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Tomasz Witold Radaszkiewicz, Jiřı́ Pachernı́kID*

Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic

* jipa@sci.muni.cz

Abstract

Dual specificity phosphatase 7 (DUSP7) is a protein belonging to a broad group of phospha-

tases that can dephosphorylate phosphoserine/phosphothreonine as well as phosphotyro-

sine residues within the same substrate. DUSP7 has been linked to the negative regulation

of mitogen activated protein kinases (MAPK), and in particular to the regulation of extracellu-

lar signal-regulated kinases 1 and 2 (ERK1/2). MAPKs play an important role in embryonic

development, where their duration, magnitude, and spatiotemporal activity must be strictly

controlled by other proteins, among others by DUSPs. In this study, we focused on the effect

of DUSP7 depletion on the in vitro differentiation of mouse embryonic stem (ES) cells. We

showed that even though DUSP7 knock-out ES cells do retain some of their basic character-

istics, when it comes to differentiation, they preferentially differentiate towards neural cells,

while the formation of early cardiac mesoderm is repressed. Therefore, our data indicate

that DUSP7 is necessary for the correct formation of neuroectoderm and cardiac mesoderm

during the in vitro differentiation of ES cells.

1. Introduction

The mitogen activated protein kinase (MAPK) pathway is one of the better described and vig-

orously studied signaling pathways. MAPK plays an important role in many cellular processes

like proliferation, differentiation or apoptosis, and its function has been described in the con-

texts of animal development, cancer biology, immune response, to name just a few [1–4]. The

MAPK family includes three kinase subfamilies—extracellular signal-regulated kinases (ERK),

c-Jun N-terminal kinases (JNK), and p38 [5]. MAPKs are active when phosphorylated on both

threonine and tyrosine residues within their activation loop (TxY motif) and can be inacti-

vated by a number of phosphatases, among which are dual specificity phosphatases (DUSP) [6,

7].

The human genome encodes more than twenty members of the DUSP family, although

their classification can sometimes differ in literature. DUSPs, similarly to MAPKs, have been

studied in many types of cancer lines as well as in embryonic stem cells and animal
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M, Gybeľ T, Radaszkiewicz TW, Pachernı́k J (2022)

Dual specificity phosphatase 7 drives the formation

of cardiac mesoderm in mouse embryonic stem

cells. PLoS ONE 17(10): e0275860. https://doi.org/

10.1371/journal.pone.0275860

Editor: Johnson Rajasingh, University of

Tennessee Health Science Center College of

Medicine Memphis, UNITED STATES

Received: April 5, 2022

Accepted: September 23, 2022

Published: October 13, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0275860

Copyright: © 2022 Sladeček et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

https://orcid.org/0000-0002-1765-5455
https://doi.org/10.1371/journal.pone.0275860
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275860&domain=pdf&date_stamp=2022-10-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275860&domain=pdf&date_stamp=2022-10-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275860&domain=pdf&date_stamp=2022-10-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275860&domain=pdf&date_stamp=2022-10-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275860&domain=pdf&date_stamp=2022-10-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0275860&domain=pdf&date_stamp=2022-10-13
https://doi.org/10.1371/journal.pone.0275860
https://doi.org/10.1371/journal.pone.0275860
https://doi.org/10.1371/journal.pone.0275860
http://creativecommons.org/licenses/by/4.0/


development. They have been described as important for pluripotency [8–10], neural develop-

ment [11], cardiac development [12], immunity [13], and cancer prognosis [14] etc.

Dual specificity phosphatase 7 (DUSP7) is a cytoplasmic phosphatase, which dephosphory-

lates extracellular signal-regulated kinases 1 and 2 (ERK1/2) [15]. The expression of DUSP7 is

upregulated, either due to an increase in its expression or stability in some pathological condi-

tions such as leukemia or breast cancer [16–20], where it is associated with poor prognosis.

Although DUSP7 was studied in cancer cell lines and even sparked interest as a potential can-

cer drug target [21], it remains one of the less studied DUSPs.

In this study, we focused on the role of DUSP7 in mouse embryonic stem (ES) cells and its

effect on cell differentiation in vitro. We observed that the depletion of DUSP7 did not change

some of the basic characteristics of mouse embryonic stem cells. However, DUSP7 deficiency

did lead to changes in cell differentiation through the formation of embryoid bodies. Specifi-

cally, differentiating DUSP7 KO cells expressed lower levels of markers typical for mesoderm

and, later on, cardiomyocytes, and higher levels of markers typical for ectoderm and, later on,

neural progenitors. Together, these data indicate that DUSP7 plays an important role in early

neural and cardiac mesoderm development.

2. Material and methods

2.1. Cell culture and differentiation

The mouse ES cell line R1 was adapted to feeder-free culture. R1 ES and all genetically modi-

fied cell lines derived from them were cultivated as described previously [22]. Undifferentiated

cells were cultivated in DMEM media supplemented with 15% FBS, 100 U/ml penicillin, 0.1

mg/ml streptomycin, and 1x non-essential amino acid (all from Gibco-Invitrogen) and 0.05

mM β-mercaptoethanol (Sigma), supplemented with 1 000 U/ml of leukemia inhibitory factor

(LIF, Chemicon). Differentiation of the cells was induced by seeding them onto a non-adhesive

surface in bacteriological dishes to form floating embryoid bodies or by seeding them in the

form of hanging drops (400 cells per 0.03 ml drop), all in medium without LIF. After five days

of the cultivation of embryoid bodies, they were transferred to adherent tissue culture dishes

and cultivated in DMEM-F12 (1:1) supplemented with insulin, transferrin, selenium (ITS,

Gibco-Invitrogene), and antibiotics (as above), referred to as ITS medium. Cells were culti-

vated for up to 21 days depending on individual experiments and the medium was changed

every two days. In the case of experiments with genetically selected cardiomyocytes, on day 14

medium was supplemented with 0.5mg/ml of antibiotic G418. An ES cell line for genetically

selected cardiomyocytes was prepared subsequently: R1_MHC-neor/pGK-hygro ES cells

(referred to as HG8 cells), carrying the Myh6 promoter regulating the expression of neomycin

phosphotransferase, were prepared by the transfection of R1 cells by MHC- neor/pGK-hygro

plasmid (kindly provided by Dr. Loren J. Field, Krannert Institute of Cardiology, Indianapolis,

US) [23].

2.2. Creating KO lines using CRISPR-Cas9

DUSP7-null mouse embryonic cell lines were prepared using the CRISPR-Cas9 system as pre-

viously described [24, 25]. Guide RNA was designed using the online CHOPCHOP tool [26].

Plasmid pSpCas9(BB)-2A-Puro (PX459) V2.0 (#62988, Addgene) with puromycin resistance

was used as the target plasmid to carry the guide RNA. Plasmids were prepared as described

previously [27]. For transfection, 24h after passaging, cells were transfected in a serum-free

medium using polyethyleneimine (PEI) in a stoichiometry of 6 μl of PEI per 1 μg of DNA for

8h. Then, the medium was changed for medium with puromycin (Invivogen, 10ug/ml). Selec-

tion lasted for 24h, after which the medium was changed for fresh medium without
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puromycin, and when formed, colonies of potentially KO cells were picked. Acquired KO cell

lines were tested by PCR using the primers TGTTGTGTGAGTCCTGACCG and AGAGG-
TAGGGCAGGATCTGG (337bp product) for the amplification of genomic DNA, and Hpy166II

restriction enzyme (R0616S, New England BioLabs) (240bp and 97bp products), then verified

by next generation sequencing using the Illumina platform, as described previously [28].

2.3. Cell growth

Cells were seeded at a concentration of 1000 cells/cm2 and cultivated in full medium for up to

5 days. From day 3, cells were stained with crystal violet, as previously described [29]. After the

colonies had dried, 10% acetic acid was added to the wells and incubated with shaking for

30min. The absorbance of the obtained solution was then measured at 550nm on a Sunrise

Tecan spectrophotometer.

For proliferation analysis using the WST-8 assay, cells were seeded on a culture-treated flat

bottom 96-well plate at concentrations of 1000, 500, 250, 125 and 67 cells/well and cultivated

in full medium for 3 days. Cells were incubated with WST-8/Methoxy-PMS (MedChem

Expres HY-D0831 and HY-D0937, final concentration 0,25mg/ml and 2,5ug/ml respectively)

for 5 hours and absorbance was measured at 650 nm and 450 nm on Multiscan GO (Thermo

Scientific).

For proliferation analysis using the EdU assay, cells were seeded at a concentration of

5000cells/cm2 and cultivated in full medium for 3 days. Cell proliferation was measured using

the Click-iT™ Plus EdU Alexa Fluor™ 488 Flow Cytometry Assay Kit (Thermo Fisher, C10632).

Cells were treated with 10 μM EdU (5-ethynyl-2´-deoxyuridine) for one hour prior to harvest-

ing and processed according to the kit manufacturer’s instructions. The untreated cells of each

analyzed line were used as a control. Cells were analyzed using Cytek1Northern Lights spec-

trum flow cytometry. 20,000 events were acquired per each sample the percentage of EdU posi-

tive cells was analyzed using SpectroFlo software (Cytek). Single cells were identified and gated

by pulse-code processing of the area and the width of the signal. Cell debris was excluded by

using the forward scatter threshold.

2.4. Analysis of gene expression by qRT-PCR

Total RNA was extracted by RNeasy Mini Kit (Qiagen). Complementary DNA was synthesized

according to the manufacturer’s instructions for RevertAid Reverse Transcriptase (200 U/μL)

(EP0442, Thermo Fisher). qRT-PCR was performed in a Roche Light-cycler using the proto-

cols for SyberGreen (Roche) or TaqMan (Roche). The protocol for primers using SyberGreen

was as follows: an initial activation step at 95˚C for 5 min, followed by 40 cycles at 95˚C for 10

s, an annealing temperature (Table 1) for 10 s, and a temperature of 72˚C for 10 s, followed by

melting curve genotyping and cooling. The protocol for primers using TaqMan was as follows:

an initial activation step at 95˚C for 10 min followed by 45 cycles of 95˚C for 10 s, 60˚C for 30

s, and 72˚C for 1 s with data acquisition. Primer sequences, annealing temperatures, and the

probes used are listed in Table 1. The gene expression of each sample was expressed in terms

of the threshold cycle normalized to the average of at least two so-called house-keeping genes.

These were Actb and Tbp in the case of the SybrGreen protocol, and Rpl13a and Hprt in the

case of the TaqMan protocol.

2.5. Counting of cardiomyocytes

The relative number of cardiomyocytes in differentiating ES cell cultures was determined. For

these experiments, cells that were initially differentiated in the form of hanging drops were

used. After 5 days of differentiation, embryoid bodies were transferred to ITS medium in
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24-well plates and cultivated for a total of 20 days. Before analyses, cells were washed with

phosphate buffered saline (PBS), incubated in a 0.3% solution of Collagenase II (Gibco) in

DMEM media without serum for 20 minutes, and then incubated in trypsin (0.25% in

PBS-EDTA, Gibco) for 5 minutes. Trypsin was inactivated by adding DMEM media with FBS,

and cells in this medium were transferred to a new 24-well plate and cultivated for a further

24h. Cells were then washed with PBS, fixed for 20min with 4% formaldehyde, permeabilized

by 0.1% TWEEN 20 solution in PBS, and stained using anti-cardiomyocyte heavy myosin anti-

body (anti-MHC, clone MF20, kindly provided by Dr. Donald Fischman, Developmental

Studies Hybridoma Bank, Iowa City, IA, USA). They were then visualized using anti-mouse

IgG conjugate Alexa568 (Invitrogen). Nuclei were counterstained with DAPI (1 mg/l). Images

were acquired using an Olympus IX-51 inverted fluorescence microscope (Olympus) or Leica

TCS SP8 (Leica) confocal microscope. In each repetition at least five images were taken from

at least two wells for each line and the ratio between red and blue signals was analyzed using

ImageJ software. The analysis of whole embryoid body staining was performed on cells culti-

vated in the same manner, but cells were seeded on day 5 on cover slips and on day 20 cells

were not disassociated, but the whole embryoid body was fixed and stained as described

above. Representative images were acquired using Leica TCS SP8 (Leica) confocal microscope.

The relative number of cardiomyocytes was also determined using R1_MHC-neor/pGK-

hygro ES cells (HG8 cells) and their DUSP7 KO clones (MHC-neo/DUSP7 KO; analysis of

frame shift mutations in both Dusp7 alleles in these cell lines by NGS shown Fig 1B), as

Table 1. Probes and sequences of primers and temperature used in quantitative RT-PCR.

Gene of interest Forward primer 50 ! 30 Reverse primer 50 ! 30 UPL probe no Ta (˚C)

Hprt tcctcctcagaccgctttt cctggttcatcatcgctaatc #95 60

Rpl13a catgaggtcgggtggaagta gcctgtttccgtaacctcaa #25 60

Nkx2.5 gacgtagcctggtgtctcg gtgtggaatccgtcgaaagt #53 60

Myh6 cgcatcaaggagctcacc cctgcagccgcattaagt #6 60

Myh7 cgcatcaaggagctcacc ctgcagccgcagtaggtt #6 60

Mef2c accccaatcttctgccact gatctccgcccatcagac #6 60

Gata4 ggaagacaccccaatctcg catggccccacaattgac #13 60

T actggtctagcctcggagtg ttgctcacagaccagagactg #27 60

Mesp1 acccatcgttcctgtacgc gcatgtcgctgctgaagag #89 60

Sox1 ccagcctccagagcccgact ggcatcgcctcgctgggttt 61

Actb gatcaagatcattgctcctcct taaaacgcagctcagtaacag 60

Tbp accgtgaatcttggctgtaaac gcagcaaatcgcttgggatta 60

Oct4 agaggatcaccttggggtaca cgaagcgacagatggtggtc 61

Nanog aggacaggtttcagaagcaga ccattgctagtcttcaaccactg 60

Zfp42 gcacacagaagaaagcagga cactgatccgcaaacacct 59

Fgf5 aagtagcgcgacgttttcttc ctggaaactgctatgttccgag 61

Klf4 gactaaccgttggcgtgag gggttagcgagttcgaaagg 60

Dusp7 gcccatccgctccatcattccc cagccgtcgtctcgcagcttc 62

Pax6 cgggaaagactagcagccaa gtgaaggaggagacaggtgtg 62

Afp tggttacacgaggaaagccc aatgtcggccattccctcac 60

Gata1 gaagcgaatgattgtcagca cagcagaggtccaggaaaag 61

Gata2 gggagtgtgtcaactgtggt gcctgttaacattgtgcagc 61

Mash1 ttctccggtctcgtcctactc ccagttggtaaagtccagcag 62

Tubb3 tgaggcctcctctcacaagta gtcgggcctgaataggtgtc 62

Dusp6 acctggaaggtggcttcagt tccgttgcactattggggtc 62

https://doi.org/10.1371/journal.pone.0275860.t001
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Fig 1. (A) Schematic representation of the guide RNA (gRNA) and Dusp7 targeted area by the CRISPR-Cas9 system. (B) Schematic

representation how the mouse embryonic KO cell lines were created and screened. (C) The guide RNA (gRNA) design and the sequences

of verified deletions in the DUSP7 KO ES cell line edited by the CRISPR-Cas9 system are shown. (D) Schematic representation of the

different experiments conducted in this study–at what time points different methods were employed and which markers were analyzed.

https://doi.org/10.1371/journal.pone.0275860.g001
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described previously [22]. Estimation of the relative number of viable cells after antibiotic

selection was performed by ATP quantification in whole cell lysates. Cells were lysed in

Somatic cell ATP releasing reagent for ATP determination (FLSAR-1VL, Sigma-Aldrich).

Each cell lysate was mixed with Cellular ATP Kit HTS (155–050, BioThema) in the ratio of 1:1

and luminescence was analyzed using Microlite™ 1+ strips (Thermo Scientific) and Chameleon

V (Hindex).

2.6. Small Interfering RNA (siRNA) transfection

Cells were transfected by commercially available siRNA DUSP6 (sc-39001) and DUSP7 (sc-

61428) to knock down gene expression, or by related non-silencing control (all Santa Cruz

Biotechnology, USA) using Lipofectamine RNAiMAX Reagents (Thermo Fisher Scientific

Inc., USA) according to the manufacturer’s instructions. Cells were harvested 24h after trans-

fection and the expressions of selected proteins and posttranslational modification were ana-

lyzed by western blot [30].

2.7. Western-blot analysis

Cells were directly lysed in Laemmli buffer (100 mM Tris/HCl (pH 6.8), 20% glycerol, 1%

SDS, 0.01% bromophenol blue, and 1% 2-mercaptoethanol). Western blotting was performed

according to the manufacturer’s instructions with minor modifications (SDS-PAGE run at 110

V, transfer onto PVDF membrane for 1 h at 110 V (BIO-RAD)). Membranes were blocked in

5% non-fat dry milk solution in TBS-T for 30 min and subsequently incubated overnight at

4˚C with primary antibodies listed in Table 2 (dilution 1:1000). Next, membranes were washed

in TBS-T and incubated with HRP-conjugated secondary antibodies (Sigma-Aldrich). Immu-

noreactive bands were detected using ECL detection reagent kit (Merck-Millipore) and the

FusionSL chemiluminescence documentation system (Vilber-Lourmat). Results were quanti-

fied by the densitometric analysis of Western blot bands using the Fiji distribution of ImageJ.

2.8. Isolation of mouse hearts

CD1 mice were maintained and bred under standard conditions and were used in accordance

with European Community Guidelines on accepted principles for the use of experimental ani-

mals. Mouse hearts were isolated according to an experimental protocol that was approved by

the National and Institutional Ethics Committee (protocol MSMT-18110/2017-5). Individual

heart samples were prepared as described previously [22].

2.9. Statistical analysis

Data analysis was performed by GraphPad Prism. Data are expressed as mean ± standard devi-

ation (SD). Statistical analysis was assessed by t-test and by one- or two-way ANOVA, and by

Bonferroni’s Multiple Comparison post hoc test. Values of P< 0.05 were considered to be sta-

tistically significant (� p < 0.05).

3. Results

3.1. Absence of DUSP7 does not affect the phenotype of ES cells

In order to determine the effect of DUSP7 on ES cells, we created DUSP7 knock out (KO) cell

lines using the CRISPR-Cas9 system, as previously described [27, 31] (see experimental design

on Fig 1A and 1B). These mutated cell lines were verified by NGS (Fig 1C) and were then used

for all subsequent experiments (see experimental set up in Fig 1D). All used DUSP7 KO cell
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lines had either the same or different mutations in individual alleles, but in both cases the

result was a frame shift mutation (Fig 1C).

We were able to cultivate all obtained DUSP7 KO cell lines in vitro for a substantial time

(40+ passages), during which we did not observe any morphological difference between KO

and wild type (WT) control (CTR) cell lines. To determine whether DUSP7 KO cell lines pro-

liferate at a similar rate we stained them on three consecutive days using crystal violet, the

results indicating that there were no significant differences in growth rate between WT and

KO cell lines, nor between individual KO lines (Fig 2A). The same proliferation was confirmed

by the EdU assay and the WST-8 assay (Fig 2B and 2C).

Next, we determined whether DUSP7 KO cells retain their stem cell phenotype by testing

whether they differ from WT cells in expressing markers which are known to change if pluri-

potency is compromised–specifically, Oct4, Nanog, Klf4, Zfp42 and Fgf5 [32–36]. Cells were

kept in standard culture conditions for ES cells for 5–40 passages before these markers were

analyzed. We did not observe any statistical differences in the expressions of the given markers

between any of these lines (Fig 2D). On the basis of the above, we conclude that the depletion

of DUSP7 does not affect the proliferation rate of ES cells nor their pluripotent phenotype.

3.2. DUSP7 regulates germ layer specification in differentiating ES cells

To further test their stem cell-like properties, we studied the ability of DUSP7 KO cells to dif-

ferentiate. All cell lines were able to form embryoid bodies (EBs) of the same shape and size in

hanging drops or in cell suspension culture (Fig 3A). In 5-day-old EBs, transcripts of all three

germ layers were determined–namely, Sox1 and Pax6 as markers for ectoderm/ neuroecto-

derm; T, Mesp1, Mef2c, Gata4, Gata1 and Gata2 as markers for mesoderm; and Afp as a

marker for entoderm [37–42]. In DUSP7 KO cells, the expressions of T, Mesp1 and Gata4
were decreased compared to WT cells, while the expressions of Sox1 and Pax6 were increased.

Excluding the expression of Afp in one DUSP7 KO cell line, we did not observe significant dif-

ferences in the levels of Mef2c, Gata1, Gata2, or Afp between KO and WT cells. The increase in

Afp was observed in only one of the DUSP7 KO cell lines, indicating that it might be an artefact

typical only for this individual line (Fig 3B). These data show that DUSP7 is required for the

correct formation of ectoderm and mesoderm during in vitro differentiation of ES cells.

Table 2. Primary antibodies used for western-blot analysis.

Antibody Catalog number Company Description pub. identifier

p-ERK1/2 CS-4370S Cell Signaling Technology molyclonal, rabbit AB_2315112

ERK1/2 CS-4695S Cell Signaling Technology monoclonal, rabbit AB_390779

PARP 9532 Cell Signaling Technology monoclonal, rabbit AB_659884

JNK sc-571 Santa Cruz Biotechnology polyclonal, rabbit AB_632385

pJNK sc-6254 Santa Cruz Biotechnology monoclonal, mouse AB_628232

p-38 9212 Cell Signaling Technology polyclonal, rabbit AB_330713

pp-38 9211 Cell Signaling Technology rabbit AB_331641

MHC anti-MHC, clone MF20 Developmental Studies Hybridoma Bank monoclonal, mouse AB_2147781

βIIItubulin Ab7751 Abcam monoclonal, mouse AB_306045

DUSP6 sc-377070 Santa Cruz Biotechnology monoclonal, mouse AB_2802089

DUSP6 3058 Cell Signaling Technology polyclonal, rabbit AB_2246226

Vinculin V9264 Sigma monoclonal, mouse AB_10603627

β-Actin sc-47778 Santa Cruz Biotechnology monoclonal, mouse AB_2714189

https://doi.org/10.1371/journal.pone.0275860.t002
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Fig 2. DUSP7 KO mouse embryonic stem cells retain the basic characteristic of the cell line. (A) To assess the growth

curve of wild type and DUSP7 KO cell lines, 1000 cells/cm2 were seeded on a fresh plate on day 0 and plates were stained

with crystal violet staining on days 3,4 and 5 to assess their growth curve. The experiment was repeated three times and

the value for individual experiments represents the average value obtained from four plates. (B) To assess proliferation

rate, wild type and DUSP7 KO cell lines were seeded at a concentration 5000 cells/cm2 and after 3 days of cultivation they

PLOS ONE DUSP7 drives the formation of cardiac mesoderm

PLOS ONE | https://doi.org/10.1371/journal.pone.0275860 October 13, 2022 8 / 22

https://doi.org/10.1371/journal.pone.0275860


3.3. DUSP7 is required for cardiomyocyte formation

Since we observed differences in the abilities of cells to form mesoderm and ectoderm at early

stages, we differentiated cells in vitro for a further 5–10 days and then studied the formation of

cardiac and neural cells. DUSP7 KO cells exhibited lower levels of expression of cardiomyo-

cyte-specific transcripts (Nkx2.5, Myh6, Myh7) and higher levels of the expression of neuro-

specific markers (Tubb3 and Mash1) (Fig 4A). Similar difference in cardiomyogenesis and

neurogenesis were observed also at the protein level, where DUSP7 KO cells exhibited lower

levels of cardiomyocyte-specific (MHC) and higher levels of neuro-specific (βIIItubulin) pro-

teins compared to WT (Fig 4B). To further explain the observed decreases in the expressions

of cardiomyocyte specific transcripts and proteins, we studied the number of formed cardio-

myocytes. Cells were cultivated for the first five days as hanging drops in order to form single

EBs. Then, each EB was individually cultivated for a total of 20 days and either the whole

embryoid body was stained for cardiomyocyte-specific (MHC) or neuro-specific (βIIItubulin)

markers (S1 and S2 Figs) or cells were re-seeded onto a fresh plate as single cells. In the latter

case, after a further day of cultivation, they were stained with antibody specific for cardiac

myosin heavy chains (MF20) and with DAPI. The ratio between the number of nucleuses and

myosin positive cells, which determines the number of cardiomyocytes, was lower in DUSP7

KO cell lines compared to wild type cells (Fig 5A and 5B, S3 Fig). In addition, we determined

the relative number of formed cardiomyocytes on day 20 after cardiomyocytes specific selec-

tion on HG8 cells and their DUSP7 KO cells (see Material and methods). Here, we again

observed that DUSP7 KO cells formed a lower number of cardiomyocytes compared to WT

cells (Fig 5C). These results therefore indicate that DUSP7 is required for the formation of

mouse cardiomyocytes in vitro.

3.4. DUSP7 depletion does not change the phosphorylation of ERK

Since DUSP7 is known to dephosphorylate MAPK with a preference towards ERK1/2, we

tested whether there were differences between the levels of phosphorylated ERK, JNK and p38

at the basal level in ES cells. However, only ERK1/2 showed any differences and these were

very small and deemed to be statistically insignificant (Fig 6A). Interestingly, when using

siRNA for DUSP7, we also observed no change in the phosphorylation of ERK after 24h, but

when using siRNA for DUSP6, we saw a stronger signal for pERK1/2. (Fig 5B). Since the phos-

phorylation and dephosphorylation of ERK is an important process for signal transduction

and very dynamic process, we tested whether there would be a change in the kinetics of phos-

phorylation between wild type and KO cells. Cells were starved for 6h in media without serum.

After this time, serum was added to a final concentration of 30% and phosphorylation was

measured by western blot method 10min, 30min, 1h and 3h after stimulation. The highest

phosphorylation was observed 10min after stimulation in all cell lines and after 1h the level of

phosphorylation had returned to its basal level. Although there were slight differences between

individual sets in this dynamic, neither the overall maximum level of ERK phosphorylation

were treated with EdU for 1h. Graph represents mean ± SD of four independent replicates. (C) To test whether the

proliferation rate of DUSP7 KO cells will be different compared to wild type cells, based on cell density, cells were seeded

in a 96 well plate at a concentration of 1000, 500, 250, 125 and 67 cells/well. Cells were cultivated for 3 days after which

they were incubated with WST-8/Methoxy-PMS for 5 hours and relative absorbance was measured. Graph represents

mean ± SD of three independent replicates. (D) To check whether the DUSP7 KO cell lines retained their pluripotency,

known markers of pluripotency Oct4, Nanog, Zfp42, Ffg5 and Klf4 were measured. Stem cells from low (around 5), mid-

range (around 15) and high (40+) passages were used. Graphs represent mean ± SD of three independent replicates.

Differences between groups were considered to be statistically significant when values of P< 0.05 (�).

https://doi.org/10.1371/journal.pone.0275860.g002
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Fig 3. DUSP7 KO cell lines are able to differentiate into all three germ layers, but preferentially express markers for ectoderm

over those for mesoderm. (A) Measures of diameter of embryoid bodies. 400 cells were used to create embryoid bodies using the

hanging drop method. The sizes of embryoid bodies were measured on Day 5. Graph represents mean ± SD of seven independent

replicates, each of the values representing the average value of at least 5 different measurements. (B) KO cell lines exhibit lower

expressions of markers typical for mesoderm or cardiacmesoderm (T, Mesp1, Gata4) and higher expressions of markers for
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ectoderm (Sox1, Pax6), while markers that characterize both myogenesis and neurogenesis (Mef2c) as well as endoderm markers

(Afp) and markers for hematopoietic mesoderm (Gata1, Gata2,) have similar expression profiles as in wild type cells. Markers were

measured after 5 days of differentiation. Graphs represent mean ± SD of at least three independent replicates. Differences between

groups were considered to be statistically significant when values of P< 0.05 (�).

https://doi.org/10.1371/journal.pone.0275860.g003

Fig 4. DUSP7 KOs after longer differentiation in vitro express lower levels of cardiac markers compared to wild type cells. (A) Analysis of cardiac

and neural markers on qPCR. ES cells were cultivated for 10 days (Mash1) or 14 days (Nkx2.5, Myh6, Myh7, BIIIt) and analyzed on RT-qPCR,

normalized to the mean expression of Hprt and Rpl (TaqMan) or Actb and Tbp (SyberGreen). Graphs represent mean ± SD of at least four independent

replicates. (B) Western blot analysis of cardiac (MHC) and neural (BIIItubulin) markers and their quantification (on the right) after 20 days of cell

differentiation. Graphs represent mean ± SD of four independent replicates. Differences between groups were considered to be statistically significant

when values of P< 0.05 (�).

https://doi.org/10.1371/journal.pone.0275860.g004
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Fig 5. DUSP7 KO cells produce a lower number of cardiomyocytes. (A) DUSP7 KO cells form fewer cardiomyocytes

compared to wild type cells, as analyzed by immunocytochemistry. Cells were stained after a total of 21 days of differentiation.

Nucleus is shown in blue (DAPI) and cardiomyocytes in red, stained by cardiac specific antibody MF20. Scale bar represents

100μm. (B) Quantification of number of cardiomyocytes. Graph represents mean ± SD of three independent replicates, each

value representing the average value for three embryoid bodies analyzed. (C) Number of cardiomyocytes determined in HG8
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nor the speed of dephosphorylation between wild type and KO cell lines showed statistically

significant differences (Fig 6C).

3.5. Level of DUSP7 increases during differentiation

Since the depletion of DUSP7 did not have an effect on the basic characteristics of ES cells,

(Figs 2 and 6), but did have an effect on the differentiation of cells in later stages of in vitro cul-

tivation and on the differentiation of cardiomyocytes, we measured changes in the expression

of Dusp7 using RT-qPCR in cells from in vitro culture (Fig 7A) and in hearts of mice from dif-

ferent stages of development (Fig 7B). We found that the level of Dusp7 increased over time

during differentiation in culture as well as in the hearts of mice during their ontogenesis.

Therefore, since DUSP7 might have a more important role in later stages of differentiation in

vitro than in ES cells, we tested the level of phosphorylation of ERK1/2 in 5-day-old embryoid

bodies but were not able to see any significant difference between the tested cell lines (Fig 7C).

4. Discussion

It is generally agreed that DUSPs specifically dephosphorylate MAPKs. However, when it

comes to their specificity to individual proteins there are some conflicting reports about which

substrates they can dephosphorylate, especially when it comes to the more studied phospha-

tases such as DUSP1 [43–47], these conflicts appearing to arise because these proteins are stud-

ied in different conditions or in different models. DUSP7 is generally believed to

dephosphorylate ERK1/2, but in some conditions was shown to interact with JNK [48–52]

However, there are also studies which suggest the possibilities of DUSP7 dephosphorylating

substrates other than members of the MAPK family. It has been shown that DUSP7 can also

dephosphorylate cPKC isoforms [53], thus inhibiting their activity. In the case of DUSP7

depletion, the activity of cPKC is not inhibited at the correct time or for the correct duration,

which leads to defects in meiosis in mouse oocytes; however, our data suggest that the deple-

tion of DUSP7 does not affect the mitosis of ES cells (Fig 2B).

There are numerous studies which show the effects of the activation of MAPK/ERK in ES

cells on their stemness and differentiation [54–56]. The depletion of DUSP2 and its effect on

ES cells was also studied in association with DUSP7 by Chappell et al., who showed that

DUSP7 is necessary for the preservation of pluripotency [57]. However, a significant effect on

pluripotency was shown only when DUSP7 was overexpressed, or when DUSP7 was knocked-

down together with DUSP2. In contrast, our model shows that ES cells are able to adapt to

long cultivation when DUSP7 is knocked-out by itself (Fig 2D).

During differentiation in KO cells, we observed a significant decrease in the general meso-

dermal marker T as well as in Mesp1, which appears in the cardiogenic area of the primitive

[58]. The expression of Gata4, a gene necessary for normal heart tube formation [40, 59] and a

regulator of other genes critical for cardiomyogenesis [60], was also downregulated, unlike its

cofactor Mef2c, which is also expressed during the early development of myocardium and

other muscle cells [39, 61, 62]. The Mef2c marker was more variable between KO lines, but did

not show a significant decrease or increase compared to control. Although this gene is widely

used as a cardiac marker, it is greatly expressed also in mouse brain [63] and is crucial for nor-

mal neural development [64]; therefore, its potentially lower levels due to reduced cardio myo-

genesis are masked by potentially higher levels in developing neural progenitors. Preferential

cells and their DUSP7 KO. Cell selection started on day 14 and measurements were performed on day 20. Graph represents

mean ± SD of four independent replicates. Differences between groups were considered to be statistically significant when

values of P< 0.05 (�).

https://doi.org/10.1371/journal.pone.0275860.g005
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Fig 6. Level of phosphorylation of MAPK is the same in DUSP7 KO cells. (A) Levels of phosphorylation of different MAPKs were measured in unstimulated

wild type and DUSP7 KO ES cells. Quantitave analysis of the ratios between total ERK1/2 and pERK1/2, JNK and pJNK, and p38 and pp38 are shown (right).

Graphs represent mean ± SD of four independent replicates. (B) Downregulation of DUSP7 by siRNA has no effect on the phosphorylation of ERK1/2. Cells

were transfected by siRNA 24h after passage and lysed after a further 24h of cultivation. Transfection by scrambled siRNA (scr) was used as control. (C) ES cells

were cultivated in serum free medium for 6h (time point 0’) and then the phosphorylation of ERK1/2 was stimulated by adding FBS to a total 30%

concentration for 10min, 30min, 1h and 3h before analysis. Quantitative analysis of the ratio between total ERK1/2 and pERK1/2 is shown (right). Graph

represents mean ± SD of two independent replicates.

https://doi.org/10.1371/journal.pone.0275860.g006
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differentiation of DUSP7 KO into neuro-ectodermal linages is supported by elevated levels of

Sox1 and Pax6. In contrast to cardiac-mesoderm markers, the levels of mesodermal markers

Gata1 and Gata2, which are important for the formation of hematopoietic lineages, were not

changed by the depletion of DUSP7. The importance of different MAPK in hematopoiesis and

especially in diseases such as leukemia has been studied, but it has been shown that p38α plays

the key role in hematopoietic stem cell activation and, later, in their maturation during hema-

topoiesis [65]. With respect to the interaction of DUSP7 with members of the MAPK family,

there is least evidence that DUSP7 interacts with p38; therefore, the fact of its depletion having

no effect on hematopoietic markers was to be expected.

Several members of the DUSP family have been studied with respect to the development of

heart tissue or the neural system, most of them via the mechanism linked with the dephos-

phorylation of ERK. When it comes to neural development, DUSP1, DUSP4 and DUSP6 were

shown to be regulated by nerve growth factor [11, 66, 67]. DUSP1 is necessary for normal axo-

nal branching [68], similarly to DUSP6, which also plays a role in normal axon development

[69]. The overexpression of DUSP1 has a neuroprotective effect in response to ischemia [70,

Fig 7. Level of DUSP7 changes over time during differentiation. (A) Changes in the level of Dusp7 expression in vitro culture analyzed by qPCR. Graph

represents mean ± SD of three independent replicates. (B) Level of Dusp7 in ES cells and murine heart at different stages of its development analyzed by qPCR.

The level of Dusp7 has the same pattern in both atrium (A) and ventriculus (V) at each individual time-point analyzed, but it changes over time, with its lowest

expression seen in ES cells and its highest in adult hearts. Graph represents mean ± SD of at least three independent replicates. Differences between groups

were considered to be statistically significant when values of P< 0.05 (�). (C) Phosphorylation of ERK1/2 in embryoid bodies after 5d of in vitro cultivation.

https://doi.org/10.1371/journal.pone.0275860.g007
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71] and, together with DUSP4, they protect motor axons from degradation [72]. The role of

DUSP7 in neural development has not yet been thoroughly studied, despite DUSP7 being

expressed in whole brain of mice [73]. Our study, therefore, is one of the first to show that

DUSP7 can inhibit the development of neuronal lineages in an in vitro model of ES cell

differentiation.

When it comes to the development of heart, MAPK play an important role since they are

highly involved in FGF and BMP signaling–two very important signaling pathways playing a

role in cardiac mesoderm and myocardium formation. These pathways need to be almost peri-

odically activated and inhibited for normal formation of heart, which can be achieved by nega-

tive feedback mediated by MAPK-induced DUSP expression [2, 74].

In heart, DUSPs have mostly been linked with the regulation of the ERK signaling pathway

and the proliferation of cardiomyocytes. In general, all studies involving the depletion of any

DUSPs show heart enlargement. However, in some cases, there need to be special conditions

like heart exposure to hypoxia for hypertrophy to be apparent [75], or hypertrophy is detect-

able only in adults or after injury, such as in DUSP6-deficient fish [76]. Depletions of different

DUSPs in mice have shown changes in cardiomyocyte morphology (DUSP8, [77]), or have

been linked to protection (DUSP6, [78]) or, in contrast, to increased susceptibility to cardio-

myopathy (DUSP1, DUSP4, [79]). All of these studies either operate with the measurement of

hearts of adult subjects or, in the case of in vitro studies, they use already differentiated or neo-

natal cardiomyocytes, in contrast to our study, which investigated differentiation from ES cells

and the effect of DUSP7 on early cardiomyocyte differentiation.

As mentioned before, an appropriate level of activation at the right time and for the right

duration plays an important role in the development of heart. For example, the activation of

ERK by 12-O-Tetradecanoylphorbol-13-acetate (TPA) leads to an increase in cardiomyogen-

esis, but only when the treatment is applied in a certain time window [22]. Similarly, we see in

our experiments that applying TPA at the indicated time does increase the number of cardio-

myocytes in our KO cell lines (S4 Fig) comparably to wild types; however, already at this point,

there are fewer mesodermal cells on which it can have an impact, as we showed by measuring

T and Mesp1 expression. Furthermore, cardiomyocytes derived from KO cells have the same

maturation profile as WT, as shown by the ratios of Nkx2.5, Myh6, and Myh7 [22] (S5 Fig).

Therefore, it seems that DUSP7 plays a role in early stages of this process and does not have a

big impact on later cardiomyocyte development.

Since, as mentioned, DUSP7 is specific towards MAPK with a preference towards ERK1/2

[15], we studied the levels of phosphorylation of different MAPK, but, we did not observe any

significant differences in our KO cell lines compared to wild type. This is in contrast to previ-

ously published observations; however, some of these publications show only the slightly

higher phosphorylation of ERK1/2 when the expression of DUSP7 is lowered in combination

with other DUSPs [57] or under special conditions, such as in DUSP7 KO mice that are on a

high fat diet [80]. The observation of only a very small effect of DUSP7 could also be due to the

fact that DUSP7 exhibited very low expression in our ES cells to begin with, more than 10x

lower compared, for example, to DUSP6 (S6 Fig), which is reinforced by the fact that when

using siRNA for DUSP6 and DUSP7 we could see changes in the phosphorylation of ERK only

in the former case (Fig 5B). However, unlike in many studies which used siRNA or shRNA, or

measured the phosphorylation levels a short time after adding some inhibitors or activators,

our cells were modified using CRISPR/Cas9 and were cultivated for a long time, during which

they might have adapted to DUSP depletion. This can be also demonstrated by DUSP6, where

we did not see the same effect when it was knocked out using CRISPR/Cas9 as when using

siRNA (S7 Fig). We also saw that the level of DUSP7 mRNA rises during differentiation in

vitro and in developing heart, indicating its importance in such development, including the
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growth of myocardium. Since in our experimental design cells were being differentiated

through the formation of EBs, and culture conditions throughout the differentiation process

did not favor any individual cell type in particular, we can assume that the ones which achieved

a head start overgrew in the culture and “smothered” other cell types, whose differentiation

might have been compromised by genetic modification and which would have appeared later

in the culture.

5. Conclusions

In summary, on the basis of all of our results, we can conclude that DUSP7 promotes early dif-

ferentiation towards neural cells and that in DUSP7 KO early cardiac mesoderm is repressed,

which, in prolonged cultivation, is reflected by a lower number of formed cardiomyocytes.

Supporting information

S1 Fig. A: Whole embryoid body staining of WT cells, B: Whole embryoid body staining of

DUSP7 KOa cells, C: Whole embryoid body staining of DUSP7 KOb cells, D: Whole embryoid

body staining of DUSP7 KOc cells.

(TIF)

S2 Fig. A: Whole embryoid body staining of WT cells, B: Whole embryoid body staining of

DUSP7 KOa cells, C: Whole embryoid body staining of DUSP7 KOb cells, D: Whole embryoid

body staining of DUSP7 KOc cells.

(TIF)

S3 Fig. A: DUSP7 KO cells form fewer cardiomyocytes compared to wild type cells, as ana-

lyzed by immunocytochemistry–WT cells, B: DUSP7 KO cells form fewer cardiomyocytes

compared to wild type cells, as analyzed by immunocytochemistry–DUSP7 KOa cells, C:

DUSP7 KO cells form fewer cardiomyocytes compared to wild type cells, as analyzed by

immunocytochemistry–DUSP7 KOb cells, D: DUSP7 KO cells form fewer cardiomyocytes

compared to wild type cells, as analyzed by immunocytochemistry–DUSP7 KOc cells.

(TIF)

S4 Fig. Addition of TPA increases the number of cardiomyocytes.

(TIF)

S5 Fig. Cardiomyocytes derived from DUSP7 KO cells have the same maturity profile as

cardiomyocytes from WT cells.

(TIF)

S6 Fig. Expression of DUSP changes during development.

(TIF)

S7 Fig. Difference in the phosphorylation of ERK1/2 by the downregulation of DUSP6.

(TIF)

S1 Raw images.

(PDF)
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