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Abstract

Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat

selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular

spatial scales, but to date no research addresses multi-scale selection. Our objectives were to deter-

mine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining

habitat selection are consistent between landscape and fine spatial scales. We built maximum

entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and

used generalized linear mixed models to evaluate fine spatial scale habitat selection using global posi-

tioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial

scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse

(study area) and fine (within home range) scales was congruent, and was influenced by increasing

amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open

water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts

of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge den-

sity (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances

to forage and obtain construction material. Woody plants along edges and expanses of open water

for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.
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Habitat selection by animals often exhibits scale-dependent patterns

like many other ecological phenomena (Johnson 1980; Wiens 1989;

Levin 1992). Advances in spatial technologies and the relative ease of

fitting resource selection functions have led to a proliferation of recent

habitat selection studies (Northrup et al. 2013). However, many of

these studies do not include multi-scale analyses (McGarigal et al.

2016). While some multi-scale studies found inconsistent habitat

selection patterns between coarse and fine scales (Corriale and

Herrera 2014; Peters et al. 2015), others have shown congruence

between spatial scales (Crampton and Sedinger 2011; Prokopenko

et al. 2017). However, congruent selection patterns between spatial

scales may not translate to habitat types or temporal scales

(Crampton and Sedinger 2011). Detecting habitat selection relies on

scales of measurement and analysis, and one scale is often insufficient

to predict habitat selection at another scale (Mayor et al. 2009).

Variables explaining fine-scale habitat selection can be influenced

by behavioral decisions made at a coarse spatial scale (McGreer et al.

2015), which we termed the down-scaling effect. Conversely, behavio-

ral decisions made at fine scales may dictate patterns at larger spatial

scales (Jedlikowski et al. 2016), which we refer to as the up-scaling
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effect. Key resources such as food, cover, and water may affect habitat

selection processes at different spatial scales according to life history

traits (Coreau and Martin 2007; Jedlikowski et al. 2016) and species-

specific ecological requirements (Perez-Garcia et al. 2014). While ani-

mals may select habitat structures at different spatial scales (Boyce

2006), the hierarchy of habitat selection should reflect factors affecting

individuals’ fitness (Rettie and Messier 2000). For instance, predator

avoidance at large spatial scales has been shown to shape habitat selec-

tion at fine spatial scales in woodland caribou Rangifer tarandus cari-

bou, which may ultimately limit fitness (Rettie and Messier 2000).

Similarly, elk Cervus elaphus avoided areas of high wolf predation risk

at landscape scales, whereas fine-scale habitat selection focused on

food resources adjacent to human residence (Hebblewhite and Merrill

2009). Scale-dependent or hierarchical habitat selection has a utility in

understanding how animals respond to spatiotemporal variation in

resource available and predicting animal spatial distributions.

However, hierarchical habitat selection has been challenged because

the underlying theory dictates that habitat selection at one level may

constrain selection at other levels (Mayor et al. 2009). Unconstrained

multi-scale analysis provides an opportunity to identify scale independ-

ent effects of landscape structure on habitat selection.

The American beaver Castor canadensis (hereafter, beaver) is a

large semiaquatic nocturnal rodent found throughout much of

North America (Baker and Hill 2003). Although classified as a

“choosey” generalist with their presence in many types of ecosys-

tems, beavers are closely associated with water and wetlands (Baker

and Hill 2003; Müller-Schwarze and Sun 2003). Beavers are herbi-

vores, feeding on a variety of woody, non-woody, terrestrial, and

aquatic vegetation (Baker and Hill 2003). As a wetland ecosystem

engineer, beavers removed a large biomass of woody plants at a rate

of 1.4 mg per individual per ha per year in Minnesota, USA

(Johnston and Naiman 1990), and reduced aquatic plant biomass

and plant litter by 60% and 75%, respectively, in Georgia, USA

(Parker et al. 2007). Beaver herbivory may alter edges in riparian or

bottomland forests, and beavers often forage within a 60-m distance

from water (Donkor and Fryxell 1999; Haarberg and Rosell 2006;

Steyaert et al. 2015). Likewise, fine-scale space use (e.g., within

home ranges) of semiaquatic mammals may depend on the distribu-

tions of food resources in proximity to water (Campbell et al. 2013;

Corriale and Herrera 2014).

Therefore, it is plausible to hypothesize that main factors limit-

ing beaver fitness and determining habitat selection at both large

and small spatial scales include the availability of woody plants and

access to wetland habitats. Nevertheless, beaver habitat selection

was rarely examined at multiple spatial scales or with modern prob-

ability distribution techniques. Studies of habitat selection by bea-

vers primarily focused on the characterization of dams and lodge

site selections using presence-absence or presence-pseudo absence

habitat comparisons (Allen et al. 1983; Beier and Barrett 1987).

In this study, our objectives were to determine if beaver habitat

selection was specialized to semiaquatic habitats and if variables

explaining habitat selection are consistent between landscape and fine

spatial scales. Specifically, we predicted that habitat selection by bea-

vers would be positively correlated with edge densities of woody wet-

land, shrub, open water, and emergent herbaceous wetland at both

large and small spatial scales (prediction P1). Additionally, we pre-

dicted that beaver habitat selection would be scale dependent,

whereby beavers select different habitat variables at large and small

spatial scales (prediction P2). We built maximum entropy (MaxEnt)

models to relate landscape-scale presence-only data to landscape vari-

ables, and used generalized linear mixed models (GLMMs) to evaluate

fine spatial scale habitat selection using global positioning system

(GPS) relocation data. Explanatory variables between the landscape

and fine spatial scale were compared for consistency.

Materials and Methods

Study area
We conducted the study at Redstone Arsenal (RSA), a 15,342-ha

military installation managed by the Department of Defense (DOD),

located in Madison County, Alabama, USA (34�39’00.5"N

86�37’52.1"W). RSA was bordered by the city of Huntsville to the

North and East, Madison County to the west, and the Tennessee

River to the south (McClintic et al. 2014a). We collected data at 11

wetland sites spread across RSA, where beavers were active (Figure

1). The landscape containing the 11 sites was composed of agricul-

tural fields, upland pine forests, mixed forests, bottomland hard-

wood forests, and developed areas (e.g., DOD infrastructure).

Average annual temperatures ranged from 5.2 C� in January to

27 C� in July, with an overall annual average of 16.7 C�. Average

annual precipitation was 138 cm, ranging from 9 to 15 cm per

month (Huntsville-Decatur International Airport weather station).

Species presence locations
We collected data on American beaver presence locations to build

habitat suitability models. We documented beaver presence based

on beaver markings, structures, and capture locations in 11 wet-

lands during two periods, March 2015 to August 2015 and

February 2016. Markings and structures included dams, lodges,

feeding stations, foraging locations, and castor mounds. We

recorded geographic coordinates of all presence locations using a

handheld GPS unit (Garmin E-Trex 10, Garmin, Olathe, KS, USA).

The geographic locations were projected in the Universal Transverse

Mercator Zone 16 North (UTM 16 N) using World Geodetic

System 1984 (WGS 84) datum.

We located beaver lodges using a combination of techniques: hom-

ing to tagged beaver locations using very high frequency (VHF) tele-

metry and systematic searches by walking/wading and boat. We also

used systematic searches to quantify all other beaver signs in each wet-

land. We identified foraging locations by searching in quadrants radi-

ating from lodges, whereby we recorded all woody vegetation (�1 cm)

browsed by beavers within 2 m plots. We identified active dams by the

presence of fresh construction material (e.g., sticks, mud, and rocks).

We identified active castor mounds by sight and smell, as beavers reap-

ply castor to these territorial markings frequently. We categorized

feeding stations as locations where beaver processed and consumed

food. These were usually logs or small islands just above waterline

with accumulations of freshly processed sticks and shavings.

Preparation of environmental variables
We generated raster layers of landscape variables as the covariates

of habitat suitability models. We obtained land cover data from the

National Land Cover Database (NLCD) 2011 with a resolution of

30�30 m per grid cell (Homer et al. 2015), reclassified it into 10

land cover and land use classes, and clipped the data to the extent of

RSA in ArcMap 10.3 (ESRI, Redlands, CA, USA). The 10 classifica-

tions used in this study were grass (NLCD classes 71 and 72), devel-

oped (NLCD classes 21, 22, 23, 24, and 31), deciduous forest

(NLCD class 41), evergreen forest (NLCD class 42), mixed forest

(NLCD class 43), shrub (NLCD class 51 and 52), cultivated crops

(NLCD class 82), woody wetlands (NLCD class 90), emergent
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herbaceous wetlands (NLCD class 95), and open water (NLCD class

11) (Homer et al. 2015). We used the Booleanisator tool in the

Biomapper software package (Hirzel et al. 2002) to create a new ras-

ter map by landscape cover type. We used the Circular Analysis pro-

gram within Biomapper (Hirzel et al. 2002) to calculate edge density

and relative frequency of occurrence (0–1). This contextual operator

can be viewed as a circular-moving window based on a user-defined

buffer. Our buffer size (11.88 ha) was equivalent to annual home

range size of American beavers previously reported on RSA

(McClintic et al. 2014a). We also used program Distance Analysis in

Biomapper (Hirzel et al. 2002) to calculate the exact minimum dis-

tances from a grid cell to the nearest grid cell of a land cover type.

We performed a principle component analysis (PCA) on 30 land-

scape layers (i.e., edge density, frequency of occurrence, and mini-

mum distance for each of 10 land cover types) in R to avoid

multicollinearity between land cover variables (Everitt 2004; R Core

Team 2016). We selected the number of principal components (PCs)

to retain>90% of the total variability of the original data of the 30

landscape variables, and we used landscape PCs to predict suitable

beaver habitats across RSA.

Landscape scale habitat suitability modeling
We used presence locations to build habitat suitability models with

MaxEnt methods (Elith et al. 2011; Phillips et al. 2006). To avoid

pseudoreplication, we parameterized MaxEnt to remove duplicate

presence points as well as points that were within 30 m of other

presence points (Razgour et al. 2011). We set the number of random

pseudo absence locations to 10,000. Training and test locations

were randomly chosen by MaxEnt at a ratio of 80% to 20% of the

total number of locations. The training data were used to tune

MaxEnt parameters, and the testing was used to test the MaxEnt

performance.

We used the PCs of landscape variables to build a MaxEnt model

for generating a habitat suitability index map of the study area, a

black box approach without inferring beaver resource selection. We

referred to this model as a predictive model. We also built a MaxEnt

model to infer landscape variables selected by beavers through the

model selection of 30 original, untransformed landscape variables

using a combination of the information-theoretic approach and least

absolute shrinkage and selection operator (LASSO). LASSO is a reg-

ularization technique for regression, accounting for multicollinearity

and avoiding model overfitting (Tibshirani 1996). The second model

is referred to as inferential model.

We built the MaxEnt inferential models using the R package

MaxentVariableSelection (MVS) (Jueterbock et al. 2016). The func-

tion VariableSelection within MVS uses corrected Akaike informa-

tion criterion (AICc), LASSO, and the relative contribution of

variables to model fit to select the most parsimonious model.

VariableSelection selects a subset of landscape variables and a regu-

larization multiplier (b) for LASSO, which minimize the AICc value

(Jueterbock et al. 2016). LASSO uses the multiplier b to shrink the

coefficient of least influential covariates toward zero to avoid over-

fitting (Merow et al. 2013; Jueterbock et al. 2016). The smaller the

value of b, the closer the fit between the projected distribution and

the training data set. We parameterized VariableSelection to remove

a variable, which explained<5% of the model deviance (Jueterbock

et al. 2016). We also parameterized VariableSelection to remove one

of the two variables having the absolute Pearson correlation

jrj>0.7. The variable removed had lower contribution to model fit

than the variable retained.

Beaver capture and GPS relocation data
We collected GPS location data from free-ranging beavers on RSA

to validate habitat suitability maps developed with species presence

locations. We captured beavers using Hancock live traps weighing

Figure 1. Habitat suitability map of American beavers in RSA, Alabama, USA. Stars depict the 11 wetlands where beavers were monitored. Habitat suitability

index ranges from 0 to 1 as shown in the legend with values closer to 1 representing more suitable habitat. The second panel is a map of the National Land Cover

Data for RSA, Alabama, USA with the same 11 monitoring locations.
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13.2 kg with dimensions of 71�91�10 cm in late March (Hancock

Trap, Custer, SD, USA). We baited traps with castor scent and/or

food lures (Backbreaker or Woodchipper, Dobbins’ Products,

Goldsboro, NC, USA). We set traps at 1500 h and checked traps

daily by 0900 h. We weighed each captured beaver to the nearest

0.1 kg using an electronic scale (Berkley, Inc., Spirit Lake, IA, USA)

and estimated age by body mass (<1 year:�11 kg; yearling [1 year]:

11–16 kg; sub-adult [1–2 year]: 16–19 kg; and adult

[>2 year]:>19 kg) (McTaggart 2002).

We attached UltraLITE GPS transmitters (model G10-210,

Advanced Telemetry Systems [ATS], Inc., Isanti, MN, USA) inte-

grated with VHF radio telemetry tags (model M3530, ATS, Inc.) to

two beavers in each of 5 wetlands dispersed across RSA (n¼10).

We located beavers with GPS units weekly during April and May by

searching for active VHF beacons. We setup GPS units to record a

location every 15 min over a 12-h period from 1800 h to 0600 h,

based on an estimated 30-day battery life. We assumed that under-

water locations and locations in lodges would not be recorded due

to interference with satellites. We used the homing technique to

recover transmitters with a VHF mortality signal and to locate trans-

mitters after expected GPS battery failure. We extracted GPS data

manually from each transmitter using ATS software Robin Manager

version 2.5.14248 (ATS, Isanti, MN, USA). All beaver capture and

handling methods were approved by the Institutional Animal Use

and Care Committee of the United States Department of

Agriculture, Animal and Plant Health Inspection Service, Wildlife

Services, National Wildlife Research Center (Protocol # QA-2436).

Validation of MaxEnt habitat suitability models
MaxEnt models randomly separate the complete presence data into

the training data for model building and test data for cross-

validation. We used the area under the curve (AUC) of receiver oper-

ating characteristics (ROCs) with the 20% test data to cross-

validate the MaxEnt models (Hilden 1991; Liu et al. 2011). The

AUC value ranges from 0 to 1. An AUC value of 0.5 indicates the

predictive performance of a random model, and 1.0 for a perfect

predictive accuracy of the tested model (Liu et al. 2011).

In the cross-validation, the training and testing data may not be

independent of each other. We also used GPS locations of free-

ranging beavers to validate the MaxEnt models with the continuous

Boyce index (CBI). The CBI is a Spearman correlation between the

predicted-to-expected (P/E) ratio of habitat suitability value and

mean Habitat Suitability Index (HSI), within a window moving over

the HSI range in the predictive MaxEnt model (Boyce et al. 2002;

Hirzel et al. 2006). The CBI value ranges from �1 to 1, with 0 being

equivalent to predictions by random models and a negative value

indicating an incorrect model (Hirzel et al. 2006). The CBI was eval-

uated with each of 5 sets of GPS locations of free-ranging beavers.

Average CBI was computed over the 5 individual evaluations.

Although our presence locations were not randomly sampled as

desired for habitat suitability or ecological niche modeling studies

(Elith et al. 2011a; Renner et al. 2015), GPS locations from free-

ranging beaver can be assumed to generate a spatial stochastic proc-

ess (Cagnacci et al. 2010). We used the validation test with the GPS

locations, independent of the training locations, to test the represen-

tativeness of our presence locations for beaver space use.

Fine-scale habitat selection
To evaluate fine-scale habitat selection, we built Resource Selection

Functions (RSF) for the 5 GPS-tracked beavers using a use versus

available approach. We estimated 100% minimum convex polygon

(MCP) home ranges with the R package adehabitatHR (Calenge

2006). The GPS locations within 100% MCP home ranges repre-

sented habitat use. We randomly sampled the same number of loca-

tions without replacement within MCPs to represent available

habitat (Boyce and McDonald 1999; Lele and Keim 2006). We then

used GLMMs as RSFs to compare resources or habitat used to

resources or habitat available and to determine landscape variables

influencing fine-scale habitat selection by beaver with an animal

identification number (ID) as random effects following Steyaert

et al. (2015). We used landscape variables selected by landscape

scale inferential MaxEnt models to build individual RSFs, with one

of two highly correlated landscape variables (jrj>0.7) being

included in a RSF (Merow et al. 2013). We used AICc to select most

parsimonious RSF for each of the 5 GPS tracked animals, with the

lowest AICc representing the most parsimonious model (Burnham

and Anderson 2002). A model of<2.0 DAICc is considered a com-

peting model. We conducted model selection in a forward stepwise

fashion. If the effect directions of landscape variables remained in

the final GLMM were consistent with that revealed by the variable

response curve produced by MaxEnt, we concluded that the effects

of the variables were scale independent. We also fit generalized addi-

tive mixed models (GAMMs) to the GPS locations with animal ID

as random effects to demonstrate nonlinear effects of the landscape

variables selected by GLMMs and compared them to the trends of

the MaxEnt response curves.

Results

We detected 334 presence locations (180 foraging locations, 12

feeding stations, 4 dams, 10 lodges, 19 cast mounds, and 109 trap-

ping locations) in the 11 wetlands (Table 1). Of the 10 GPS trans-

mitters attached to captured beaver, 7 were recovered after one

month. Of the 7, 5 yielded data with a total of 607 GPS locations.

Due to the denning and underwater habits of beavers, GPS reloca-

tions were irregular and did not represent 15-min intervals.

Our predictive model included the first 15 PCs, which accounted

for 90% of total variability in the original landscape variables. The

predictive model had excellent accuracy with an AUC value of 0.97.

The CBI was 0.97 in the validation test using the 607 GPS locations

of 5 beavers. Average CBI was 0.84 (standard deviation [SD]¼0.03)

over 5 separate tests using the GPS locations of individual beavers.

Therefore, validation tests using the GPS locations independent of

the training data indicated an excellent predictive power for the

model. The suitable habitat of beaver was highly discontinuous and

fragmented (Figure 1).

The results of MVS, across 10 MaxEnt models showed that a

regularization parameter (b multiplier) of 2.0 had the lowest AICc.

Thus, we set the b multiplier to 2.0 for subsequent model selection.

Model selection for the best inferential MaxEnt model showed that

open water edge density, shrub edge density, woody wetland edge

density, and grassland frequency influenced habitat selection by bea-

vers. Variable response curves demonstrated nonlinear effects of the

4 landscape variables on the habitat suitability of beavers (Figure 2).

GLMMs showed that water edge density, shrub edge density,

and woody wetland edge density affect fine-scale habitat selection of

beaver (Table 2). GAMMs demonstrated the nonlinear effects of

woody wetland edge density (Figure 3A) and shrub edge density

(Figure 3B) but linear effects of open water edge density (Figure 3C)

on the habitat suitability of beaver at the fine scale.
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Discussion

In this study, we found evidence for scale independent effects of

landscape structure on beaver habitat selection by applying a multi-

scale approach with no hierarchical constraints. First, the fine-scale

spatial distribution of beaver relocations was correlated with mean

suitability indices predicted by landscape-scale MaxEnt models

(Speakman correlation index or CBI¼0.87). Second, 3 of 4 land-

scape variables influencing landscape-scale habitat selection had

similar effects on the fine-scale habitat selection by beavers (Figures

2 and 3). Of the 3 variables that were congruent between scales,

edge densities of woody wetland and shrub were likely critical

to forage and lodge construction opportunities for beavers.

Scale-dependent habitat selection by beavers dictates that habitat

selection at broader scales constrains selection at finer scales (Mayor

et al. 2009). By removing hierarchical constraints, habitat selection

may be determined by the characteristic scales of resources, such as

spatial extents of woody wetland in the case of beavers, or predation

risks (Mayor et al. 2009). Although we found congruence in habitat

characteristics among spatial scales, our unrestricted approach

allowed us to detect and contrast the direction of relationships

between scales (Figures 2 and 3).

At the fine scale (i.e., within home ranges), we saw nonlinear

relationships with shrub edge densities, suggesting that beavers

found intermediate thresholds to meet forage requirements and may

Table 1. Type and number of presence locations sampled from wetlands across RSA, Alabama, USA.

Wetland Total presence

per wetland

Main lodge

(1¼ found,

0¼ not found)

Number of

secondary

lodges

Dams Castor

mounds

Foraging

locations

Feeding

station

Captures

Blueberry (BB) 7 1 3 0 0 0 0 3

Easter Posey Wetland (EPW) 71 1 0 1 0 52 2 15

Thiokol Wetland (TW) 108 1 0 1 19 67 10 10

Martin Road North (MRN) 74 1 1 0 0 60 0 12

Patton Road Pond (PRP) 67 1 1a 3 (2)b 0 55a 0 7

Igloo Pond WetlaND (IPW) 17 0 0 1a 0 0 0 16

Mckinley Range (MK) 5 1 0 1a 0 0 0 3

Hudson Recreation Area (HUD) 55 1a 0 1a 0 44a 5a 4

Hale Road Wetland (HRW) 97 1 2a 3 (1)b 12a 46a 12a 21

Nasa Gun Range (NGR) 4 1 0 0 0 0 0 3

DDT Impoundment Site (DDT)c 39 1 2 2a 1a 16a 0 15

Notes:, a location not included in Maxent model., b numbers in parentheses were not used in Maxent model., c 2 main lodges.

Figure 2. Response curves of predicted occurrence likelihood of grassland frequency, water edge density, shrub edge density, and woody wetland edge density

in the Maxent model for the habitat suitability of American beaver. Each curve represents how the predicted likelihood of habitat suitability changes with

increased value of a landscape variables while the other landscape variables are held at averages.
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have used ecotones between aquatic and terrestrial habitats (Donkor

and Fryxell 1999; John and Kostkan 2009). Although beavers move

out of water up to 60 m to forage (Donkor and Fryxell 1999), this

was unlikely on RSA given the large expanses of wetlands, consis-

tent with negative relationships between habitat selection and dis-

tance to open water. With long regeneration time of some woody

plants, beaver herbivory may reduce food availability and increase

woody wetland edge density, so beaver may include more woody

vegetation within their home ranges (Campbell et al. 2005; Brzyski

and Schulte 2009; McClintic et al. 2014a). Consequently, beavers

may increase the use of the area having high woody wetland edge

density (Figure 3A). Although we did not quantify plant vigor in this

study, these patterns are consistent with the resource heterogeneity

hypothesis previously observed on RSA (McClintic et al. 2014a).

The negative linear relationship with herbaceous wetland edge

density at the home range scale suggests that while beavers need

open water for protection from predators, they are able to trade-off

the size of wetlands, or distance of lodge to bank, for easier access

to woody plants (e.g., food and construction resources). This is con-

sistent with central foraging theory and the deliberate movement

hypothesis (McClintic et al. 2014b). Beavers also defend their terri-

tories from others beavers, often marking their territories along the

same aquatic-terrestrial edges where they forage on woody plants.

Beaver selection for decreased herbaceous wetland edge density also

is consistent with maintaining an “economically defendable” area

(Campbell et al. 2005). Thus, minimizing predator risk and travel

requirements for food, construction material, and defense all pro-

mote beaver fitness. Alternatively, foraging locations used in habitat

selection modeling were primarily tree biting marks, which repre-

sented winter and early spring habitat use before herbaceous wet-

land plants remerged.

While our results partially supported our prediction (P1), herba-

ceous wetlands did not appear to be a major factor influencing bea-

ver habitat selection on RSA. However, this is understandable as

aquatic herbaceous plants also occurred in woody wetlands where

beavers were found. The amount and timing of aquatic vegetation in

beaver diets varies with latitude (Svendsen 1980; Parker et al. 2007;

Milligan and Humphries 2010). In the southeastern USA, beavers

tend to shift their diet toward non-woody plants in summer months

(Parker et al. 2007). Although we did not quantify annual food con-

sumption rates of beaver at our study sites, beavers have been shown

to alter landscapes through consumption of large volumes of aquatic

(Parker et al. 2007) and woody plants (Johnston and Naiman 1990).

We likely missed much of the herbivory on aquatic vegetation dur-

ing our sampling period. Nevertheless, beavers have been shown to

feed on a variety of terrestrial, emergent, and aquatic non-woody

vegetation. An exhaustive list of all forage species is unavailable,

and would vary between regions (Gallant et al. 2004). About 59%

of 180 feeding signs observed in our study were from deciduous

trees Acer rubrum, Liquidambar styraciflua, and Nyssa spp.

However, only 0.07% was from Ligustrum sinense and

Cephalanthus occidentalis, the only shrub species we documented

upon which beaver foraged on RSA. Our habitat selection models

Figure 3. Results of the GAMM examining the effects of (A) woody wetland edge density, (B) shrub edge density, and (C) water edge density on fine-scale habitat

selection by American beavers in RSA, Alabama, USA. Woody wetland edge density and shrub edge density exhibit nonlinear responses, whereas water edge

density shows an inverse linear response.

Table 2. Model selection using Akaike information criteria for the

effects of woody wetland edge density (wwetbd), shrub edge den-

sity (shrubbd), water edge density (waterbd), and grassland fre-

quency (grassfq) on the habitat suitability of American beavers in

RSA, Northern Alabama, USA. The top 3 of 15 models were

presented.

Model AICc DAICc

y�wwetbdþshrubbdþwaterbd 1422.61 0

y�waterbdþshrubbdþgrassfqþwwetbd 1424.14 1.53

y�wwetbdþshrubbd 1432.84 10.23
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supported the avoidance of both coniferous and mixed pine-

hardwood landscapes, which is consistent with other studies of habi-

tat selection in beaver (Roberts 1981; Gallant et al. 2004).

In summary, multi-scale habitat selection has become a theoretic

foundation for understanding animal habitat selection or resource

use (Boyce 2006; Johnson 1980). To our knowledge, this is the first

known study to evaluate beaver habitat selection using multi-scale

modeling techniques. Future research is needed to test these predic-

tions across the range of American beavers and to apply statistical

techniques that optimize scale, which is critical to assess scale

dependence (McGarigal et al. 2016).
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