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As recent publications in N&TR highlight,1 there is consid-
erable debate whether e-cigarettes act as a causal gateway to 
subsequent smoking in adolescents. Answering this question 
requires a clear specification of what we mean by “gateway” 
in this context. Unlike the original hypothesis, which postu-
lated a causal progression from legal/“soft” (eg, alcohol) to 
illicit/“hard” (eg, heroin) polydrug use, initiated in adoles-
cence,2 current gateway discussions in tobacco control center 
around the idea of what is essentially a transition from less 
(e-cigarette) to more harmful (cigarette) modalities of nico-
tine use.

This complicates causal inference; for the original hypoth-
esis it was possible to assess changes in sensitivity to, and 
rewarding effects of, a destination drug following exposure 
to a gateway drug in animal models, but such highly con-
trolled experimental work in model systems is impossible 
when both the putative gateway and destination drug are the 
same. Randomized controlled trials are equally unfeasible: it 
would be unethical to randomize adolescents to try or not 
try e-cigarettes and impractical to assess relatively long-term 
outcomes (ie, transition to smoking, potentially several years 
later). We therefore must rely on observational data. Here, we 
introduce the idea of a triangulation framework, using evi-
dence from different approaches to provide robust answers to 
causal questions, and apply this to the problem of the gate-
way to assess the current balance of evidence.

Triangulation attempts to support stronger causal in-
ference by considering findings across multiple methodo-
logical approaches, each with different sources of bias.3 For 
research into gateway effects of e-cigarette use, we define 
two major categories of approach: (1) individual-level ap-
proaches (ie, where individual participants provide data), 
and (2) population-level approaches (ie, using summary data 
from whole populations). Cutting across these, one can also 
distinguish between cross-sectional comparisons between  

individuals or populations, and longitudinal comparisons of 
individuals or populations over time.

At the individual level, numerous cross-sectional and pro-
spective studies show a strong positive association between 
e-cigarette use and smoking cigarettes.4 Young people who 
report using e-cigarettes are more likely to report smoking, 
both concurrently and in the future. However, these studies 
are potentially subject to measurement error (eg, misreporting 
of smoking status, especially among youth5) and confound-
ing.6 Just because e-cigarette use precedes cigarette use does 
not mean that e-cigarette use caused subsequent smoking: 
adolescents that try e-cigarettes may have tried cigarettes 
anyway due to some underlying common liability, such as a 
genetic predisposition to risky behavior.7 Although it is pos-
sible to reduce such confounding statistically (eg, propensity 
score matching),8 success depends on all relevant confounders 
being included (which is unlikely, resulting in unmeasured 
confounding), included confounders being measured accur-
ately (again unlikely, resulting in residual confounding), and 
the association with the outcome being modeled through an 
appropriate function (eg, exponential). Even small model 
misspecifications can result in spurious associations.6 No 
matter how many studies one conducts with the same sources 
of bias, the limitations of this approach remain, running the 
unintentional risk of creating the appearance of robustness 
and acceptance that causal claims are true.9

What is needed then are complementary and independent 
lines of evidence that address this problem of confounding by 
combining methodologies that have distinct potential biases. 
If results across approaches align, this provides greater confi-
dence in a causal interpretation, since it is unlikely that differ-
ent sources of bias would conspire to give the same result in 
each case. There are numerous methods that can be applied to 
individual-level data (Supplementary Table 1).3 One of these 
is the use of “negative control” outcomes; these exhibit a 
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similar confounding structure to smoking, but have no plaus-
ible mechanism through which e-cigarette use could influence 
them (eg, unprotected sexual intercourse). If e-cigarette use 
shows a similar association with this as with smoking, it sug-
gests that confounding (eg, via risk taking personality) is the 
most likely culprit rather than there being a true causal asso-
ciation.10 Indeed, there are studies showing associations with 
such outcomes, including illicit prescription medication use.11

Instrumental variable analysis constitutes another 
individual-level approach. This would require an instrument 
causally related to e-cigarette use but without any plausible 
causal connection with smoking. Such studies could exploit 
environmental instruments or use genetic variants as prox-
ies for the exposure (as in Mendelian Randomisation, MR).12 
One environmental instrument could be access to e-cigarettes, 
for example by density of vape shops in the locality, oppor-
tunity for online purchasing, or pricing of e-cigarettes. Thus, 
if it turns out that adolescents with greater access specific-
ally to e-cigarettes are more likely to smoke, this would sup-
port a causal role for e-cigarettes in the take-up of smoking. 
Identifying genetic instruments that differentiate e-cigarette 
from cigarette use may be more difficult. Early evidence in-
dicates a common genetic vulnerability to both smoking and 
e-cigarette use, which may reflect a broad risk taking pheno-
type (in itself suggestive that at least part of the association be-
tween e-cigarette use and smoking may be noncausal).13 Other 
genetic approaches beyond MR, including twin and sibship 
comparison studies,14 may hold promise for disentangling gen-
etic confounders and intergenerational transmission to assess 
true causal associations between e-cigarette use and smoking.

Turning to the population level (Supplementary Table 1), 
time series analyses can examine associations over time be-
tween prevalence of e-cigarette and cigarette use in poten-
tially vulnerable age groups. Because the whole population is 
being studied, this rules out individual factors accounting for 
any association found. Population-level studies can be biased 
by confounding variables that operate at the population level, 
but these will not overlap with individual confounders. For 
example, a country might relax or tighten regulations for 
e-cigarettes and cigarettes at the same time or fund a media 
campaign targeting both types of product. Therefore, it re-
mains important to adjust for population-level confound-
ing as far as possible (eg, shifts in policy). Population-level 
time series analyses have the additional advantage of directly 
estimating the population-level effect of e-cigarettes as has al-
ready been done for the impact of e-cigarette use on smoking 
cessation.15 Importantly, such analysis should include appro-
priately lagged effects to assess any putative gateway.

Other methodological approaches at population level include 
cross-context comparisons and natural experiments, which can 
exploit the likelihood that confounding structures will be different  
across populations in dissimilar contexts (either historically, eg, 
because of differently patterned behaviors, or by design, eg, due 
to legislative changes introduced in one but not in another con-
text).3 Similar findings across contexts could not be explained 
readily by confounding, while different results would be un-
likely due to true differences in causal effects between popula-
tions. No studies of this kind have been reported. A preliminary 
look at population data shows that over the same time-period 
that e-cigarette use increased, cigarette use decreased, and this 

Figure 1. Observeda and modeled past 30-day youth smoking prevalence in the United States 2011–2017, using the youth e-cigarette microsimulation 
modelb. aObserved values (filled circles) come from the National Youth Tobacco survey 2011–2017. bThe model, data, and description can be found online 
(https://osf.io/pycqj/); briefly, the microsimulation consists of 50 000 agents, each of which represents an individual as defined by the characteristics 
relevant for the question (ie, age, smoking status, vaping status), who at monthly intervals decide to take up smoking and/or vaping; the probabilities 
that govern these decisions are determined by the user (ie, a multiplier that adjusts the probability of smoking uptake for agents that already vape and 
vice versa). Different postulated effect sizes (multipliers) for the strength of association of e-cigarette use with uptake of cigarettes is provided as odds 
ratios in brackets (x); the base model assumes no effect of e-cigarettes (solid line), broken lines indicate either a postulated positive (OR > 1) or negative 
association (OR < 1) between e-cigarette use and smoking uptake.
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is found in markedly different contexts,16,17 suggesting a limited 
role of confounding.

One can also use modeling (Supplementary Table 1) to 
assess the extent to which individual- and population-level 
estimates of gateway effect agree with each other, for ex-
ample, with microsimulation or agent-based models, em-
ployed for now-or forecasting in economics, and increasingly 
applied to guide health policy.18 Our group has developed 
such a model in collaboration with Sandtable, a data ana-
lysis company. Here, adolescent cigarette uptake is calibrated  
to match rates of decline prior to e-cigarettes becoming 
popular, e-cigarette uptake is matched to observed val-
ues and the model run to estimate smoking prevalence in 
counterfactual scenarios, using different associations be-
tween e-cigarette and cigarette use. We find that the gate-
way effect estimated from individual-level studies19 predicted 
far less of a reduction in population smoking prevalence 
in the relevant age group than was actually observed  
(Figure 1), making it unlikely that individual-level effects 
were genuine.

Lastly, while we have focused on the analysis of individual- 
and population-level aggregated data, with the proliferation of 
mobile phone technologies, n-of-1 studies may also offer an in-
sight into possible gateway effects (eg, by following transitions 
of individuals in different contexts using ecological moment-
ary assessment). Further, most designs and statistical methods 
mentioned here rely heavily on Frequentist hypothesis testing, 
which can lead to nonsignificant findings being conflated with 
evidence of no effects. One remedy is the use of Bayes fac-
tors which assess the extent of evidence for the null hypoth-
esis and can also determine if the data analysis is insensitive 
or underpowered.20 Many of the approaches mentioned in 
Supplementary Table 1 have Bayesian equivalents, which in 
themselves can offer a method of triangulation, as prior know-
ledge from already published studies can be incorporated.

If we carry on as we are, we are unlikely to address this 
important scientific and public health question satisfactor-
ily and may merely perpetuate disagreement by selective re-
porting of results that favor one direction or the other of a 
gateway effect. In addition to encouraging single method in-
vestigations using new and diverse methodologies, we would 
therefore argue for a common, transparent approach that in-
volves prospective registration of a triangulation framework 
based on individual- and population-level data and a priori 
specification of what would be considered sufficient evidence 
in each direction of the postulated gateway, based not only 
on statistical significance but also on clinically or theoretic-
ally meaningful effect sizes (for an example see https://osf.
io/nd2qk). Taking a collaborative approach, involving groups 
with different prior beliefs, would not only increase feasi-
bility of triangulation but also help unify our field. Based 
on the current balance of evidence, using triangulated data 
from recent population-level cross-contextual comparisons, 
individual-level genetic analyses and modeling, we do believe, 
however, that causal claims about a strong gateway effect 
from e-cigarettes to smoking are unlikely to hold, while it re-
mains too early to preclude other smaller or opposing effects.
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A Contributorship Form detailing each author’s specific in-
volvement with this content, as well as any supplementary 
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