basic pathogen reservoir for transmission and
causing community acquired pneumonia. According to WHO
1.2 million infants aged below 5-years die due to pneumonia
per year (data from the CDC Atlanta). Next to this infantile
risk group, people aged above 65-years bear a higher risk
for pneumococcal infections, which is a clear hint for a
correlation of declining immune fitness and susceptibility
toward peumococcal infection. A major virulence factor is
the polysaccharide capsule, allowing serological distinction of
over 90 capsule serotypes. Seven, 13, and 23 -valent capsule

polysaccharide based conjugate vaccines are available and
proved to be very efficient, however, serotype displacement
in colonization phenotypes and in particular rising antibiotic
resistance rates in this naturally competent species highlight
pneumococci as dangerous pathogens. For the interested reader
a recent and excellent review of pneumococci and their
pathogenesis was published by Gamez and Hammerschmidt
(2012).

Streptococcus pyogenes
Streptococcus pyogenes (group A streptococci according to
Lancefield scheme; GAS) is an exclusively human pathogen
responsible for an extraordinary array of different diseases.
S. pyogenes infections in immunocompetent hosts range
from mild, mostly locally restricted, and self-healing diseases
(pharyngitis, impetigo, pyoderma) affecting mainly skin and
mucosal membranes (Cunningham, 2008; Walker et al., 2014)
to severe and life-threatening invasive disease manifestations,
e.g., necrotizing fasciitis and streptococcal toxic shock syndrome.
The latter are associated with high morbidity and mortality rates
in affected patients. The significance of S. pyogenes diseases is
underscored by the large global burden to the national health
care systems. Data compiled in 2005 by Bisno and colleagues
and Carapetis and colleagues revealed 616 million cases of
pharyngitis, 111 million cases of pyoderma, and at least 517.000
fatalities due to invasive diseases and sequelae (Bisno et al.,
2005; Carapetis et al., 2005; Ralph and Carapetis, 2013). Sequelae
manifested after non-treated primary infections comprise
rheumatic heart disease and glomerulonephritis, both severely
affecting underdeveloped countries and poor communities with
limited access to antimicrobial chemotherapeutics. S. pyogenes
is still fully sensitive toward penicillin. However, increasing
numbers of macrolide resistant strains are of concern (Logan
et al., 2012). The virulence factor repertoire, function of many
virulence factors in the pathogenesis of this species, action of
transcriptional regulators, two-component regulatory systems
and their networking activities, as well as pinpointing molecular
evolutionary events (like IndDels) leading to increased fitness
and spread of certain globally disseminated strains have all
been recently reviewed (Kreikemeyer et al., 2003; Hondorp and
McIver, 2007; McIver, 2009; Fiedler et al., 2010; Patenge et al.,
2013; Walker et al., 2014).

Streptococcus mutans
Streptococcus mutans is themost prominent species in the context
of caries etiology. This species is a potent biofilm former and
its sugar metabolism releases acids which act on dentin to
form the typical carries-associated cavities in hosts, who do not
practice proper oral hygiene. Many S. mutans virulence factors
involved in the biofilm phenotype have been characterized in
detail (Krzysciak et al., 2013). This streptococcal species does
also efficiently survive in human blood and is thus involved in
cases of infective endocarditis, where bacteria are part of massive
vegetations on heart valve regions where blood clots rich in
platelets and fibrinogen cover damaged areas. The high burden
on human health and the financial strain on the healthcare
systems due to caries, bring these bacteria in the focus of
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scientific attention, which includes discovery, and functional
characterization of sRNAs.

Streptococcus suis and Other Zoonotic
Streptococci
Four major species are considered zoonosis pathogens among the
streptococci, including S. canis, a resident of the microflora of
domestic carnivores, S. equi sp. zooepidemicus, an opportunistic
pathogen in cats, rodents, minks, monkeys, and seals, S.
iniae, an invasive fish pathogen, and S. suis, a major porcine
pathogen occurring worldwide (Fulde and Valentin-Weigand,
2013). S. suis is probably the most important zoonosis
pathogen, which emerged in the media spotlight after totally
unexpected severe invasive disease with toxic shock like-
syndrome outbreaks reported in China, 2005 (Yu et al.,
2006). A serotype two strain was identified as causative
agent and new emerging type which contained a previously
unknown pathogenicity island. These pathogens are directly
transmitted from swine to their human host during intensive
contacts of farmers with their lifestock, eating of high risk
dishes, like undercooked meat, blood and intestine of animals,
mainly in poor low-income, and underdeveloped countries
like Southeast Asia (Fulde and Valentin-Weigand, 2013). In
swine, sepsis, meningitis, arthritis, and pneumonia caused
by S. suis lead to tremendous economic losses. In humans,
meningitis is the major disease that is diagnosed after S. suis
infection.

Streptococcus agalactiae
Streptococcus agalactiae (group B streptococci according to
Lancefield scheme, GBS) is an important human pathogen which
is found in the urogenital tract and the lower gastrointestinal
tract. Up to 40% of healthy women at reproductive age are
colonized with these bacteria which are apparently part of the
normal flora. However, exactly this colonization site is a sincere
risk for pathogen transmission to neonates during labor and
birth canal passage (Dando et al., 2014). Infected neonates
can develop so called early onset disease, including sepsis,
pneumonia, and meningitis. This occurs in about 5000 new-
borns in the US annually (Gibbs et al., 2004). Early onset diseases
are associated with a 5% mortality rate. In underdeveloped
countries neonate infection and killing rates are thought to be
much higher, since inefficient health care systems do not provide
effective mother pre-screening programs, monitoring, intensive
care, and treatment options (Johri et al., 2013). Moreover, due to
a majority of home births, the actual death toll numbers cannot
be taken into consideration in the official statistics. Manifestation
of GBS disease in elderly and immunocompromised hosts,
associated with high morbidity and mortality rates, include skin
and soft tissue infections, bacteremia, pneumonia, osteomyelitis,
and infections of the urinary tract (Edwards et al., 2005).
Unlike S. pyogenes, S. agalactiae can infect ruminants causing
mastitis (Keefe, 1997). Many S. agalactiae virulence factors
have quite some structural and functional similarities with their
counterparts expressed by S. pyogenes and are mostly well
characterized (Lindahl et al., 2005; Kreikemeyer et al., 2011).
Moreover, transcriptional regulation of S. agalactiae virulence

genes resembles mechanisms seen in other streptococcal species,
a fact recently reviewed (Rajagopal, 2009; Patenge et al.,
2013).

sRNAs in Bacteria
The actual virulence of the streptococcal species described above
depends on a set of specific virulence factors, which first allows
the bacteria to colonize and invade the host organism and
then to survive and proliferate in the hostile environment. In
the course of a successful infection, bacteria have to respond
to the challenging conditions at the infectious site and to the
host defense mechanisms by the coordinated expression of
the appropriate virulence factor genes. Bacterial adaptation to
environmental changes through the regulation of gene expression
has been studied intensively since the middle of the 20th century.
The research focus was on the role of proteins influencing the
activity of the transcriptional machinery including transcription
factors, two component systems (TCSs), and sigma factors.
During the first decade of this century, it became clear that
RNAs serve as important regulatory molecules in eukaryotes
as well as in prokaryotes. Among them, miRNAs, sRNAs, long
noncoding RNAs, and riboswitches have been investigated in all
three domains of life.

In bacteria, the importance of sRNAs as a distinct class of gene
regulators is well established by now. First, the high number of
regulatory RNAs that was found inmany bacteria was unexpected
(Brantl, 2009; Narberhaus and Vogel, 2009; Waters and Storz,
2009). Soon, it became evident that many diverse processes
were controlled by bacterial sRNAs, including stress response,
sugar metabolism, biofilm formation, and surface composition
(Vanderpool and Gottesman, 2005; Gottesman et al., 2006;
Heidrich et al., 2006; Gorke and Vogel, 2008; Gogol et al., 2011;
Sharma et al., 2011; Mika and Hengge, 2013). Moreover, several
sRNAs with housekeeping functions were identified, which are
highly conserved throughout bacteria, e.g., tmRNA, 6S RNA, and
RNase P (Brantl, 2009). In pathogenic bacteria, regulatory RNAs
are involved in host–microbe interactions and lifestyle adaptation
by controlling virulence gene expression and the general stress
response (Papenfort and Vogel, 2010; Caldelari et al., 2013).

There are different classes of regulatory RNAs covering
distinct modes of function. On the one hand, cis-acting RNAs
are contained within 5′-untranslated regions (5′-UTRs) of coding
transcripts. Usually, the secondary structure of the respective
5′-UTR is changed in response to an environmental stimulus,
e.g., temperature in the case of RNA-thermometers or ligand
binding in the case of riboswitches. As a consequence, translation
initiation is inhibited or premature transcription termination
occurs (Klinkert and Narberhaus, 2009; Bastet et al., 2011;
Serganov and Nudler, 2013).

Another group of sRNAs is transcribed independently and
functions via cis- or trans-antisense base pairing. Cis-acting
antisense sRNAs are encoded on the opposite strand of their
respective target gene. The high sequence complementarity to
their target RNA leads to a very strong and specific binding.
A typical example is the toxin-antitoxin system type I in bacteria,
in which a cis-acting sRNA represses the expression of a toxic
hydrophobic peptide gene by base-pairing (Brantl, 2012). In
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several studies, a high level of antisense transcription was
detected in a variety of bacteria, with a subsequent processing
by RNAse III occurring predominantly in Gram-positive bacteria
(Lasa et al., 2012; Lybecker et al., 2014).

In contrast, trans-acting sRNAs are encoded in a location
elsewhere in the genome and show a short and imperfect
complementarity to their target RNAs. The consequence
is a lower binding strength and target specificity that goes
hand in hand with the ability to control more than one
target gene. Highly complex regulatory networks are built
through the interaction of sRNAs with many different targets
(Papenfort and Vogel, 2009). Manifold molecular mechanisms
belong to the regulatory repertoire of trans-acting sRNAs.
Some act as repressors of translation and/or destabilize
mRNA transcripts while others activate and/or stabilize
target mRNAs (Frohlich and Vogel, 2009; Podkaminski
and Vogel, 2010; Thomason and Storz, 2010; Storz et al.,
2011).

To understand how sRNAs are able to regulate a multitude
of different target mRNAs the binding regions need to be
investigated. Interference with translation of target mRNAs is
not restricted to the ribosome binding site (RBS) and the start
codon. In Salmonella, translational repression by binding of
GcvB to conserved C/A-rich sequences within but also upstream
of the shine-dalgarno sequence of several target mRNAs was
detected, indicating that repression is not solely achieved by
masking the RBS but also by blocking translational enhancer
sequences (Sharma et al., 2007). Furthermore, binding of the
sRNA RybB to the 5′ coding region of ompN was also shown to
repress translation in Salmonella (Bouvier et al., 2008). Similarly,
in Bacillus subtilis, binding of SR1 to a region 100 nucleotides
downstream from the ahrC RBS inhibits translation initiation
by induction of structural changes downstream from the RBS
(Heidrich et al., 2007). A distinct mechanism has been described
for the CRISPR RNAs in S. pyogenes, which are involved
in RNA maturation and work in concert with a specialized
protein family, the Cas-proteins. In this adaptive bacterial
immune system, foreign DNA is recognized and eliminated.
Therefore, the presence of complementary regions in the RNA
is necessary to induce specific processing of the target sequences
(Deltcheva et al., 2011).

Regulation by sRNAs is not restricted to mRNA binding.
There are many examples in the literature where sRNAmolecules
bind to and influence proteins, typically by sequestration of a
factor involved in transcription or translation (Babitzke
and Romeo, 2007). The function of many sRNAs in Gram-
negative bacteria and in some Gram-positive species is
dependent on the molecular chaperon Hfq (host factor
Q-beta phage). The Sm-like protein is involved in RNA
folding and facilitates sRNA–mRNA interaction (Peng et al.,
2014). Not all sRNAs of a given species require Hfq for their
function and in some model organisms, including streptococci,
no hfq homologue could be detected at all (Rieder et al.,
2012).

Recently, a further level of complexity in gene regulation
could be demonstrated in two Gram-positive pathogens. In
Enterococcus faecalis and Listeria monocytogenes, eut genes

are responsible for ethanolamine utilization. A riboswitch
binding to vitamin B12 regulates the transcription of an
sRNA. In the absence of vitamin B12, the sRNA is synthesized
and binds to the two-component system response regulator
EutV. Sequestration of EutV inhibits the ethanolamine
dependent activation of eut gene expression (DebRoy
et al., 2014; Mellin et al., 2014). This two-step regulatory
mechanism involving a riboswitch that controls the expression
of a sRNA in combination with a two-component system,
allows the integration of two environmental signals: the
presence of vitamin B12 and of the substrate ethanolamine.
Consequently, only in the presence of both molecules
required for ethanolamine utilization, eut gene expression
is initiated.

To fully understand bacterial pathogenesis, virulence gene
regulation by sRNAs has to be taken into account. In recent
years, many screens have been conducted for the identification
of sRNAs in Gram-positive bacteria. For a subset of these
sRNAs, the respective targets could be verified experimentally
(Mraheil et al., 2010; Brantl and Bruckner, 2014). The knowledge
about the regulatory function of sRNAs in streptococci has been
summarized in three recent review articles (Le and Charpentier,
2012; Patenge et al., 2013; Miller et al., 2014). Here, an
overview will be given of different screening methods that have
been applied for the analyses of sRNA expression detection
and genome-wide bioinformatics prediction in streptococcal
species (Figure 1). If available, examples for the role of
sRNAs in virulence related gene expression control will be
described.

Streptococcus pneumoniae

Screening for sRNAs Controlled by the
CiaR/H Regulatory System in S. pneumoniae
A typical feature of sRNAs is the cross-communication with
protein-mediated gene expression regulation pathways. In many
cases sRNA gene expression is controlled by transcriptional
regulators or, vice versa, sRNAs influence the expression of
regulator genes. Thus, it is not surprising that the first
sRNA genes identified in S. pneumoniae were part of the
CiaRH two-component regulatory circuit, which is involved in
competence and virulence. In a transcriptional mapping study,
a direct repeat motif, TTTAAG-N5-TTTAAG, was detected
in three promoters that were known to be directly regulated
by the response regulator CiaR. CiaR binding to the repeat
region was shown in gel-shift assays and the importance
of the repeat for transcriptional activation by CiaR was
demonstrated by promoter mutation experiments. Subsequently,
the S. pneumoniae genome was analyzed by motif and pattern
searches and 15 promoters were identified that were controlled
by CiaR. Of those, the five strongest promoters were found
to drive the expression of sRNAs, designated csRNAs (cia-
dependent sRNAs; Halfmann et al., 2007; Table 1). All five
csRNAs showed a high degree of sequence conservation and
structural similarity, marked by two stem-loops separated by
about 40 unpaired nucleotides. The presence of the respective
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FIGURE 1 | Schematic of the work flow for the experimental and
bioinformatics screens used for the detection of small non-coding RNA
(sRNAs) in streptococci. Experimental Screens: bacteria were grown under
different conditions. Total RNA was prepared and processed by size exclusion
and/or enrichment techniques. Samples were reverse transcribed and the
resulting cDNA libraries were used for tiling arrays or next generation
sequencing (RNAseq). Hybridization signals or sequence reads, respectively,
were statistically analyzed for data quality and the expression level was
assessed. Transcriptional start sites, sRNA length, orientation, secondary
structure, sequence conservation, sRNA function, and potential targets were
predicted by additional software tools (BLAST, Basic Local Alignment Search

Tool; Rfam, RNA families database). Finally, likely sRNA candidates were
validated by Northern blot or reverse transcription PCR (RT-PCR) and a subset
of sRNAs was further characterized by deletion analyses, functional assays, and
in vivo infection models. Bioinformatics screens: Fully sequenced reference
genomes of the organism of interest were either analyzed using sRNA prediction
algorithms (MOSES, modular sequence suite; SIPHT, sRNA identification
protocol using high-throughput technology; RNAz, Fast and reliable prediction
of non-coding RNAs) or alternatively, known recognition sites for sRNA related
proteins were used as a signature to detect novel sRNA candidate genes.
Prediction of sRNAs was followed by annotation and validation analogous to the
experimental screens.

csRNAs was verified by Northern blot analyses. Deletion
analyses revealed that csRNA4 and csRNA5 are involved in
autolysis control, whereas the other three csRNAs did not
affect autolysis behavior. Competence was not influenced by
any of the csRNAs (Halfmann et al., 2007). Within the first
loop of the csRNAs1-3, and csRNA5, a CCUCCU motif is
conserved, which could serve as an anti-SD sequence, hinting
toward inhibition of translational initiation by blocking of
ribosome binding. By sequence comparison, csRNAs were
detected in other S. pneumoniae strains and in closely related
streptococci like S. mitis and S. sanguinis (Halfmann et al.,
2007).

In a follow-up approach, csRNAs were searched systematically
in streptococci: if the ciaRH system was conserved throughout
streptococci, cia-dependent sRNAs might be present as well.
A BLAST search (Altschul et al., 1990) using the 5 csRNA
sequences originally identified in S. pneumoniae, revealed all
5 csRNAs in all S. pneumoniae strains tested and some hits
with limited similarity in other streptococcal species (Marx
et al., 2010). To be able to detect potential csRNAs with a
low sequence similarity to the S. pneumoniae csRNA sequences,
the intergenic regions (IGRs) of 14 streptococcal genomes were
screened for CiaR controlled promoters followed by terminators,
using motif search, and TransTermHD (Kingsford et al., 2007;
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) Marx et al., 2010). Fifty eight candidate csRNA genes were
predicted, representing 40 different csRNA types. The overall
sequence similarity between the various csRNAs was low.
Only short sequence stretches of the csRNAs were conserved,
including the region consisting of the anti-SD sequence plus anti-
startcodon and a conserved nonamer, [A/C]UCCUAAA[A/C],
located at the 5′ region of the csRNA or following the first
stem–loop, respectively. Since the molecular chaperone Hfq
is missing in streptococci (Valentin-Hansen et al., 2004), one
possible function of this second conserved stretch is a protein
binding region for the interaction with an alternative protein.
The number of csRNAs in the various species varied from
two to six, but each csRNA predicted in one strain could be
detected in all other strains by BLAST. The expression of the
predicted csRNAs was verified by Northern blot analyses in
S. sanguinis, S. mitis, and S. oralis (Marx et al., 2010). In this
screen, a high number of Cia-dependent promoters was detected
allowing the refinement of the CiaR-binding sequence using
WebLogo (Crooks et al., 2004). Based on this information the
consensus sequence for CiaR binding was changed to NTTAAG-
N5-TTTAAG (Marx et al., 2010). Taken together, csRNAs are
present in all streptococci but not in unrelated Gram-positive
bacteria. While the sequence conservation between csRNA types
is limited, all csRNAs seem to belong to the CiaR regulon.
The elucidation of the regulatory mechanism of the individual
csRNAs will shed light on their role within the CiaR/H regulatory
circuit.

Global Screenings for sRNAs in
S. pneumoniae
In a bioinformatics sRNA screening using sRNAPredict2, 63
sRNA candidate genes were detected in S. pneumoniae TIGR4
(Livny et al., 2006). The results of this study served as basis of
a systematic validation approach in serotype 2 D39 (Tsui et al.,
2010). Therefore, a BLAST search was conducted, in which 40
candidate genes were detected with more than 90% identity to the
initially predicted sequences. Northern blot validation confirmed
the expression of csRNA1 and of nine novel sRNAs in serotype
2 D39 (Table 1). Five of the sRNA genes showed differential
expression dependent on the growth phase or upon stimulation
with competence stimulatory peptide (Tsui et al., 2010).

Using whole genome tiling microarrays, 50 sRNAs were
identified in S. pneumoniae serotype 4 TIGR4 (Kumar et al.,
2010). The overlap with the 63 sRNAs candidates from the data
set of the sRNAPredict2 study (Livny et al., 2006) was very
low. Only eight sRNAs were detected with both approaches,
four of which had been verified before by Northern blot (Tsui
et al., 2010). The five csRNAs identified in S. pneumoniae R6
(Halfmann et al., 2007) could be detected in S. pneumoniae
TIGR4. The expression of 13 candidate sRNA genes was
validated by quantitative reverse-transcriptase PCR (qRT-PCR).
All candidate sRNA genes were highly conserved within
pneumococcal strains. Twenty five sRNAs were conserved in
closely related streptococci (S. mitis, S. gordonii, S. sanguinis) but
not in other streptococci (S. pyogenes, S. mutans, S. bovis) and
only six sRNA sequences were conserved in other Gram-positive
species. Functional predictions for 14 sRNAs were possible
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using the Rfam database (Griffiths-Jones et al., 2003; Nawrocki
et al., 2015), whereas for 36 sRNA gene candidates no function
could be assigned, which made them likely candidates for novel
sRNAs. Eight sequence motifs present in the pneumococcal
sRNAs were identified using MEME SUITE (Bailey et al., 2009).
Two of the motifs were detected in the five homologs of the
csRNAs identified in S. pneumoniae R6 (Halfmann et al., 2007),
underlining the conservation of csRNAs in pneumococci. For two
motifs no putative function could be predicted by Rfam and the
other four motifs were specific for different types of cis-regulatory
sRNAs (Kumar et al., 2010).

Another screening for sRNA candidates in S. pneumoniae
serotype 4 TIGR4 was performed employing a 454
pyrosequencing approach (Acebo et al., 2012). Total RNA
was size-fractionated and 5S rRNA-depleted prior to cDNA
library preparation to enrich the sRNA population in the sample.
135 contig sequences were overlapping the 5′-end (57) or the
3′-end (78) of an ORF and a subset of those might represent
cis-regulatory RNAs. As candidates for putative sRNAs encoded
within an IGR, 88 sequences were identified. Eighteen candidates
corresponded with sRNAs detected in the previous TIGR4
tiling array study, six of which had been validated by RT-PCR
(Kumar et al., 2010). Of the 63 sRNAs assigned by sRNAPredict2
(Livny et al., 2006), eight candidates were detected in this study
(Acebo et al., 2012). Three of those overlapping sRNAs were also
present in the tiling array data set (Kumar et al., 2010). From the
previously identified five CiaR-dependent sRNAs, csRNA3 and
csRNA5 were detected, whereas csRNA1, csRNA2, and csRNA4
appeared to be absent. Due to the high sequence homology of the
csRNAs to each other, the authors assumed that sequence reads
were incorrectly assigned to csRNA3 during mapping, masking
the presence of csRNA1, csRNA2, and csRNA4. Functional
prediction using the Rfam database (Griffiths-Jones et al., 2003)
led to the assignment of three candidates as housekeeping
RNAs (RNase P, tmRNA, and 6S RNA) and eight candidates
as cis-regulators, including riboswitches and ribosomal protein
gene leader sequences. Seventy seven sRNAs did not show any
homology to any known RNA family and were considered
novel sRNAs in S. pneumoniae (Acebo et al., 2012). Target
prediction using TargetRNA (Tjaden et al., 2006) followed by
functional analyses led to the conclusion that srn206 is involved
in CSP-dependent competence regulation in S. pneumoniae,
probably by interaction with the ComD pathway. From 44
sRNAs ≥100 nt in lenght, seven were specific for S. pneumoniae
and 37 were conserved in other streptococci, indicating a species-
and genus-specific conservation of pneumococcal sRNAs (Acebo
et al., 2012).

TIGR4 and three isogenic TCS mutants were analyzed in
a whole-genome RNAseq experiment with the aim to identify
sRNAs involved in pneumococcal virulence (Mann et al., 2012).
The mutant strains carried mutations in the response regulator
genes of the TCSs GRR, Cbpr, and VncR, respectively. Total
RNA of each strain was size-fractionated (<200 nt), individually
sequenced, and the resulting data were pooled. For the prediction
of sRNA genes, a prokaryotic promoter prediction program
(University of Groningen) and TransTermHP (Kingsford et al.,
2007) were employed. The analysis revealed 89 putative sRNAs.

Of those, 56 were novel and 33 had been identified before in
the studies described above. Expression of 41 sRNA candidate
genes was verified by Northern blot, four sRNAs were confirmed
by RT-PCR, and 10 sRNAs had been confirmed in previous
studies. Comparison of the different strains revealed 24 sRNA
candidates that were not detectable in the parental TIGR4 strain
but were expressed in at least one of the TCS mutant strains.
In accordance with the other sRNA screens in pneumococcus,
more than 90% of the identified sRNAs were conserved in
S. pneumoniae, 11 were conserved amongst streptococci, and
17 amongst other Gram-positive bacteria. A sequence motif
search utilizing MEME SUITE (Bailey et al., 2009), revealed
five different motifs that were conserved in several sRNA
candidates. Sequence analyses using the Rfam database (Griffiths-
Jones et al., 2003) predicted six putative sRNA sequences
to be cis-acting riboswitches. In this study, the influence of
sRNAs on pneumococcal virulence was studied using a murine
model of infection. From the sRNAs that were confirmed by
Northern blot, 15 candidates were picked for deletion analyses
and eight of the sRNA deletion mutants were attenuated
in the progression of sepsis. Furthermore, pathogenesis was
investigated by Tn-Seq fitness determination (Opijnen et al.,
2009). As a result, a total of 72 sRNAs were predicted to
influence bacterial fitness in specific host niches: 28 in the
lung, 26 in the nasopharynx and 18 in the blood (Mann et al.,
2012).

Streptococcus pyogenes

Until recently, in S. pyogenes (GAS) a low number of sRNAs
had been described and reported to be involved in the control of
pathogenesis (PEL, FasX, RivX, and CRISPR; Kreikemeyer et al.,
2001; Mangold et al., 2004; Roberts and Scott, 2007; Deltcheva
et al., 2011). A bioinformatics screening using sRNAPredict2,
identified 42 putative sRNA genes in GAS (Livny et al., 2006).
However, the three sRNAs already known at the time (PEL,
FasX, RivX) were not included. Since then, several whole genome
expression screenings have been undertaken to allow a more
comprehensive view of the sRNA landscape in GAS.

In MGAS2221, representing the highly virulent M1T1 GAS
clone, a custom whole genome intergenic tiling array approach
was used to detect sRNAs expressed in the exponential phase
of growth in complex medium (Perez et al., 2009). From 40
putative sRNAs identified in this study, only seven had been
detected in the previous sRNAPredict2 study (Livny et al., 2006).
Additionally to the sRNA genes, 13 small RNA candidates were
identified with cis-regulatory or other typical RNA functions,
including seven riboswitches and two CRISPR elements. Sixteen
sRNAs and four examples of the other small RNAs (CRISPR-
1, the riboswitches metK2 and serS, and 4.5S RNA, the RNA
component of the signal recognition particle) were verified
by Northern blot analyses. Sequence conservation over GAS
genomes was tested with all 75 sRNA genes detected in the tiling
array and the former bioinformatics study. Twelve sequenced
GAS genomes were used for the analysis and a majority of 62
sRNAswas present in all of the genomes tested (Perez et al., 2009).
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In a similar study our laboratory identifed sRNA genes in
GAS M49 (Patenge et al., 2012). Whole genome intergenic tiling
arrays were used to detect transcriptional activity throughout
growth in chemical defined media (CDM). In this screen, 55
putative sRNA genes were detected. Of those, 42 sRNAs were
novel, but for 14 of the novel sRNA candidates a function could
be predicted using the Rfam database (Griffiths-Jones et al.,
2003), including several cis-regulatory RNAs, one tmRNA, an
endoribonuclease (bacterial RNase P), and the RNA subunit 4.5S
RNA of the SRP. Conservation of the sRNA genes was high. From
55 sRNAs, 53 were present in all GAS serotypes tested by BLAST
analyses. For six sRNA candidates, the transcriptional start site
was determined by 5′ RACE, the expression was validated by RT-
PCR and Northern blot analysis, and expression patterns were
compared between growth phases and with growth in complex
medium. The data from the tiling arrays were compared to
the results of two bioinformatics prediction programs, MOSES
(Raasch et al., 2010), and sRNAScanner (Sridhar et al., 2010).
The modular sequence suite (MOSES) was developed, because
of the high demand to combine various sRNA prediction modes
in one convenient software tool, to achieve a higher reliability
of the predicted data (Figure 2). In accordance with the sRNA
screens in streptococci described above, the overlap between the
expression results and the computer predictions was very low.

Computational screening, followed by validation of expression
employing Northern blot and RT-PCR, was performed in the M3
serotype strain MGAS315 (Tesorero et al., 2013). To optimize
the accuracy of the bioinformatics approach, three computational
algorithms were combined: sRNAPredict (Livny et al., 2006),
eQRNA (Rivas and Eddy, 2001), andRNAz (Washietl et al., 2005).
All candidates that were predicted by any two of the algorithms
were considered sRNA candidates. Sequences located directly
upstream of ORFs were considered cis-regulatory elements and
excluded from further analysis. In the exponential growth phase,
14 sRNAs were detected by Northern blot analysis: FasX, the
sagA transcript, and 12 novel sRNAs. Further investigation by
RNAseq and sequence analyses revealed that three of those were
not trans-acting sRNA. Twowere cis-regulatory elements and one
appeared to be the bacterial ribonuclease P. Another two sRNAs
had been detected in previous screens (Perez et al., 2009; Patenge
et al., 2012), seven sRNA candidates represented novel putative
trans-acting sRNAs.

Differential RNA sequencing (dRNAseq) has been recently
introduced in a study of H. pylori (Sharma et al., 2010). The
method allows the detection of transcriptional start sites and has
been proved a powerful tool for the detection of small transcripts,
including sRNAs. In GAS SF370, a M1 serotype, dRNAseq has
been used to screen specifically for the expression of CRISPR

FIGURE 2 | Visualization of the key modules used by MOSES for
intergenic sRNA detection. Modified from Raasch et al. (2010). The
first row shows the annotation as provided by NCBI. In the second row,
the handpicked candidate is pictured for comparison with the prediction
data from the various algorithms. In the third row, an RNA-fold minimal

energy profile is depicted. A peak indicating a strong secondary structure
is visible within the intergenic region (IGR). The next two rows
demonstrate conservation over streptococci and over S. pyogenes
genomes, respectively, as determined by BLAST. In the last row,
predictions using RNAz are shown.
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elements in GAS. This approach led to the identification of a
novel class of RNAs, trans-activating CRISPR RNA (tracrRNA),
which includes sequences complementary to the repeat regions
of crRNAs and is involved in their maturation (Deltcheva et al.,
2011).

Oral Streptococci

Posttranscriptional gene regulation in oral bacterial species
has been recently reviewed (Merritt et al., 2014). With
a bioinformatics tool developed for the kingdom-wide
prediction and functional annotation of bacterial sRNA genes,
SIPHT [sRNA identification protocol using high-throughput
technologies, (Livny et al., 2008)] 18 sRNA genes were predicted
in S. mutans and 34 sRNA genes in S. sanguinis. To date, no
functional information is available for those putative sRNA
genes. As described in the chapter about S. pneumoniae, the
strong conservation of CiaR and CiaR activated promoters
among streptococci was exploited to identify csRNAs in
many species including oral streptococci (Halfmann et al.,
2007): 3 in S. mutans, 6 in S. gordonii, 6 in S. sanguinis, 5 in
S. oralis, and 5 in S. mitis strain B6 and 2 in strain SF100.
Expression of the csRNAs was further verified by Northern blot
analysis in S. mitis, S. oralis, and S. sanguinis. The functional
mechanism of the csRNAs in oral streptococci needs further
investigation.

In S. mutans the presence of microRNA-size small RNAs
(msRNAs) has been analyzed by a deep sequencing approach
(Lee and Hong, 2012). More than 900 putative msRNAs could
be detected with a size of 15–26 nt. From the candidates with
the highest abundance, seven were validated by qRT-PCR. Even
though the function of those msRNAs is still cryptic, they might
play a role in msRNA gene expression regulation or may be
secreted into the surrounding saliva and take part in inter-species
regulatory processes by influencing host gene expression (Lee and
Hong, 2012).

Members of the oral microbiome are highly dependent on the
availability of carbohydrates. Uptake systems and carbohydrate
catabolic pathways are strictly regulated by the carbon catabolite
repression, which is controlled in S. mutans by the catabolite
control protein A (CcpA; Abranches et al., 2008). Differential
expression of coding genes and of RNAz predicted sRNAs in
response to carbohydrate availability was investigated by an
RNAseq approach in S. mutans UA159 (WT) and TW1 (ccpA
mutant) strains (Zeng et al., 2013). By comparing the two strains
and growth conditions in the presence of glucose versus galactose,
10 sRNAs were found to be differentially expressed under these
conditions. The function and relevance of these sRNA candidates
needs to be determined.

In S. mutans UA159 another bioinformatics approach using
four different programs, sRNAPredict (Livny et al., 2005),
sRNASVM (Saha and Raghava, 2006), SIPHT (Livny et al.,
2008), and “Oral Pathogens Non-Coding Small RNA Prediction”
(www.oralgen.lanl.gov/_index.html), led to the detection of 334
sequences, 40 of which were predicted by at least two of the
programs. In this study, only the L10-Leader was characterized

further and found to be highly abundant in S. mutans UA159 by
Northern blot analyses.

Streptococcus suis

A differential RNA-sequencing approach has been used to
identify sRNAs from S. suis (Wu et al., 2014). To understand
adaptive transcriptional regulation in S. suis strain P1/7 was
grown in rich medium, pig blood, or cerebrospinal fluid, and
RNAseq was performed. Twenty nine sRNAs were identified.
Conservation of 10 sRNAs was shown in other Strepotcoccus
species. Five sRNAs were functionally characterized. Deletion of
the sRNA candidates did attenuate virulence of the mutants in a
zebrafish infection model. Deletion of three sRNAs led to a higher
sensitivity toward killing by pig blood. The respective sRNA genes
were influencing the expression of several virulence factor genes,
including genes involved in capsule synthesis (Wu et al., 2014).

Streptococcus agalactiae

As described above, a variety of different in silico sRNA
prediction tools is available, based on a combination of features
including sequence homologies, secondary structure predictions,
calculation of stability, prediction of transcriptional start sites,
and detection of rho-independent termination sites. Themethods
employed so far were not suited to predict antisense-RNAs
(asRNAs) from genomic data. However, transcriptome data from
several genera implicated that antisense transcriptional activity
is common in bacteria and is likely to play a role in virulence
control (Toledo-Arana et al., 2009; Lorenz et al., 2010; Sharma
et al., 2010). In a study from Pichon et al. (2012) an algorithm
was developed that allows the prediction of sRNAs as well
as asRNAs. The method is based on the detection of RIT-
associated signatures. RIT is a recognition site for sRNA-binding
proteins involved in the termination process of sRNA genes in
E. coli, which is also found in Gram-positive bacteria (Pichon
and Felden, 2005). From 197 predicted sRNAs in S. agalactiae
NEM316, 26 were validated by RT-PCR and 10 of those showed
a strong signal in Northern blot analyses. Genomic comparison
showed that none of the sRNAs detected in S. agalactiae with
this screening method were present in S. pyogenes, implying high
species specificity. In overexpression experiments, three of the
candidate RNAs could be shown to regulate the gene expression
of adjacent target genes (Pichon et al., 2012).

Conclusion

Over the last decade, a growing number of sRNA
screens both computational and experimental has been
performed in streptococci. Taken together, an approximate
number of at least 100 sRNAs should be expected per
genome (Table 1). It is likely that more sophisticated
techniques will uncover even more relevant small RNA
molecules, because it is estimated that there are several
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100 sRNAs per bacterial genome. The size of the determined
sRNAs lies between 40 and 500 nt, which is in accordance
with the results from Gram-negative genera (Storz et al., 2011).
Sequence comparisons revealed that streptococcal sRNAs are
highly conserved between closely related organisms on the genus
or species level and that some are conserved over streptococci. In
contrast to Gram-negative examples, sRNAs are not conserved
over rather unrelated Gram-positive genera. Exceptions are the
small house keeping RNAs, including tmRNA and 4.5S RNA,
with defined functions different from gene expression regulation.

In all species discussed here, the overlap between expression
data and bioinformatics prediction data sets was low. Beside
the issue of false positive predictions from both approaches,
there are several reasons for this phenomenon. While an
efficient prediction algorithm could principally detect every
sRNA gene within a given genome due to its sequence and
structural features, experimental screens are always dependent
on the expression of a given sRNA. Expression – and
therefore sRNA detection – depends on the strain, growth
conditions, growth phase, availability of certain metabolites,
or the presence of stress, or other stimulatory signals. For
example, in S. pyogenes, the overlap between the results of
two different tiling array screens were low, due to expression
differences between the M serotypes used and the growth
conditions analyzed in the respective studies (Perez et al.,
2009; Patenge et al., 2012). Additionally, the sRNA gene
expression is required to reach at least the detection level
of the technique employed. Many of the screens discussed
here were using genomic tiling arrays or were combining
bioinformatics prediction with RT-PCR or Northern blot
analyses. With all approaches discussed, no initiation or
termination sites can be determined. Thus, the screens were
usually accompanied by further computational analyses, e.g.,
promoter prediction programs and rho-independent terminator
prediction.

An answer to the limitations of these methods is the
application of high throughput screening methods like next
generation sequencing, which become more and more available
and affordable. With deep sequencing approaches, a high number
of conditions can be studied in parallel by simply pooling the
respective samples. A demonstrative example is the exploration
of the Salmonella transcriptional landscape (Kroger et al., 2012).
CRISPR expression in S. pyogenes (Deltcheva et al., 2011)
and the adaptive responses of the transcriptome in S. suis
(Wu et al., 2014) have been investigated using dRNAseq.
This technique allows the mapping of transcriptional start
sites and distinguishes native RNA species from their mature
forms (Sharma et al., 2010). It is used for the annotation of

ORFs and operons and the identification of novel transcripts,
including sRNAs. Therefore, the application of dRNAseq is
a promising tool for the comprehensive determination of
independently transcribed sRNAs in streptococci. However, the
more complex the data sets become, the more challenging
the data evaluation will be. An overview over the analyses
of bacterial RNAseq data has been given by McClure et al.
(2013).

The development of advanced bioinformatics screening
methods tries to overcome the obstacles of sheer sequence
comparison. The aim is to find more candidates but also
to combine more specific characteristics of sRNAs for more
stringent results, e.g., screening for conserved RNA secondary
structures rather than conserved sequences. In the Java-based
frameworkMOSES, several algorithms are included in one tool to
consider sequence conservation and secondary structure among
other specifics (Raasch et al., 2010). Tesorero et al. (2013)
were screening for sRNAs in S. pyogenes by combining several
different computational applications, sRNAPredict, RNAz, and
eQRNA followed by validation of candidates by Northern blot.
In the future the combinatorial approach will be supported by
machine learning, allowing the algorithms to learn from data
by building models throughout the screening. An overview over
sRNA prediction methods and future developments is given by Li
et al. (2012).

To better understand the regulatory influence of sRNAs in
bacteria and specifically to understand the impact of sRNAs on
the virulence in streptococci, data from transcriptional regulation
and posttranscriptional regulation must be integrated. The use
of publicly available expression compendia in combination with
sequenced-based predictions could be used to build sRNA-target
interaction models and to analyze the impact of sRNAs on the
transcriptional network (Ishchukov et al., 2014). Furthermore,
the host–microbe interaction could be studied by using dual-seq
approaches involving streptococci and their respective hosts as
has been proposed by Westermann et al. (2012).
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